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Abstract 

Graph search with A* is frequently faster than tree search. But A* graph search 
operates correctly only when the evaluation function is order-preserving. In the non-order- 
preserving case, no paths can be discarded and the entire explicit graph must be stored in 
memory. Such situations arise in one-machine minimum penalty job sequencing problems 
when setup times are sequence dependent. GREC, the unlimited memory version of a 
memory-constrained search algorithm of the authors called MREC, has a clear advantage 
over A* in that it is able to find optimal solutions to such problems. At the same time, it is 
as efficient as A* in solving graph search problems with order-preserving evaluation 
functions. Experimental results indicate that in the non-order-preserving case, GREC is 
faster than both best-first and depth-first tree search, and can solve problem instances of 
larger size than best-first tree search. 

1. Introduction 

Many attempts have been made in recent years to widen the range of problem 
areas to which algorithm A* [8] can be usefully applied. As part of this effort, A* 
has been employed to solve optimization problems in areas such as project 
scheduling [3] and rectangular stock cutting [29]. In both these cases the search 
graph is a tree, so there is little distinction between running A* and running a 
standard best-first branch-and-bound procedure. In job sequencing and job 
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scheduling, howcvcr. far higher execution speeds have sometimes been achieved 
with the search graph represented as a graph instead of as a tree [15,22,24,25]. 
Consider the optimal sequencing of jobs on one machine. It has been found that 

Townsend’s classic best-first branch-and-bound algorithm [28] for minimum 
penalty sequencing of jobs when the penalty functions are quadratic runs 25 to 40 
times faster for 16 jobs when implemented as an A”-based graph search scheme. 
Such examples suggest that graph search methods are likely to find greater use in 
future in sequencing, scheduling, stock cutting and related optimization problems. 

A” is not the only graph search procedure in existence. however. Some other 
methods have been proposed in recent years which either view the search space as 
a graph [Y] or try to avoid duplication of nodes in tree search [17,27]. MREC [21] 
is one of the earliest such methods. It is a constrained memory graph search 
algorithm that can be viewed as a generalization of the iterative deepening tree 

search scheme IDA* [lo]. Unlike A*, MREC is recursive and does not use an 
OPEN list. All it needs is sufficient memory for its implicit stack. But it can be fed 

at run time a parameter M which tells it how much additional memory is available 
for use. In this memory, it stores as much as possible of the explicit graph. When 
M is small it approximates to IDA”: and expands each node many times. As M 
increases, MREC makes fewer and fewer node expansions, which is of advantage 

when node expansion time is significant. When M is large MREC stores the entire 
explicit graph and does not expand any node more than once; it then becomes 
comparable in performance to A”. 

MREC(M = x), which is called GREC in this paper, is efficient in solving graph 
search problems with order-preserving evaluation functions. It is also able to find 
optimal solutions to problems involving norm-order-preserving evaluation functions 

(Pearl [14, pp. lOO-1031) . so in this respect it has a clear advantage over A*. We 
recall that when an evaluation function is order-preserving, a path from the root 
to a node can be discarded when a path of lower cost is found. A” is based on this 
principle. But in the non-order-preserving case. no path can be discarded, 
because it is possible for a path that is currently unpromising to become promising 
at later stages of the search process. Such situations arise in job sequencing when 
jobs are allowed to have setup times. The setup time for a job is the time taken to 
get the machine ready for processing after the processing of the previous job has 
been completed and before the processing of the current job can begin. The setup 
time for a job .I is sequence independent if it does not matter which job is 
processed immediately prior to job J; otherwise, it is sequence dependent. When 
setup times are ignored or assumed to be sequence independent, A*-based graph 
search methods yield optimal solutions. When setup times are sequence depen- 
dent, however, the evaluation function becomes non-order-preserving, and A* is 
unsuitable unless the search graph is implemented as a tree. To retain the 
advantages of graph search over tree search for problems of small and medium 
size. the entire explicit graph has to be stored, and an algorithm like GREC must 
be used in place of A* [23]. 

Job sequencing and job scheduling are areas in which it is difficult to find exact 
solutions since most problems are NP-complete [ 191; as a result, approximation 
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methods have been extensively used in recent years. Promising approaches 
employ artificial neural networks and tabu search [16]. It has been demonstrated, 
for example, that in flow shop scheduling, tabu search obtains solutions uniformly 
better than the best of the classical heuristics [26]. A list of applications of tabu 
search to sequencing and scheduling is given in [16, Table 3.1, p. 1281. Similar 
approaches might prove useful in minimum penalty job sequencing if only 
approximate solutions are desired. It is true that in situations that arise in 
practice, problem sizes tend to be large and exact methods become infeasible. 
Our interest in this paper, however, is primarily to extend the scope of use of 
exact methods in job sequencing, so we do not discuss approximation methods in 
any detail. 

This paper is organized as follows: 
(a) In Section 2 we review algorithm GREC and explain its principle of 

operation with the help of an example. We then formally state and prove 
some of its important properties. 

(b) We then try to show how GREC solves one-machine job sequencing 
problems, our particular interest being in cases that involve sequence- 
dependent setup times. As a first step in this direction, job sequencing 
problems are described in Section 3, and the existence of an interesting 
class of real life problems that have non-order-preserving evaluation 
functions is demonstrated. Tree search can solve such problems, but owing 
to duplication of nodes the execution is slow and some nodes get expanded 
multiple times. Section 4 explains how graph search with GREC can 
provide answers to such problems. The quadratic penalty version of the 
one-machine minimum penalty job sequencing problem with sequence- 
dependent setup times has great practical interest. Depth-first branch-and- 
bound methods have been employed in the past to solve similar problems 
[4,13]. We show that when problem instances are of small and medium size, 
GREC is to be preferred over other methods since it runs faster than both 
best-first and depth-first tree search, and also solves problems of larger size 
than best-first tree search. The last section summarizes the paper and 
compares GREC with some other similar search schemes. 

2. Algorithm GREC 

GREC is identical to MREC [21] with the memory parameter M set to infinity. 
It outputs optimal solutions when heuristic estimates are admissible, never 
expanding a node more than once. We explain its principle of operation below. 

GREC is based on the recursive procedure EXPLORE, which, at each 
iteration explores the explicit graph below the root node s. Initially the explicit 
graph contains only the root node. EXPLORE moves down a path in the explicit 
graph until it encounters a tip node, i.e., a node which as no successors in the 
explicit graph. It expands the tip node and adds the new nodes and edges to the 
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explicit graph. As in IDA”‘, a cutoff value is used for monitoring the downward 
movement. GREC terminates when it encounters goal node. 

Each node n in the explicit graph has a b-value b(n) which stores the current 
estimate of the cost of a path of least cost from II to a goal node. When n is a tip 
node, b(n) equals the heuristic estimate h(n). 

program GREC; 
var terminate; 
begin (* initially the explicit graph contains the root node s “) 

terminate : = false; 
initialize s (:I: b(s) = h(s) :‘); 
repeat 

EXPLORE(s) 
until terminate; 
output b(s) as solution cost; 
output outpath as solution path; 

end. 

procedure EXPLORE(n:node); 
begin 

if n is a goal node then 
begin 

terminate : = true; return; 
end; 
if n is a tip node then EXPAND(n); 
UPDATE(n); 

(* updation takes place whether n is a tip node or a non-tip node *) 

end; 

procedure EXPANJl(n:node); 
begin 

(* if y1 has no successors then b(n) = h(n) = x, so EXPLORE and therefore 
EXPAND will never get called at II ‘“) 

for each successor n, of n do 
if II, is not present in the explicit graph then 
begin 

initialize n,; (:” b(n)) = h(n,) :‘:) 
add n, and the edge (n, n,) to the explicit graph; 

end 
else add the edge (n, n,) to the explicit graph; 

end; 

procedure UPDATE (n:node); 
var cutoff: integer: 
begin 
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cutoff := 00 (* a very large value *); 
for each successor IZ, of 12 do 
begin 

if b(n) 3 b(n,) + c(n, n,) then 
begin 

b(q) : = b(n) - c(n, n,); 
EXPLORE(q); (* exploration continues to greater depths until the bound 

is exceeded *) 
if terminate then 
begin 

add ni to outpath; return; 
end; 

end; 
(* at this point b(n,) + c(n, ni) > b(n) *) 
if b(ni) + c(n, ni) < cutoff then cutoff : = b(n,) + c(n, n,); 

end; 
b(n) : = cutoff; 

end. 

