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In this paper, the necessary and sufficient conditions for the existence of a cyclic (3, λ)-
GDD of type gv with exactly α short block orbits are determined for all possible parameters
λ, g, v and α.
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1. Introduction

A (k, λ)-GDD of type gv is an ordered triple (X, G, B), where X is a set of size gv, G a partition of X into groups of size g ,
and B a set of k-subsets of X (called blocks), such that each pair of elements from different groups appears in λ blocks and
no block contains two elements from a common group. A GDD is cyclic if it admits a cyclic automorphism group G acting
sharply transitively on X .

For a cyclic (k, λ)-GDD of type gv , we may assume that X = Zgv . Let B = {b1, b2, . . . , bk} be a block of a cyclic (k, λ)-GDD
of type gv . The block orbit generated by B is defined as the set of distinct blocks B+ i = {b1 + i, b2 + i, . . . , bk + i} (mod gv)
for i ∈ Zgv . If a block orbit has gv blocks, then the block orbit is said to be full, otherwise short. In [13], the necessary and
sufficient conditions have been determined for the existence of a cyclic (3, λ)-GDD of type gv . In the present paper, we
further investigate the existence spectrum of a cyclic (3, λ)-GDD of type gv with exactly α short orbits, where α can be any
possible value.

A cyclic (3, λ)-GDD is equivalent to a special difference family which we define below. Throughout this paper, [a, b]
denotes the set of integers n such that a ≤ n ≤ b, and [a, b]o denotes the set of odd integers in [a, b]. For a set S, λS
denotes the multiset containing each element of S exactly λ times. A difference family of an abelian group G is a collection
{B1, B2, . . . , Bt} of k-subsets (called base blocks) of G satisfying certain properties. For any base block B of a difference family
over an abelian group G, the subgroup

{z ∈ G : B + z = B}

is called the stabilizer of B in G. A base block B is called full if its stabilizer is trivial, otherwise it is called short. The stabilizer
of B is denoted as SB.
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LetH be a subgroup of order h of an abelian groupG of order u. A collection {B1, B2, . . . , Bt} of k-subsets (called base blocks)
of G forms a (u, h, k, λ) difference family over G and relative to H with α short base blocks if

t
i=1 ∂Bi covers each element of

G−H exactly λ times but no element inH , and there are exactlyα short base blocks, where ∂B =
1

|SB|
{a−b : a, b ∈ B, a ≠ b}.

We denote such a design as (u, h, k, λ)α-DF. When the value of short base blocks is not specified, the design is denoted as
(u, h, k, λ)-DF. Observe that if k is a prime and G is cyclic, then we could have short base blocks only when k is a divisor of
u but not of h. For simplicity, our definition is just a special case of difference families. For general information of difference
families, the readers refer to [1]. Note that the base blocks of a (u, {h, kα}, k, λ)-DF defined in [13] together with exactly α
short base blocks {0, gv/3, 2gv/3} form a (u, h, k, λ)α-DF, and (u, h, k, 1)1-DF is denoted as (u, {h, k}, k, 1)-DF in [2].

It is not difficult to see that the existence of a (gv, g, 3, λ)α-DF over Zgv is equivalent to the existence of a cyclic (3, λ)-
GDD of type gv with α short block orbits. For a cyclic (3, λ)-GDD of type gv , the possible short orbit must be generated by
{0, gv/3, 2gv/3}. Therefore in what follows, we only display the full base blocks for a (gv, g, 3, λ)α-DF over Zgv .

In [7], it is proved by Jiang that there exists a (gv, g, 3, 1)0-DF over Zgv when g ≡ 0 (mod 12) and v > 4, or
g ≡ 6 (mod 12), v ≡ 0, 1 (mod 4) and v > 4.

In this paper, we should pay special attention to check those DFs constructed in [12,13] to see whether they are suitable
for our purpose. The technique will be implemented all through this paper. Nowwe need to obtain the necessary conditions
for the existence of a (gv, g, 3, λ)α-DF over Zgv .