The downward movement along a path is determined by the b-values of the 
nodes on the path and the costs of the arcs. Let C(IZ, ni) denote the cost of the arc 
(n, ni). When GREC on reaching a node II finds a successor IZ~ of IZ such that 
b(n) 2 b(ni) + c(lt, n,), it explores ni. If b(n) > b(ni) + c(n, n,), then b(ni) gets 
reset to a larger value, and this allows a deeper exploration below ni. If 
b(n) < b(n,) + ~(12, n,) for every successor IZ~ of IZ, then none of the successors get 
explored; in this case, b(n) gets reset to the minimum of the b(n,) values. If IZ is 
explored at a subsequent iteration, IZ will have a successor n, in the explicit graph 
for which b(n) 3 b(n,) + c( IZ, IZ~), and n, will also be explored. 

EXPLORE calls two procedures, EXPAND and UPDATE. EXPAND expands 
a tip node and adds newly generated nodes and edges to the explicit graph. 
UPDATE explores the graph below a node and updates the b-values of nodes; it 
carries out the exploration by calling EXPLORE, and this makes GREC 
recursive. The output solution path is stored in outpath. The explicit search graph 
and its associated parameters are assumed to be accessible to all the procedures. 

From the above description it is clear that in spite of certain superficial 
resemblances, GREC differs radically from IDA* in two major respects: 

(i) GREC stores the entire explicit graph in memory. This amounts to storing 
the nodes and the successor lists. IDA*, in contrast, does not store any part 
of the explicit graph in memory. Because the entire explicit graph is 
available to GREC, no node needs to be expanded more than once. Note 
that unlike GREC, A* does not store the entire explicit graph in memory; 
it stores a spanning tree of the explicit graph that contains the currently 
known minimum cost path to each node. 

(ii) IDA* is a tree search algorithm. When it searches a graph that is not a tree, 
it implicitly converts the graph to a tree in the course of the search. GREC 
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I-ig. I. Search graph tor Example I. 

is a genuine graph search method and views a graph as a graph; it does not 
convert the graph to a tree. 

Example 1. Consider the search graph shown in Fig. 1. We want to find the 
minimum cost path from the start node s to a goal node. The sequence of node 
expansions made by GREC is snpm, which differs from the sequence snpmp of 
A*. Let each instant correspond to a fresh call to EXPLORE(s); at the ith 
instant, EXPLORE(s) is called for the ith time. The explicit graphs at instant 3 
and at termination of GREC are shown in Fig. 2. In the figures, heuristic 
estimates and b-values of nodes are encircled. At instant 1, s gets expanded and 
b(s) gets updated to 6, which is the minimum of the two values c(s, m) + b(m) and 

c(s, n) + b(n). At instant 2, n gets expanded. Since b(n) is 3 and c(n, p) + b(p) is 

Fig. 2. Explicit graphs during the execution of GREC. 
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also 3, p also gets expanded, and the b-values of p, n and s are revised to 10, 13 
and 11 respectively. At instant 3, m gets expanded and b(s) is revised to 12. At 
instant 4, GREC terminates with smpr as the minimum cost solution path. 

An experimental comparison of GREC with A* and IDA* on a variety of 
problems is given in [21]. The data indicates that GREC runs quite fast in 
general; a few examples are given below. 

(9 

(ii) 

‘(‘i: 1v 

On the 8-p&e problem with the Manhattan heuristic, it is as fast as 
IDA*. On the corresponding 15puzzle problem it runs short of memory 
just like A*. But MREC with limited memory is able to solve this problem 
as fast as IDA*. 
On the travelling salesman problem using the evaluation function of Little 
et al. [12], as well as on a graph formulation of the problem suggested by 
Pearl [14], it is as fast as A*. 
On the rectangular cutting stock problem [29], it is as fast as A*. 
On a general uniform d-ary tree with bi-directional arcs of unit cost, a 
single goal node, and randomly generated admissible heuristic estimates, it 
is faster than both A* and IDA*. 

The power of GREC comes from the use of the b-value, which estimates the cost 
of the best path from the node to a goal; the b-value helps to determine whether 
further exploration below the node is worth pursuing, and is an extremely useful 
feature. 

Comparing the characteristics of GREC, A* and IDA*, we find that: 

(9 

(ii) 

i’i: IV 

When the evaluation function is admissible and order-preserving, all three 
algorithms find optimal solutions. A tree search method like IDA* always 
finds optimal solutions, even when the evaluation function is non-order- 
preserving, but A*-based graph search methods can fail to do so. GREC, 
however, is able to solve the problem. 
GREC and A* sometimes expand nodes in different order, and the 
solution paths can also differ. But GREC and IDA* always output the 
same solution path. 
Unlike A* and IDA*, GREC never expands a node more than once. 
The worst-case running time of GREC, like that of A* and IDA*, can be 
exponential in the number of nodes in the search graph. 

Some of these issues, as for example (iv), are discussed in greater detail in Section 
2.1.1. 

2.1. Properties of GREC: theoretical formulation 

2.1.1. Constant arc costs 
We now state and derive some important theoretical properties of GREC. We 

initially assume that arc costs are constant, and later extend the results to path 
dependent arc costs. The notation and terminology are adapted from [l]. Proofs 
of important results are given in Appendix A. 

A search graph G is a directed graph with a special node s called the root node, 
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and a non-empty set of goul nodes. Let r, r, . r,. be the goal nodes in G, and 
m. n, . the other nodes in G. Each directed arc (m, n) has a finite, strictly 
positive arc cost c(m, n). A path is a finite sequence of directed arcs; a .solution 
path is a path from the root node to a goal node. The cost c(P) of a path P is the 
sum of the costs of the arcs which make up the path. Our objective is to find a 
solution path of minimum cost in G. GREC. like A*, tries to find this path by 

systematically searching G. Each node m in G has an associated non-negative 
heuristic estimate h(m), and the search is guided by these heuristic estimate 
values. The search graph G is called the implicit graph and is not really supplied 
to the algorithm. What is given is a set of rules for generating the explicit graph, 
which is a subgraph of G. Initially the explicit graph consists of the root node S. 
When s is expanded its successors are added to the explicit graph. At subsequent 

instants, fresh nodes and arcs get included in the explicit graph as more and more 
nodes get expanded. 

The following conditions are frequently imposed on the search graph G to 
ensure that the search is well defined and that it terminates successfully: 

(i) G has exactly one root node, at least one goal node, and at least one 
solution path. G can have infinitely many nodes and arcs, but each node in 

G has finitely many immediate successors. It is permissible for G to have 
directed loops or cycles. 

(ii) There is a real number 7 > 0 such that for each arc (m, n) in G, c(m, n) 3 
T. Since c(rn. n) > 0, this condition always holds if G has finitely many 
nodes, and is therefore always true in practical situations. But in theoret- 
ical studies, when G has infinitely many nodes and arcs, in order to ensure 

that the search algorithm terminates a non-zero lower bound must be 
imposed on the arc costs. 

(iii) For each non-goal node m in G, the heuristic estimate h(m) is finite if 
there is a path in G from m to a goal node. Otherwise, h(m) can be finite 
or infinite; in particular, we take h(m) to be infinite if m is a non-goal node 
with no successors. If r is a goal node then we take h(r) = 0. 

Definition 2. 
(i) Let an instant correspond to a fresh invocation of EXPLORE(s); the ith 

instant is thus the moment at which EXPLORE(s) is called for the ith 
time. If EXPLORE(n) is invoked at instant j for some node II in the 
explicit graph, we say that n is explored at instant j. 

(ii) Let G,’ be the explicit graph with root s at instant j, and G;(m) the 
subgraph of G,’ with m as root. (Consider the moment of time immedi- 
ately prior to the jth invocation of EXPLORE(s), and look at the explicit 

graph at that moment.) 
(iii) By bj(m) we mean the b-value of the node m at instant j, and by bj we 

mean hi(s). Let b* denote the cost of the solution path of minimum cost 
in G. 