Lemma 1.1. If there exists a (gv, g, 3, λ)α-DF over Zgv , then v ≠ 2, λ = α when (g, v) = (1, 3), λ = 2α when
(g, v) = (2, 3), λ = 4α when (g, v) = (1, 6), λ ≥ 2α when (g, v) = (2, 6), λ ≡ 0 (mod 3) when (g, v) = (1, 9) and
λ = α.

Proof. Suppose that there exists a (gv, g, 3, λ)α-DF over Zgv for (g, v) = (1, 6), then all of the differences in the multiset
λ{1} ∪ (λ − α){2} ∪ λ/2{3} can be partitioned into triples {ai, bi, ci}, such that ai + bi = ci or ai + bi + ci ≡ 0 (mod gv)
except {gv/3, gv/3, gv/3} = {2, 2, 2}. Clearly, the possible triples are the forms of {1, 2, 3} and {1, 1, 2}. From λ − λ/2 =

2(λ − α − λ/2), we have λ = 4α.
Similar to the case λ = 4α when (g, v) = (1, 6), we can get the assertion for the other cases. �

By a similar argument as Theorem 3.1 in [10], we can show the following result.

Lemma 1.2. If a (3g, g, 3, λ)α-DF over Z3g exists, then λ(3g − 1) − 2αg ≡ 0 (mod 6).

Proof. When α = 0 or g ≡ 1 (mod 3), suppose that there exists a (3g, g, 3, λ)α-DF over Z3g . The full base blocks
are {0, 3ai + 1, 3bi + 2}, where ai, bi ∈ [0, g − 1] for 1 ≤ i ≤ (λg − α)/3. Each base block covers the differences
{±(3x + 1) : x = ai, bi − ai, g − bi − 1}. All of the (λg − α)/3 base blocks together cover the difference ±(3x + 1) for each
x ∈ λ{0, 1, . . . , g − 1} \ α{(g − 1)/3}. Note that ai + (bi − ai) + (g − bi − 1) ≡ −1 (mod g). So we get −(λg − α)/3 ≡

λ
∑g−1

x=0 x


− α(g − 1)/3 (mod g). Then we have λ(3g − 1) − 2α ≡ 0 (mod 6), i.e., λ(3g − 1) − 2αg ≡ 0 (mod 6).

When g ≡ 2 (mod 3), similarly we get −(λg − α)/3 ≡ λ
∑g−1

x=0 x


− α(2g − 1)/3 (mod g). So we conclude that
λ(3g − 1) − 4α ≡ 0 (mod 6), that is λ(3g − 1) − 2αg ≡ 0 (mod 6). �

The proof of Lemma 1.3 is similar to that of Lemma 2 in [5].

Lemma 1.3. If there exists a (gv, g, 3, λ)α-DF over Zgv , then v ≢ 2, 3 (mod 4) when g ≡ 2 (mod 4) and λ ≡ 1 (mod 2); v ≢

2 (mod 4) when g ≡ 1 (mod 2) and λ ≡ 2 (mod 4).

For α ∈ [0, λ], an obvious necessary condition for the existence of a (gv, g, 3, λ)α-DF over Zgv is λg(v − 1) − 2α ≡

0 (mod 6), and 3 | v but 3 - g when α ≠ 0. Combining Lemmas 1.1–1.3, we get the following necessary conditions for the
existence of a (gv, g, 3, λ)α-DF over Zgv for α ≤ λ.

Lemma 1.4. If there exists a (gv, g, 3, λ)α-DF over Zgv , then

(1) λg(v − 1) − 2α ≡ 0 (mod 6), v ≠ 2;
(2) v ≢ 2, 3 (mod 4) when g ≡ 2 (mod 4) and λ ≡ 1 (mod 2);
(3) v ≢ 2 (mod 4) when g ≡ 1 (mod 2) and λ ≡ 2 (mod 4);
(4) g ≢ 0 (mod 3) and v ≡ 0 (mod 3) when α ≠ 0;
(5) λ(3g − 1) − 2αg ≡ 0 (mod 6) when v = 3;
(6) λ = α when (g, v) = (1, 3), λ = 2α when (g, v) = (2, 3), λ = 4α when (g, v) = (1, 6), λ ≥ 2α when

(g, v) = (2, 6), λ ≡ 0 (mod 3) when (g, v) = (1, 9) and λ = α.

The rest of this paper are organized as follows. In Section 2,we introduce someuseful recursive constructions. In Section 3,
we investigate the existence of a (gv, g, 3, λ)0-DF over Zgv . In Section 4, we establish the necessary and sufficient conditions
for the existence of a (gv, g, 3, 3)3-DF over Zgv . In Section 5,we construct a (gv, g, 3, λ)α-DF over Zgv for someα andλwhich
will be used in the next section. Finally in Section 6, we complete the existence spectrum of a cyclic (3, λ)-GDD of type gv

having α short orbits.
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2. Recursive constructions

In this section, we describe some useful recursive constructions that will be required in Sections 3–5. We first introduce
the following definition of perfect difference family from [3].

Let g be a divisor of v such that v = gv0. Suppose that F = {Bi : i = 1, 2, . . . , t} is the family of base
blocks of a (hv, hg, k, λ)0-DF over Zhv where Bi = {0, b1i, b2i, . . . , bk−1,i} for i = 1, 2, . . . , t . Define ele(F ) =

∪
t
i=1{b1i, b2i, . . . , bk−1,i}. The (hv, hg, k, λ)0-DF over Zhv is said to be h-perfect, denoted by (hv, hg, k, λ)-h-PDF over Zhv , if

ele(F ) ⊆

a + bv : 0 ≤ a ≤


v
2


, a ≠ 0, v0, 2v0, . . . , (g − 1)v0, b = 0, 1, . . . , h − 1


. When h = 1, write (hv, hg, k, λ)-

1-PDF over Zhv briefly as (v, g, k, λ)-PDF over Zv .
Let (G, ·) be a finite group of order v and H a subgroup of order h in G. An H-regular (v, k; λ)-incomplete difference matrix

over G is a k × (v − h)λ matrix D = (dij), 0 ≤ i ≤ k − 1, 1 ≤ j ≤ λ(v − h), with entries from G, such that for any
0 ≤ i < j ≤ k − 1, the multiset {dil · d−1

jl : 1 ≤ l ≤ λ(v − h)} contains every element of G \ H exactly λ times. When G
is an abelian group, typically additive notation is used, so that the differences dil − djl are employed. In what follows, we
assume that G = Zv , and H is a subgroup of order h in Zv . Then H = {iv/h : 0 ≤ i ≤ h− 1}. We usually denote an H-regular
(v, k; λ)-incomplete difference matrix over Zv by h-regular ICDM(k, λ; v) if |H| = h. When H = ∅ or h = 0, an H-regular
(v, k; λ)-incomplete difference matrix over Zv is termed as CDM(k, λ; v). When λ = 1, write h-regular ICDM(k, 1; v) (or
CDM(k, 1; v)) briefly as h-regular ICDM(k; v) (or CDM(k; v), respectively). The following simple result can be found in [6]
(also see [8]). For more general results on difference matrices the readers refer to [4].

Lemma 2.1 ([6]). Let v and k be positive integers such that gcd(v, (k − 1)!) = 1. Let dij ≡ ij (mod v) for i = 0, 1, . . . , k − 1
and j = 0, 1, . . . , v − 1. Then D = (dij) is a CDM(k; v). In particular, if v is an odd prime number, then there exists a CDM(k; v)
for integer k, 2 ≤ k ≤ v.

Since there exists a 2-regular ICDM(4; 2n) for n ≥ 3 from Lemma 3.6 in [3], the following fact is evidently true.

Lemma 2.2. There exists a 2-regular ICDM(3; 2n) for any integer n ≥ 3.