(iv) The explicit graph G,’ at instant j is consistent if there is a path P from s 
to a tip node n in G: such that for every non-tip node m lying on P, bj(m) 
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(vi) 

(vii) 
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is finite and equals c(P, m, n) + h(n), where c(P, m, n) is the cost of path P 
from m to n. The path from m to y1 along P is called the potential solution 
path (psp) below m at instant j; psp (without qualification) refers to the 
potential solution path below S. At the initial instant, the explicit graph 
G; contains just the node S. Gi is viewed as being consistent since 
b(s) = h(s), the psp consisting of just the node S. When G,! is consistent, 
the tip node n of the psp (where II could be a goal node) gets explored at 
instant j; if G,! is not consistent then no tip node is expanded at instant j. 
Let Pi, Pi, . . . , PL be the paths in GI from a node m to tip nodes. Define 

Here c(P:, m’) indicates the cost of path Pi! from m to m’; c(P,!, m) is 
taken to be zero, so that Q;(m) equals h(m) if m is a tip node. By Q,! we 
mean Q;(S). Note that Qi = h(s). 
LetP,, P2,..., PkS be the paths in G from m to goal nodes. Define 

Q(m) =,z$, [?z$ {c(Pi, m’) + h(m’)I] 7 

where c(P,, m’) indicates the cost of the path Pi from m to m’. If m is a 
goal node then Q(m) = 0. If there are no solution paths passing through m 
then Q(m) = M. By Q we mean Q(s). Note that Q is always finite. 
The heuristic estimate function is admissible if for each non-goal node m 
in G, h(m) never exceeds the cost of a minimum cost path from m to a 
goal node; otherwise the heuristic is inadmissible. When the heuristic is 
admissible, Q = b*. 

GREC has the property that at termination, the cost of the output solution path 
is bounded above by Q. When the heuristic estimate function is admissible, this 
path is the minimum cost solution path in the search graph. The results are stated 
in Theorems 10 and 12. In order to establish the theorems, we first show that at 
any node m in the explicit graph, Q’(m) is bounded above by Q(m). As the 
execution of GREC proceeds, Q,! approximates Q more closely and finally equals 

Q. 

Lemma 3. Let m be a node with immediate successors m, , m,, . . . , mk in Gi . 
Then 

Q;(m) =,pIa2k [h(m), min{c(m, mi> + Qj(mi)>l . 

Lemma 4. Let j and j’ be two instants during the execution of GREC, where j <j’. 
Then for any node m in G,!, 

Q,!(m) s Q;,(m) =S Q(m) . 

Lemmas 3 and 4 follow immediately from the definitions of Q\(m) and Q(m). 
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Corollary 5. Let j and j’ be two instants during the execution of GREC, where 
j<j’. Then 

Q,’ s Q;, c Q 

How is the b-value at the root node related to its Q-value? It is bounded above 
by Q at every instant, as the next lemma shows. 

Lemma 6. Let j be any instant during the execution of GREC. Then 
(i) bj(m) c Q;(m) for any node m in G,‘: 

(ii) b, -I Q,’ c Q. 

Corollary 7. If the explicit graph is consistent at instant j, then for every node m on 
P where P is the psp at instant j, b,(m) = Q,‘(m). 

Remark 8. 
(i) If the heuristic is inadmissible, then at termination there might be a node 

m on the output path, where m is not the root, for which the b-value is 
greater than Q(m). See proof of Lemma 6. Appendix A. 

(ii) If the search graph is a tree, then at every instant j, b,(m) = Q,‘(m) for 
every node m in G,‘. 

(iii) When the search graph is not a tree, there are instants at which the explicit 

graph is not consistent. For example, suppose that in the search graph of 
Fig. 1. we make c(m, p) = 6 and h(p) = 6, keeping all other values the 
same. Then the values taken by b(s) at successive instants are 0, 6, 11, 12, 
13, 16, and at instant 5 the explicit graph is not consistent. 

Lemma 9. Let j be any positive integer. If GREC has not terminated by instant j 
then at some instant j’ 2 j prior to termination, G,‘. is consistent. 

Theorem 10. Algorithm GREC terminates successfully, i.e., it finds a goal node 
and outputs a solution path. 

Definition 11. Let b,;,,,- be the b-value at the root s when GREC terminates. 

Theorem 12. 

(i> b ciKE<‘ = Q. 
(ii) b (iREC = b* if the heuristic estimate function is admissible. 

Which nodes of the search graph are expanded by GREC? These are the nodes 
contained in the set V defined below. 

Definition 13. We construct a finite set of nodes V as follows: 
(i) s is in V. 
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(ii) A node m of G is in V if there is a path P from s to 

c(P) + h(m) s Q, and the immediate predecessor of m on P 

Theorem 14. All nodes expanded by GREC belong to the set V. 

53 

m such that 
is in V. 

To form an idea about the running time of GREC, it seems appropriate to 
count the number of times the procedure EXPLORE is called before the 
algorithm terminates. When EXPLORE(m) is called for the first time, node m 
gets expanded if it is not a goal node, and the minimum of the values b(m,) + 
c(m, m,) is found over the immediate successors of m. When m is explored 
subsequently it is not expanded again but the minimum is recomputed. Thus, the 
number of such computations can serve as a good measure of the running time of 
GREC. (This makes sense only when G is loop free; when there are loops, the 
number of revolutions made around a loop depends on the costs of the arcs 
forming the loop and can be increased by reducing the arc costs.) Do there exist 
search graphs which force GREC to make an exponential number of calls to 
EXPLORE? The following example demonstrates the existence of such a search 
graph. 

Example 15. Consider the search graph G shown in Fig. 3. G has the following 
features: 

(i) Total number of nodes U, = 2k + 1. 
(ii) All heuristic estimates are zero. 

(iii) The arc costs are as follows: 

4 
s=no 

ml 

n 

m2 

.n 
G 

“k-1 

Fig. 3. Search graph for Example 1.5. 
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When k = 4, GREC expands nodes in the order n,,m,n,m,n2m,n,m,. When n1 or 
m, gets expanded, there is an inconsistency at m, which must be resolved. When 
II, or m, gets expanded, inconsistencies must be resolved at the nodes m,, m,, 

m,, m,, m,. ml. m, in the given order. The total number of calls to EXPLORE, 
which is bounded below by the total number of inconsistencies to be resolved, will 

be exponential in U, for networks of this type. 

2.1.2. Path dependent arc costs 
We now extend our results to path dependent arc costs. Here the heuristic 

estimate at a node m and the costs of the arcs emanating from m depend on the 
path by which m is reached from the root. We redefine some the notation of 
Section 2.1.1; any notation not specifically redefined continues to have its earlier 
meaning. 

Definition 16. 
(i) Let P be a path from the root s to a node m in the search graph G. Let 

c(P, m, n) be the cost along path P from node m to node n. Let h(m, P) be 
the heuristic estimate of node m calculated with reference to path P. The 
heuristic estimate function is admissible if for each node m in G and for 
every path P from the root node to rn. h(m, P) never exceeds the cost 
(computed with reference to P) of the minimum cost path from m to a 
goal node. 

(ii) In the definitions of consistent explicit graph and psp, replace c(m, m,) 
with c(P. m. m,). 

(iii) Let PI. PJ, , P; be the paths in G,‘(m) from m to tip nodes, and let P’ 
be a path from s to m in G:(m). Define 

(4 Q:(m, P’) = min 
I*,-/, I 

,mz;, (c(P’. C’:, m’) + h(m’, P’)} 1 . 

Here c(P’, P,‘. m’) is the cost of the path P,’ from m to m’ as defined 

by path P’; c(P’. P:, m) is taken to be zero. Also let Q,‘(n, P’) = 
h(n, P’) when r7 is a tip node. If there are no paths from m to a tip 
node and m itself is not a tip node then Ql(m, P’) = x. By Q,’ we 
mean Q,‘(s,_). 

(b) Q:(m) = max(Q,‘(m, P’)) 

where the maximum is taken over all paths P’ from s to m in the 
explicit graph GI. 

(iv) Let P, . P2, . P,. be the paths in the search graph G from m to goal 
nodes, and let P be a path from s to m in G. Define 

(4 Q(m. P) =,~~in, [ IJEI; {c(P. P,, m’) + W’. PI) 1 , 

where c(P, P,. m ‘) indicates the cost of the path P, from m to m’ 
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defined by P. If n is a goal node let Q(n, P) = 0. If there are no 
solution paths passing through m let Q(m, P) = 00. Thus Q(m, P) is 
finite for every node m in G which lies on a solution path. By Q we 

mean Qb_>. 

@I Q(m) = max(Q(m, PIIT 

where the maximum is taken over all paths P from s to m in G. 

With the above redefinitions, Lemma 3 remains true with appropriate changes 
in notation. It can be restated as follows: 

Lemma 3. Let m be a node with immediate successors m, , m2, . . . , mk in GIf , and 
let P’ be a path in G,! from s to m. Then 

Ql<m, P’) =,?F>~ Mm, P’), min{c(P’, m, mi) + Q,!(m,, f”))l . __ 

Lemmas 4 and 6 remain the same as before. We impose, as in Section 2.1.1, a 
non-zero lower bound on the arc costs. GREC then terminates successfully, since 
Lemma 9 and Theorem 10 remain valid. When the arc costs and the heuristic 
estimates are path dependent, the b-value of a node can decrease with time; this 
cannot occur when the arc costs and heuristic estimates are constant. But b(s) can 
never decrease with time even in the path dependent case and must finally achieve 
the value Q. Thus GREC, even with path dependent arc costs, outputs optimal 
solutions if heuristic estimates are admissible for every path P in the search graph. 

3. One-machine job sequencing problems 

3.1. Problem description 

A one-machine minimum penalty job sequencing problem has the following 
general form. Jobs Ji with processing times a, > 0, 1 s i s N, are submitted to a 
one-machine job shop at time t = 0. The jobs are to be processed on the given 
machine one at a time. Let the processing of job Ji be completed at time ti. 
Penalty functions Gi(. ), 1.1 -= ’ s N, are supplied, such that the penalty associated 
with completing job Ji at time ti is Gi(ti). An example of a penalty function is 
Gi(ti) = pit:, where the pi are given constants, the penalty associated with a job 
being proportional to the square of the completion time of the job. The jobs must 
be sequenced on the machine in such a way that the total penalty 

is minimized. The penalty functions are non-decreasing and in general nonlinear. 
Problems of this type have obvious relevance to industry, but are known to be 
hard to solve. In a more general setting, jobs can also have setup times. The setup 
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time for a job is the time taken to get the machine ready for processing after the 

processing of the previous job has been completed and before the processing of 
the current job can begin. If J, is the first job in the sequence, then its setup time 
is s,,,,. The setup time for job .I, when it immediately follows job J, in the 
processing sequence is s,,. After the last job in the sequence is completed, the 
machine need not be brought back to any specific state. Setup times are said to be 
sequence independent (or separable or additive) if s,, can be expressed as a sum of 
two terms, one of which depends only on job 1, and the other only on job J,; 
otherwise, the setup times are sequence dependent. Existing approaches tend to 
make the assumption that setup times are sequence independent [13]. Solution 
methods that work in the absence of setup times can frequently be extended to 
the situation when setup times are sequence independent, since evaluation 

functions remain order preserving. But if we make the more realistic assumption 
that setup times are sequence dependent, evaluation functions become non-order- 
preserving and an A*-based graph search method can fail to output optimal 
solutions. Tree search procedures such as the branch-and-bound method remain 
applicable, but tend to be inefficient because many duplicate nodes get generated. 

3.2. Classification of minimum penalty job sequencing problems 

One-machine minimum penalty job sequencing problems can be classified into 

the following seven different types: 
(a) Setup times are non-existent or sequence independent; evaluation functions in 

consequence are order-preserving: 
(i) Type A: Penalty functions are linear in job finish times. 

Problems of this type are simple. Ordering the jobs in non-decreasing 
order of a,/~,-values gives a minimum penalty sequence [6]; no search- 
ing is necessary. 

(ii) Type B: Penalty functions are quadratic in job finish times. 
Townsend [28] in his branch-and-bound formulation proposed the use 

of a novel evaluation function for the quadratic penalty case that turned 
out to be quite selective. Bagga and Kalra [2] and Gupta and Sen [7] 
subsequently made some improvements in Townsend’s method. All these 
schemes employ tree search. Sen and Bagchi [22,24] have recently 
implemented a far more efficient A*-based graph search scheme that 
uses Townsend’s evaluation function with Bagga and Kalra’s suggested 
modifications. A similar implementation using GREC has also been 
achieved. See Section 3.3. 

(iii) Type C: Penalty functions are general polynomials or more complex 
functions (such as exponentials) in job finish times. 

Both tree and graph search methods are applicable to problems of 
these types. Unfortunately, good heuristic estimate functions are yet to 
be found. Schild and Fredman [20] give some examples of general 
penalty functions. 
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(b) Setup times are sequence dependent, evaluation functions in consequence are 
non-order-preserving: 

(i) Type D: P enalty functions are linear in job finish times. 
In this case the evaluation function, when formulated in the usual 

manner, is non-order preserving. The problem can be solved in a natural 
way using GREC [23]. An alternative way is to redefine the evaluation 
function to make it order preserving so that A* graph search remains 
applicable [15,24]. See Sections 3.4 and 4.1. 

(ii) Type E: Penalty functions are quadratic in job finish times. 
In this case, the penalty function being nonlinear, it does not appear 

possible to modify the non-order-preserving evaluation function and 
make it order-preserving. GREC again solves the problem in a natural 
way [23]. See Sections 3.4 and 4.2. 

(iii) Type F: P enalty functions are general polynomials in job finish times. 
The approach of Section 4.2 can be extended to penalty functions that 

are polynomials in job finish times. Good evaluation functions are yet to 
be found, however. 

(iv) Type G: Penalty functions are more complex functions (such as exponen- 
tials or non-integer powers) of the job finish times. 

In order to apply the method of Section 4.2, it may be necessary to 
approximate the penalty function with a finite polynomial. However, as 
for type F problems, no good heuristic estimate functions have been 
reported yet. 

3.3. Tree search and graph search 

Suppose jobs have no setup times. Consider the branch-and-bound (tree 
search) procedure of Townsend for the quadratic penalty job sequencing prob- 
lem. A node in the tree corresponds to an ordered partial sequence of jobs. The 
node ni represents the single job J,, while the node nij represents the ordered 
two-job sequence (JJj), and so on. The root node corresponds to the null 
sequence. All nodes are therefore distinct. When a node corresponding to a 
partial sequence of k jobs gets expanded, N - k sons are generated, each son 
being obtained by appending one of the remaining N - k jobs to the partial 
sequence of k jobs. An edge signifies that one more job has been processed, and 
the cost of the edge is the penalty associated with that job. A problem is solved 
when a complete ordered sequence of N jobs gets selected from OPEN. 

In the corresponding graph formulation, nodes correspond to unordered subsets 
of jobs; the root node is the empty set. When a node corresponding to a subset of 
k jobs gets selected from OPEN and expanded, it generated N - k sons, each son 
being a subset of k + 1 jobs. As before, the cost of an edge is the penalty 
associated with the corresponding job. A problem gets solved when the complete 
set of N jobs gets selected from OPEN. The root is at level 0, and a node 
corresponding to a subset of k jobs is at level k. There are C(N, k) nodes at level 
k, and each node has k! incoming paths from the root. In contrast, a tree has 



N!/(N - k)! nodes at level k, and each node has only one incoming path. Thus 
there is a reduction in the number of nodes at level k by a factor k!. This 
reduction factor is actually an overestimate. since there is one other point to be 
taken into account. In graph search WC need to keep in memory all the nodes 
generated up to a given time instant, including the expanded nodes, while in tree 
search we need not keep track of the expanded nodes. The total number of nodes 
in the graph at levels 0 through k equals I + N + C(N, 2) +. . . + C(N, k) < 
kC(N, k) for k s N/2. which is less than the number of nodes at level k of the tree 
by a factor of (k - I)!. This may be viewed as a truer estimate of the reduction 

factor. The use of Townsend’s method of computing the evaluation function 
yields a fast and memory efficient graph implementation of A* or GREC. 

How much better is graph search compared to best-first or depth-first tree 
search‘? This has been checked out experimentally [22]. Graph search could be 
run upto 30 jobs, but best-first tree search ran only upto 16 jobs; beyond this 
point the available memory was exhausted. For 16 jobs, graph search was more 
than 40 times faster than best-first tree search. Depth-first search could in 
principle be run for a large number of jobs but was found to be markedly slower 
than graph search; for example. for 20 jobs it ran about 175 times slower. 

When setup times are sequence dependent. the tree search method remains 
essentially the same, but the representation of nodes in graph search needs to be 
modified. Nodes can no longer correspond just to subsets of jobs, because the last 
job that has been processed must be remembered. A node now corresponds to an 
ordered pair, where the first component is the job subset, and the second 
component is that job in the subset that has been processed last. So a node n in 
the search graph has the form (S. J,), where .S is a subset of jobs and .I, is the last 
job processed from among the jobs in S. Thus the number of nodes at a level k in 
the search graph is 1 for k = 1 or N, and kC(N. k) for 0 < k < N. The reduction in 
the number of nodes over a tree representation is by a factor of (k - l)! for 
0 <k < N. Again, the true reduction factor is smaller and only about (k - 2)!, 
since graph search must store all generated nodes in memory. In this case the 
evaluation function is non-order-preserving as explained below. 