Theorem 2.3 ([3, Theorem 2.5]). If there are a (v, g, k, λ)-PDF over Zv , a (hv, hg, k, λ)-h-PDF over Zhv and an h-regular
ICDM(k;m), then there is an (mv,mg, k, λ)-m-PDF over Zmv .

Theorems 2.4 and 2.5 can be derived with similar technique as Construction 4.1 in [15]. Here we only exhibit the results
and omit their proofs.

Theorem 2.4. If there are a (ghv, gh, 3, λ)0-DF over Zghv and a (gh, g, 3, λ)α-DF over Zgh, then there is a (ghv, g, 3, λ)α-DF
over Zghv .

Theorem 2.5. If there are a (ghv, gh, 3, λ)α-DF over Zghv and a (gh, g, 3, λ)0-DF over Zgh, then there is a (ghv, g, 3, λ)α-DF
over Zghv .

The following construction serves to combine known DFs into a new one. The proof is similar to that of Construction 4.2
in [15].

Theorem 2.6. If there are a (gv, g, 3, λ)α-DF over Zgv , a (3m,m, 3, α)α-DF over Z3m and a CDM(3;m), then there is an
(mgv,mg, 3, λ)α-DF over Zmgv .

Proof. Suppose that F , E be the families of full base blocks of the given (gv, g, 3, λ)α-DF over Zgv and (3m,m, 3, α)α-DF
over Z3m, respectively. Let D = (dij) be a CDM(3;m) where dij ∈ Zm for 0 ≤ i ≤ 2 and 0 ≤ j ≤ m − 1. For each base block
A = {0, a1, a2} ∈ F we take m base blocks Aj = {0, a1 + gvd1j, a2 + gvd2j} for j = 0, 1, . . . ,m − 1, where the additive
operation is performed in Zmgv . For each B = {0, b1, b2} ∈ E we take one base block uB = {0, ub1, ub2} (mod mgv) where
u = gv/3. It can be checked that the family {Aj : A ∈ F , j = 0, 1, . . . ,m − 1} ∪ {uB : B ∈ E } forms the full base blocks of
the desired (mgv,mg, 3, λ)α-DF over Zmgv . �

The following result is a corollary of Theorem 2.6 with α = 0.

Theorem 2.7. Suppose that both a (v, g, 3, λ)0-DF over Zv and a CDM(3;m) exist. Then there exists an (mv,mg, 3, λ)0-DF over
Zmv .

3. (gv, g, 3, λ)0-DFs

In [12], it is shown that the necessary and sufficient conditions for the existence of a (gv, g, 3, λ)-DF over Zgv are (1)
λg(v −1) ≡ 0 (mod 6), v ≠ 2; (2) λ ≡ 0 (mod 6), or λ ≡ 3 (mod 6) and g ≡ 1 (mod 2)when v = 3; (3) v ≢ 2, 3 (mod 4)
when g ≡ 2 (mod 4) and λ ≡ 1 (mod 2); (4) v ≢ 2 (mod 4) when g ≡ 1 (mod 2) and λ ≡ 2 (mod 4). Note that
{0, gv/3, 2gv/3} may be contained in the base blocks of a (gv, g, 3, λ)-DF over Zgv only if g ≢ 0 (mod 3), v ≡ 0 (mod 3)
and λ ≡ 0 (mod 3). Therefore, in order to present the sufficiency for a (gv, g, 3, λ)0-DF over Zgv , we only need to consider
the conditions of g ≢ 0 (mod 3), v ≡ 0 (mod 3) and λ ≡ 0 (mod 3) within Lemma 1.4.
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The (gv, g, 3, 3)-DFs in Zgv from Lemmas 4.2, 4.4 and 4.5 of [12] contain no base block {0, gv/3, 2gv/3} and hence we
have the following result.