3.4. Non-order-preserving wuluation functions 

Let us suppose setup times are sequence dependent. Let P, and P, be two 
paths from the root node .Y to node n. The jobs processed along the two paths all 
belong to the set S. Let t, be the time at which .I, completes processing when the 
jobs in S are processed in the sequence determined by path P,, and let r,’ be the 
time at which .I, completes processing when the jobs are processed in the 
sequence determined by path P,. When setup times are ignored or are assumed to 
be sequence independent. t, always equals t:. But when setup times are sequence 

dependent, t, may not equal t$‘, because the setup times of jobs along the two 
paths are not identical. It can happen that the cost associated with P, is less than 
the cost associated with P,. but t, > t,‘. Since the penalty corresponding to a job 
depends on its time of completion, the arc costs of the arcs emanating from node 
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Table 1 
Job setuu and orocessine times 

Job 

1 
2 
3 
4 

Setup times 

1 2 

- 1 
1 _ 
CC m 
00 CC 

Processing times 

3 4 

1 m 1 
3 00 4 
- 10 3 
P _ 10 

it as well as the heuristic estimate at node n depend in general on the path by 
which yt is reached from the root, i.e., the arc costs and the heuristic estimate are 
path dependent [l]. It is possible for a complete sequence of N jobs that is an 
extension of the subsequence determined by P2 to have a lower total cost than a 
sequence of N jobs that is an extension of P,. But a graph implementation of A* 
would discard path P2 at node IZ because its cost is higher than that of P,, and job 
sequences that are extensions of the sequence determined by P2 would not 
subsequently get considered by the algorithm. In the linear penalty case it is 
possible to skirt this difficulty by reformulating the evaluation function in A*, but 
the strategy does not work when the penalties are nonlinear, in which case an 
algorithm like GREC must be used. 

Example 17. Consider a linear penalty problem with 4 job where the penalty 
coefficients are unity for all the jobs. Then the penalty for a job J, equals fi, where 
ti is the finish time of the job, and the total penalties the sum of the individual job 
penalties. Table 1 gives the setup times and the processing times. Setup time si,j is 
the entry in the ith row and jth column of the table. The initial setup times soj are 
assumed to be zero. The cost of the arc (m, r) between node m = ({1,2,3}, 3) 
and the goal node r = ({ 1,2,3,4}, 4) depends on the path by which we reach m 
from the root. If we process J, before J2 then the cost of the path P, from the 
root to m is 19, and c(m, r) = 32. If we process J2 before J, then the cost of the 
path P2 from the root to m is 20, and c(m, r) = 30. If at m we favor P, and discard 
P2, then we end up giving preference to the inferior of the two solution paths. 
The minimum penalty job sequence in this case happens to be (J2J1J3J4). 

4. Running GREC with non-order-preserving evaluation functions 

4.1. Linear penalties 

When penalties are linear but setup times are sequence dependent, the 
evaluation function when defined in the normal way is non-order-preserving. It is 
possible to make it order preserving by adjusting the evaluation function (see 
Appendix B). GREC can solve the problem in the same way, but there is the 
following more natural formulation which does not require any modification in 
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the evaluation function. When a node n = (S, J,) first enters the explicit graph as a 
result of the expansion of its parent node, the completion time t, of n’s last job J, 
is saved in a parameter T associated with n. There are many paths from the root 
to n, and at a subsequent instant the EXPLORE procedure can reach n again 
along another path; this time the completion time of job J, is t,’ which is in general 
different from t,. T is then reset to t,‘. The value of b(n) depends on the path by 

which n is reached from the root, and thus it depends on T. When penalties are 

linear, b(n) can be expressed as 

b(n) = aT t /5 . 

where LY and /3 are parameters that depend on node H but not on the path taken 
to node n. In fact, if Q is the set of jobs remaining to be processed at IZ, 

(Y = c {pk 1 J, is in Q) . 

and 

p = b-value of node n taking node IZ as the root 

(or equivalently, taking T = 0) 

Note that for any job Jk in Q, the finish time c, can be expressed as T + (tk - T); 
the coefficients of T can be grouped together yielding the parameter (Y, and the 
remaining terms can be combined yielding p. The value of (Y remains constant 
during the search, but p changes as more and more jobs in Q get sequenced. 
When T changes in value from t, to t:. b(n) changes in value by the amount 
(t,! - t,)a which d oes not depend on p. Thus when a node II is reached for the first 
time along a path P, GREC sets b(n) = h(n. P), which is the heuristic estimate 

based on path P; GREC also computes (Y, and stores b(n), (Y and T at the node. 
At a later instant, when n is reached again along a different path, the change in 
b(n) is computed using LY and the difference in T-values, and b(n) is modified 
accordingly. 

Example 18. Consider the job sequencing problem of Example 17. Let us assume 
for simplicity that all nodes have zero heuristic estimates. GREC outputs the 
minimum penalty sequence (Jz J, J3J4) with cost equal to 30 without expanding any 
node more than once. The algorithm operates as explained in Example 1. When 
the node m = ({ 1,2.3}, 3) has been reached for the first time from the root at 
some instant along the path P, (i.e.. when the job processing sequence is J, J2J3), 
the values T = 12. b(m) = 32 and (Y = 1 are stored at node m. When m is reached 

again from the root at a subsequent instant along path P2 (the job sequence being 
JzJ, J3) with T = 10. the change in b-value at m is computed as (10 - 12). (Y = -2. 
GREC next explores m with b(m) = 30 and outputs the optimal solution path. 

4.1.1. Experiments 
In the experiments, the heuristic estimate h(n) at a tip node n was computed as 

follows 1151. Let n = (S, J,) be a tip node in the explicit graph. Let Q be the set of 
jobs yet to be processed at n. For a job Jk in Q. take the effective setup time sk to 
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be min{sj,}, where the minimum is taken over all jobs Ji in Q’ = Q U {Ji}. Let us 
call the (sk + a,)-values the effective job processing times. Order the jobs Jk in Q 
in non-decreasing order of (sk + a,)/p,-values, compute the finish times t, of the 
jobs, and let the heuristic estimate be C pktk, where the summation is over all 
jobs in Q. This yields a consistent heuristic (see Appendix B for proof). Our 
experimental results in Table 2 and Fig. 4 show that the heuristic estimate is quite 
selective. 

A* tree search, GREC and depth-first branch and bound (DFBB) were coded 
in C and run on a UNIX-based DEC 5900 system. The processing times of jobs 
were integers and were chosen randomly in the range 1 to 99 from a uniform 
distribution. Penalty coefficients and setup times were integers in the ranges 1 to 9 
and 0 to 9 respectively, and were generated in the same way. The initial setup 
times soj were assumed zero for simplicity. For a given number of jobs, the 
execution time, the total number of nodes generated and the total number of 
nodes expanded were averaged over 100 runs. Every effort was made to ensure 
that the implementations were as efficient as possible. The OPEN set of A* was 
maintained as a priority queue. In GREC, nodes were stored in a node table, and 
successor lists were maintained for every expanded node. A hashing scheme was 
used for checking whether a newly generated successor was already present in the 
explicit graph. As in DFBB, the successors of a node were generated in non- 
decreasing order of effective job processing time. Since job sequencing problems 
have well-defined depth bounds, iterative deepening schemes like IDA* or its 
variants [ll] run even slower than depth-first search, so we do not report running 
times for IDA*. 

The results of our experiments are shown in Table 2. In Fig. 4, we plot the 
speedup ratios and node reduction ratios of algorithm GREC against the number 
of jobs. The ratios were computed with respect to A* tree search (plots labelled 
A) and DFBB (plots labelled B). We summarize our experimental observations 
below: 

(i) The number of nodes generated and expanded both increased rapidly with 
the number of jobs for all the three algorithms. With 22 jobs, A* tree search 

Table 2 
Linear penalty functions 

Number GREC A* (tree) Depth-first 
of jobs 

Time Nodes Nodes Time Nodes Nodes Time Nodes Nodes 

(sets) generated expanded (sets) generated expanded (sets) generated expanded 

12 0.02 363 70 0.04 793 103 0.06 1297 223 
14 0.06 699 126 0.12 2OOil 220 0.21 3770 537 
16 0.14 1471 252 0.44 5617 541 0.78 11427 1388 
18 0.35 2912 473 1.44 1s 133 1272 2.66 31567 3237 
20 0.87 6082 954 4.59 41 154 3134 9.66 96911 8990 
22 2.55 12 172 1901 
24 6.65 21823 3214 
26 18.46 40 633 6027 
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(ii) 

(iii) 

(iv) 

(v) 

(vi) 

Speedup and Node Reduction 

17 

16 

15 

14 

13 

12 

II 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 
12 14 16 18 20 

Number of Jobs 

0 Speedup + Nodqen(A) 0 Nodeexp(A) A Speedup X Nodegen(B) 

v Nodeexp(B) 

Fig. 1. Linear penalty functions 

sometimes ran short of memory, generating more than a million nodes in 
certain problem instances. 
GREC was able to solve problem instances of larger size than A* tree 
search. We include results on GREC upto 26 jobs. 
A variant of GREC was also implemented in which nodes of the explicit 
graph were stored but successor lists were not maintained. This variant ran 
slower than GREC because the time to generate successors and order them 
is high for job sequencing problems. 
A* graph search using the modified evaluation function was also im- 
plemented. It was found that the numbers of nodes generated and expanded 
in A* graph search were close to the corresponding figures for GREC and 
the running time was comparable to that of GREC. 
DFBB is capable of solving problem instances of larger size because of its 
low memory needs [30]. Thus DFBB can be used to solve problem instances 
of much larger size than GREC. We ran it upto 20 jobs to compare its 
performance with GREC and A* tree search. 
For 20 jobs, GREC ran around 5 times faster than A* tree search, and 
about 11 times faster than DFBB. The speedup ratios and node reduction 
ratios increased rapidly with the number of jobs. The speedup ratio was 
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smaller than the node generation reduction ratio but higher than the node 
expansion reduction ratio. This could be the result of the combined effect of 
the following factors: the dependence of the branching factor of a node on 
its level in the graph, the consistency of the heuristic estimate, and the 
overhead of the algorithm. 

(vii) DFBB needs very little memory and its overhead is low. But, even with 
successors generated in non-decreasing order of effective processing times, it 
ran slowly because it generated too many nodes. 

4.2. Quadratic penalties 

With quadratic penalty functions and no setup times, the evaluation function is 
order-preserving. Existing graph search algorithms are directly applicable. An 
efficient A* graph implementation can be realized using Townsend’s method for 
computing the evaluation function. The problem can also be solved using GREC, 
and its performance is similar to that of A*. Unfortunately, it does not appear 
possible to generalize the A* graph implementation to sequence dependent setup 
times. The GREC implementation, on the other hand, can be readily extended to 
handle this case. The method of solution is similar to that described in Section 
4.1; some additional computations are needed at each step as explained below 
because the penalty function is nonlinear. 

The b-value at a node IZ in the UPDATE procedure cannot be computed in the 
same way as in the linear case. The b-value at a node II now has the form 

where (Y, /3 and y are parameters that depend on node II but not on T. Let Q be 
the set of jobs remaining to be processed at it. We have 

o = c {pk 1 Jk is in Q) , 

P = 2 c {pktk 1 Jk is in Q> , 

and 

y = the b-value at node n with IZ viewed as the origin 

(i.e., with T taken as zero). 

As in the linear case, for any job Jk in Q, the finish time t, can be expressed as 
T + (tk - T); the coefficients of T2 can be grouped together yielding the 
parameter a, the coefficients of T yield the parameter p, and the remaining terms 
combine to give y. The value of CY remains constant during the search, /I and y 
change as more and more jobs in Q get sequenced; (Y, p and T must be stored at 
each node and reset in UPDATE. This increases the amount of computation and 
explains why GREC runs slower with quadratic penalties than with linear 
penalties. 
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This method can be extended to penalty functions that are higher powers of the 
job finish times. For example, in the cubic case b(n) can be written as 

b(n) = CYT’ + /3T2 + yT + 6 , 

where the parameters can be defined in a manner similar to that shown above. 
Extension to penalty functions that are polynomials in job finish times is 
immediate. Since good heuristic functions are not yet known, no experiments 
were performed with such penalty functions. 

4.2.1. Experiments 
At a tip node n, the effective processing time sL + uk for a job Jk in Q is found 

as before and a heuristic estimate h(n) is computed using a modification of 
Townsend’s method. Townsend derived sufficient conditions for a sequence of N 
jobs to be minimum cost. He showed that a sequence is minimum cost if for every 
pair of adjacent jobs (J,, J,) where J, precedes J,, the following two conditions are 
both satisfied: 

(i) p,la, apiia,; 

(ii) p, “P,. 
The two conditions might not be satisfied simultaneously by an adjacent pair of 
jobs. Hence a search method is needed. To determine a lower bound at a node IZ 
in the branch-and-bound search, order the m jobs in Q as follows: 

P,,&(i, ap,(Z)lar(Z, 2. . ~Picrnj~ait,,, 

The penalty F’ of the above subsequence of jobs is 

where 

and 

T=x {aA ) Jk is in S} 

The lower bound can be obtained by considering all pairs of jobs (Jk, J,) in the 
above ordered sequence where Jk precedes J, and pk < p, , and for every such pair, 
reducing the penalty F’ by (p, - pk)a,a,. In the presence of setup times, effective 
processing times must be used in place of actual processing times. The resulting 
heuristic estimate function is consistent (see Appendix B for proof). The 
experimental data indicated that the heuristic estimate was less selective in this 
case than in the absence of setup times. 

In the experiments, the programs were written in C and run on a UNIX-based 
DEC 5900 system as before. Processing times of jobs were integers and were 
chosen randomly in the range 1 to 99 from a uniform distribution. Penalty 
coefficients were integers in the ranges 1 to 9 and were generated in the same 
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Table 3 
Quadratic oenaltv functions-Set I 

Number GREC A* (tree) Depth-first 
of jobs 

Time Nodes Nodes Time Nodes Nodes Time Nodes Nodes 
(sets) generated expanded (sets) generated expanded (sets) generated expanded 

12 0.09 920 232 0.15 3685 488 0.20 5216 789 
14 0.28 2287 539 0.69 12 961 1446 0.90 18 853 2342 
16 0.83 5544 1277 3.39 50 776 5003 4.15 80 575 8662 
18 3.25 14 526 3322 
20 13.25 36646 8193 

way. For both sets the initial setup times soj were assumed zero for simplicity. 
Two sets of setup times were considered: Set I consisted of setup times in the 
range 0 to 9, while Set II consisted of setup times in the range 1 to 5. The 
heuristic estimate for Set I was less selective and this increased the running time. 
GREC could be run for a larger number of jobs in a given time when Set II was 
used. For a given number of jobs, the execution time, the total number of nodes 
generated and the total number of nodes expanded were averaged over 100 runs. 
In implementing depth-first search, the successors of a node were generated in 

16 
Speedup and Node reduction 
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2- 

Number of jobs 

0 Speedup + Nodegen(A) 0 Nodeexp(A) A Speedup X Nodeeen(B) 

V Nodeexp(B) 

Fig. 5. Quadratic penalty functions: Set I. 
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Table 4 

Quadratic penalty functions--Set II 

Number GREC A” (tree) Depth-first 
of jobs 

Time Nodes Nodcs Time Nodea Nodes Time Nodes Nodes 

(sets) generated expanded (sets) generated expanded (sets) generated cxpandcd 

12 0.05 649 I63 0 I2 2YOh 388 0.15 3937 s94 

14 0.16 1482 34s 0 56 IO 344 116’) 0.69 1449’) IX05 

16 0.55 3420 XI)4 3.23 47 120 4750 3.91 66 756 7214 

IX I .hO 7517 16X7 16 Y2 233 250 ?I 6X9 

20 4.Y2 IX 158 4052 x5.03 979 937 82 548 

22 30.64 40 5.55 Y7 I9 
24 Y I .09 x1 714 I7 65’) 

non-decreasing order of u,/p: where p: refers to the effective processing time of 
job J,. 

Experimental results for Set I are shown in Table 3 and Fig. 5, and for Set II in 
Table 4 and Fig. 6. The results were similar in trend to those for the linear case. 
GREC could be run for a larger number of jobs, and was about five times faster 
than A* tree search for 16 jobs. For 18 jobs, tree search generated more than one 
million nodes in some instances. Since the heuristic estimate is not as sharp as in 

Speedup and Node reduction 

I / / 1 I I 

12 14 16 18 20 

Number of Jobs 

‘3 Speedup + Nodegen(A) 0 Nodeexp(A) A Speedup X Nodegen(B) 

v Nodeexp(B) 

Fig. 6. Quadratic penalty functions: Set 11. 
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the linear case, running times in Tables 3 and 4 are larger than in Table 2. The 
graphs in Figs. 5 and 6 showed an increase of speedup and node reduction ratios 
with the number of jobs. DFBB ran about six times slower than GREC for 16 
jobs; as before, DFBB is capable of solving problems of much larger size than 
GREC. 

5. Conclusion 

Although A* is capable of graph search and not just tree search, in practice it 
has been generally used as a tree search procedure. It has been found recently 
that in some application areas such as one-machine job sequencing, graph search 
with A* can be much faster than best-first or depth-first tree search for problems 
of small and medium size. However, A* is not suitable for searching graphs when 
the evaluation function is non-order-preserving. In such cases the graph search 
algorithm GREC can be used in place of A*. Experimental results indicate that 
when setup times are sequence dependent, and the evaluation function is in 
consequence non-order-preserving, GREC solves linear penalty and quadratic 
penalty job sequencing problems faster than tree search schemes. 

The detection and elimination of duplicate nodes is a most pressing issue in tree 
search algorithms. Taylor and Korf 1271 suggest a technique for pruning duplicate 
nodes in depth-first search. Their method requires a preprocessing of the search 
graph by means of an exploratory breadth-first search. This determines the 
shortest sequence of operators that are needed to move from one node to 
another, and thus helps in detecting and eliminating duplicate nodes during the 
actual search phase. Preprocessing is needed only once for each type of problem, 
and the knowledge acquired can be used later during the depth-first search on the 
various problem instances. The implicit assumption here is that the cost of an arc 
between a pair of nodes is always the same and is independent of the problem 
instance. This is true for problems like the 15puzzle, 24-puzzle and Rubik’s cube. 
But for job sequencing problems, it is not possible to apply such techniques 
effectively since arc costs are not the same for different problem instances. 

Very recently, Reinefeld and Marsland [17] have reported some enhancements 
of iterative deepening search. They have shown that search efficiency can be 
greatly improved by storing, in a table in memory, nodes which have already been 
encountered in the course of the search. Their search algorithm TRANS appears 
to perform much better than IDA* on both the 15puzzle problem and the 
graph-based solution method suggested by Pearl [14] for the travelling salesman 
problem. TRANS is conceptually very close to GREC, as the pseudo-code given 
in [17, Fig. 7, p. 7091 shows. The hash table used in TRANS to store generated 
nodes is similar to the table used in GREC. However in TRANS, when the hash 
table becomes full, existing entries can be overwritten by more promising new 
entries. Another difference between the two algorithms is that TRANS only 
stores the nodes of the explicit graph but not the successor lists. This can be an 
advantage in problems like the Wpuzzle where node generation time is in- 



significant. But it is a disadvantage in job sequencing, where it takes time to 
generate nodes: since the same node can be explored many times, higher speeds 
can be achieved if successor lists are maintained in memory. Even in tree search 
problems like the rectangular cutting stock problem [21.29], it is helpful to know 
the node numbers of successors since nodes can be repeatedly explored and node 
generation time is high; in such cases every node is distinct and hashing serves no 

useful purpose. In fact, in this case a separate array for successors is not needed; 
it is enough to store with each expanded node the node number of the first son 
and the number of sons. since the sons can be assigned successive node numbers 

at the time of generation. 
In ending, we point out that GREC has one serious limitation. Since it stores 

the entire explicit graph in memory it cannot solve large problems. Is there any 
way to get around this difficulty? At this time we do not know the answer. In job 
sequencing problems. the use of an iterative deepening scheme is inadvisable; the 
total number of jobs being known. there is a well-defined depth bound, so 

depth-first search runs faster than iterative deepening schemes. For the same 
reason, MREC as currently formulated is unsuitable if the available memory M is 

small. Algorithms SMA* [18] and MA” [S] arc based on A” and their graph 

implementations will run into the same difficulties as A” graph search. An 
efficient graph-based memory constraint algorithm that maintains the entire 
explicit graph in memory appears to be the need of the hour. Is it possible to 
improve the memory management features of MREC so that it becomes capable 
of solving sequencing problems efficiently without storing the entire explicit 
graph? Alternatively, can successor lists be incorporated in TRANS and the 
memory management technique modified so that it runs efficiently on sequencing 

problems of larger size? 

Appendix A. Properties of GREC: proofs of claims in Section 2.1 

Lemma 6. Let j he any irzstunt during the execution of GREC. Then 
(i) b,(m) G Q,‘(m) fur uny node m in G,‘: 

(ii) h,G&:<Q. 

Proof. For a tip node, (i) is true by definition. For a non-tip node, we prove the 
result by contradiction. Let ,j be the earliest instant at which the lemma fails. The 
lemma must fail at a node at which recalculation takes place at instant j. This is so 
because if m is a non-tip node at which recalculation does not take place at instant 
j, then m is a non-tip node at instant j - 1 and by assumption and h, ,(m) S 
Q;_,(m); we know by Lemma 4 that Q;_,(m) 9 Q,‘(m), so b,(m) = b,_,(m) S 
Q;(m). In the course of recalculation at instant j, let n be the first node (in time) 
at which the lemma fails. Let n,. n,, . . rzk be the immediate successors of n. At 
the moment the recalculation takes place at H, the lemma holds for each of its 
immediate successors. Some of these successors will have had their b-values 
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updated already this instant, some others will not change their b-values at all, and 
in case n lies in a loop, there may be an immediate successor of IZ whose b-value 
will be updated after IZ. However, when the recalculation is done at II, for 
l<ick > 

b(ni) = h(n,) = Qi(nl) if II, is a tip node 

and 

b(n;) c Ql(ni) if n, is a non-tip node 

so that 

bj(n) “,y%“, {b,-,(n), mink@, n,) + b(q)]) . . 

< Q,! (n) by Lemmas 3 and 4 . 

This is a contradiction. 
When the heuristic estimate function is admissible the b-value at m can never 

exceed Q(m) even at termination, since it can never be set to a value exceeding 
Q(m) from above. If the heuristic is inadmissible, then at termination there might 
be a node m on the output path, where m is not the root, whose b-value is greater 
than Q(m) because it has been set to a large value from above. If GREC does not 
terminate, the b-value as well as the Q’-value at m would get revised upwards 
from below and at the next instant j we would again have bj(m) s Q,! (m). The 
b-value at the root cannot be set from above, so whether the heuristic is 
admissible or inadmissible, b, s Q,! at every instant j during the execution of 
GREC; a similar inequality would also hold at termination. 0 

Lemma 9. Let j be any positive integer, Zf GREC has not terminated by instant j 
then at some instant j’ 2 j prior to termination, G,!. is consistent. 

Proof. Suppose the lemma is false. Then at every instant j’ > j, GREC is still 
running and the explicit graph G,!, is not consistent. Since no tip node gets 
explored, no nodes get expanded and G,!. remains unchanged, but b-values of 
non-tip nodes which do get explored increase by at least 7. Thus at every instant 
j’ > j, bj8 increases by at least T. Since G,!, remains the same, Q,!, = Q,! for every 
instant j’ > j. So, as Q,! is finite, a time must come when b,, > Ql,, which 
contradicts Lemma 6. •i 

Theorem 10. Algorithm GREC terminates successfully, i.e., it finds a goal node 
and outputs a solution path. 

Proof. By Lemma 9, GREC cannot go on running indefinitely without expanding 
a tip node. If j and j’ are two instants at which tip nodes get expanded, then the 
psps at these two instants must be distinct. If the search graph is finite and loop 
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free then GREC obviously terminates. If not, we recall that the cost of an arc is at 
least T > 0, a node has finitely many immediate successors, and b(s) cannot exceed 
Q; it follows that GREC must terminate in this case too. 0 

Definition 11. Let b,;,,c be the h-value at the root s when GREC terminates. 

Theorem 12. 
(i) b,,,c = Q. 

(ii) b GRE(. = b* if the heuristic estimate function is admissible. 

Proof. (i) By Lemma 6(ii). b,;,,,. s Q. But since a solution path is found at 
termination, b,,,,. 2 Q. 

(ii) If the heuristic is admissible, (2 = b”‘. 0 

Theorem 14. All nodes expanded by GREC belong to the set V. 

Proof. Immediate by Lemma 6(ii). n 

Appendix B 

B. 1. Linear penalties: making the evaluation function order-preserving 

Let node m = (S, Ji) be an immediate predecessor of node n = (S U {Jk}, Jk) in 
the explicit graph. Then, in the standard A* formulation, the cost of the currently 
known best path from the root to it is 

g(n) = min{g(m) +PI,(T +Ly,a +ak)) 

where T is the completion time of m’s last job 1, as determined by the currently 
known best path to m, and the minimum is taken over all immediate predecessors 
m of n in the explicit graph. This cost function is non-order-preserving, since the 
arc cost c(m, n) = pk(T + s,~ + ak) depends on the path by which m is reached 
from the root. We get over the problem in the following way. Let P be a solution 
path, and let jobs be sequenced in the order J, , Jz, . , JN along P. Then the cost 
of P is 

p,a, +p2(a, +s,? +~,)+...+p,~(a, +s,? -t . ..+a.) 

= a,(p, +pz + . . . +P,v) + (s,z +a,)(P2 + “. +PN) 

+ . . + (s,* , .N + a,v)ph. 

Taking a cue from this expression, we define new g-values which we call deferral 
g-values as follows: 

g,(n)=min{g,(m)+(s,,+~~)C~,). 

where the minimum is again taken over all predecessors m of n, and the 
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summation is over all jobs remaining to be processed at II. The g,-values are no 
longer path dependent and the evaluation function is order-preserving, so A*- 
based graph search can still be employed [15,24]. The heuristic estimate at a node 
now estimates the contribution to the total penalty of the jobs remaining to be 
processed; the total contribution of the jobs already processed has been taken 
into account in the expression for the g,-value. 

B.2. Linear penalties: consistency of the heuristic estimate h(. ) 

We show that the heuristic estimate h(n, P) in the linear penalty case (Section 
4.1.1) is consistent; the path P is shown as a parameter since the heuristic 
estimate depends on the finish time of the last job at node n. 

Let node m be a parent of node n. We have to show that 

h(m, P) s c(P, m, n) + h(n, P) 

where c(P, m, n) is the cost of the arc between m and n along path P; c(P, m, n) 
depends on the actual time taken to process the last job Ji at node it and also on 
the path from s to IZ. The jobs remaining to be processed at node m all belong to 
Q U {Ji}. Let J be such a job, J # Ji. Then the effective processing time of J at m 
is no larger than its effective processing time at II. Moreover, the actual time 
taken to process Ji, which determines c(P, m, n) is not smaller than its effective 
processing time at node m. Thus the left-hand side of the above expression can be 
no larger than the right-hand side. 

B.3. Quadratic penalties: consistency of the heuristic estimate h( * ) 

The method of computation of the heuristic estimate is described in Section 
4.2.1. The method ensures that the heuristic estimate function is admissible. We 
argue that it is also consistent. Let node n be a son of node m, and let P be a path 
from s to m. We want to show that 

h(m, P) s c(P, m, n) + h(n, P) . 

Let the edge (m, n) correspond to job J. When the heuristic is computed at m, the 
jobs remaining to be processed are sequenced in non-decreasing order of ailpi 
values. Job J occurs somewhere in this sequence. To derive the heuristic h(m, P), 
the penalty for this sequence is computed, and then correction terms corre- 
sponding to certain pairs of jobs are deducted. Thus we can say that the left- and 
right-hand sides in the above inequality differ in the following respects: 

(i) In the right-hand side, J occurs as the first job, while in the left-hand side it 
is not necessarily the first job. 

(ii) In the right-hand side, correction terms have not been deducted from the 
penalty for any job pair of which J is a member, but such corrections have 
been made in the left-hand side. 

Consider an optimal path P from m to a goal. If J is the first job along P, then 
the above inequality must hold, since the computation procedure for the heuristic 
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ensures that the contribution of J to h(m, P) is only a lower bound on the final 
contribution of J to the total penalty. If J is not the first job along P, then forcing 
J to the front and not making any corrections for J can only increase the value of 
the right-hand side. 

References 

[l] A. Bagchi and A. Mahanti, Search algorithms under different kinds of heuristics: a comparative 

study. J. ACM 30 (1983) l-21. 

[2] P.C. Bagga and K.R. Kalra. A node elimination procedure for Townsend’s algorithm for solving 

the single machine quadratic penalty function scheduling problem, Manage. Sci. 26 (1980) 

633-636. 

[3] C.E. Bell and K. Park. Solving resource-constrained project scheduling problems by A* search, 

Nav. Res. Logist. 37, (1990) 61-84. 

[4] L. Bianco, S. Ricciardelli, G. Rinaldi and A. Sassano, Scheduling tasks with sequence dependent 

processing times, Nav. Res. Logist. 35 (1988) 177-184. 

[S] P.P. Chakrabarti, S. Chose, A. Acharya and S.C. De Sarkar, Heuristic search in restricted 

memory, Artif Intel/. 41 (1989) 197-221. 
[6] S. French, Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop (Ellis 

Horwood, Chichester, 1982). 

[7] S.K. Gupta and T. Sen, On the single machine scheduling problem with quadratic penalty 

function of completion times: an improved branching procedure, Manage. Sci. 30 (1984) 
644-647. 

18) P.E. Hart. N.J. Nilsson and B. Raphael, A formal basis for the heuristic determination of 

minimum-cost paths. IEEE Trans. Syst. Sci. Cybern. 4 (2) (1968) 100-107. 

[9] H. Kaindl and A. Khorsand, Memory-bounded bidirectional search, in: Proceedings AAAI-94, 
Seattle, WA (1994) 1359-1364. 

[lo] R.E. Korf. Depth-first iterative deepening: an optimal admissible search, Artif. Intell. 27 (1985) 
97-109. 

[ll] R.E. Korf, Linear-space best-first search: summary of results, in: Proceedings AAAI-92, San 

Jose, CA (1992). 

[12] J.D.C. Little, K.G. Murty, D.W. Sweeny and G. Karel. An algorithm for the travelling salesman 

problem, Oper. Res. 11 (1963) 972-989. 

[13] A.J. Mason and E.J. Anderson, Minimizing How time on a single machine with job classes and 

setup times, Nav. Res. Logist. 38 (1991) 333-350. 

[ 141 J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving (Addison-Wesley, 

Reading, MA, 1984). 

[15] R. Ramaswamy and A.K. Sen. Single machine scheduling as a graph search problem with 

path-dependent arc costs, in: Proceedings ECAI-92, Vienna (1992) 11-15. 

[16] C.R. Reeves, ed.. Modern Heuristic Techniques for Combinatorial Problems (Blackwell Scientific 

Publications, Oxford. 1993). 

[ 171 A. Reinefeld and T. Marsland, Enhanced iterative-deepening search, IEEE Trans. Pattern Anal. 
Mach. Intell. 16 (1994) 701-709. 

[ 181 S. Russell, Efficient memory-bounded search methods, in: Proceedings ECAI-92, Vienna (1992) 
1-5. 

[19] S. Sahni and T. Gonzalez, p-complete approximation problems, J. ACM 23 (1976) 555-565. 
[20] A. Schild and I.J. Fredman. Scheduling tasks with deadlines and non-linear loss functions, 

Manage. Sci. 9 (1963) 73-81. 
[21] A.K. Sen and A. Bagchi, Fast recursive formulations for best-first search that allow controlled 

use of memory, in: Proceedings IJCAI-89, Detroit. MI (1989) 297-302. 



AK. Sen, A. Bagchi I Artificial Intelligence 86 (1996) 43-73 13 

[22] A.K. Sen and A. Bagchi, Job sequencing with quadratic penalties: an A*-based graph search 
approach, in: Proceedings IEEE Conference on Artificial Intelligence for Applications, Orlando, 
FL (1993) 190-196. 

[23] A.K. Sen and A. Bagchi, Non-order-preserving evaluation functions: recursive graph-search 
methods for job sequencing problems, in: Proceedings IJCAI-93, Chambery (1993) 1423-1429. 

[24] A.K. Sen, A. Bagchi and R. Ramaswamy, Searching graphs with A’: applications to job 
sequencing, IEEE Trans. Syst., Man Cybern. Part A Syst. Humans 26 (1996) 168-173. 

[25] A.K. Sen, A. Bagchi and B.K. Sinha, Admissible search methods for minimum penalty 
sequencing of jobs with setup times on one and two machines, in: Proceedings ZJCAZ-91, Sydney, 
NSW (1991) 178-183. 

[26] E. Taillard, Some efficient heuristic methods for the flow shop sequencing problem, Eur. J. 
Oper. Res. 47 (1990) 65-74. 

(271 A. Taylor and R.E. Korf, Pruning duplicate nodes in depth-first search, in: Proceedings 
AAAI-93, Washington DC (1993). 

[28] W. Townsend, The single machine problem with quadratic penalty function of completion times: 
a branch and bound solution, Manage. Sci. 24 (1978) 530-534. 

[29] K.V. Viswanathan and A. Bagchi, Best-first search methods for constrained two-dimensional 
cutting stock problems, Oper. Res. 41 (1993) 768-776. 

[30] W. Zhang and R.E. Korf, Depth-first vs. best-first search: new results, in: Proceedings AAAI-93, 
Washington DC (1993). 