Lemma 3.1 ([12]).
(1) There exists a (2v, 2, 3, 3)0-DF over Z2v for v ≡ 0, 9 (mod 12);
(2) There exists a (8v, 8, 3, 3)-2-PDF over Z8v for v ≡ 0 (mod 3) and v > 3;
(3) There exists a (16v, 16, 3, 3)0-DF over Z16v for v ≡ 0 (mod 3) and v > 3.

The following Lemmas 3.2 and 3.3 are proved in [14].

Lemma 3.2. (1) For g ≡ 1, 5 (mod 6) and g > 1, there exists a (3g, g, 3, 3)0-DF over Z3g .
(2) For v ≡ 3 (mod 6) and v > 3, there exists a (v, 1, 3, 3)0-DF over Zv .
(3) For v ≡ 0 (mod 12), there exists a (v, 1, 3, 6)0-DF over Zv .
(4) For v ≡ 6 (mod 12) and v > 6, there exists a (v, 1, 3, 12)0-DF over Zv .
(5) For g ≡ 2, 4 (mod 6) and g > 2, there exists a (3g, g, 3, 6)0-DF over Z3g .
(6) For g ≡ 1, 5 (mod 6) and g > 1, there exists a (6g, g, 3, 12)0-DF over Z6g .

Lemma 3.3. There exists a (4v, 4, 3, 3)-PDF over Z4v which is also a (2v, 2, 3, 6)0-DF over Z2v for v ≡ 0 (mod 3) and v > 3.

Lemma 3.4. A (gv, g, 3, 3)0-DF over Zgv exists for
(1) v ≡ 3 (mod 6) when g ≡ 1, 5 (mod 6), (g, v) ≠ (1, 3);
(2) v ≡ 0, 9 (mod 12) when g ≡ 2, 10 (mod 12);
(3) v ≡ 0 (mod 3) and v > 3 when g ≡ 4, 8 (mod 12).

Proof. (1) When v = 3, a (3g, g, 3, 3)0-DF over Z3g exists by Lemma 3.2 for g ≡ 1, 5 (mod 6) and g > 1. When
v ≡ 3 (mod 6) and v > 3, since a (v, 1, 3, 3)0-DF over Zv exists from Lemma 3.2, applying Theorem 2.7 with a CDM(3; g)
from Lemma 2.1, we can get a (gv, g, 3, 3)0-DF over Zgv .

(2) By Lemma 3.1(1), we know that a (2v, 2, 3, 3)0-DF over Z2v exists for v ≡ 0, 9 (mod 12), hencewe apply Theorem 2.7
with a CDM(3; g/2) from Lemma 2.1 to obtain a (gv, g, 3, 3)0-DF over Zgv .

(3) First we prove that a (2nv, 2n, 3, 3)0-DF over Z2nv exists for v ≡ 0 (mod 3), v > 3 and n ≥ 2. For n = 2, 3, 4, the
conclusion follows by Lemmas 3.3 and 3.1(2) and (3). For n ≥ 5, since a (4v, 4, 3, 3)-PDF over Z4v and a (8v, 8, 3, 3)-2-PDF
over Z8v exist by Lemmas 3.3 and 3.1(2), applying Theorem 2.3 with a 2-regular ICDM(3; 2n−2) from Lemma 2.2 gives a
(2nv, 2n, 3, 3)-2n−2-PDF over Z2nv . That is a (2nv, 2n, 3, 3)0-DF over Z2nv .

When g ≡ 4, 8 (mod 12), g can be written as g = 2ng ′ where n ≥ 2 and g ′ is odd. Start with a (2nv, 2n, 3, 3)0-DF over
Z2nv and apply Theorem 2.7 with a CDM(3; g ′) from Lemma 2.1 to get a (2ng ′v, 2ng ′, 3, 3)0-DF over Z2ng ′v for n ≥ 2, odd
integer g ′ and v > 3, which conclude to a (gv, g, 3, 3)0-DF over Zgv . �

Now we give the necessary and sufficient conditions for the existence of a (gv, g, 3, λ)0-DF over Zgv .

Lemma 3.5. A (gv, g, 3, λ)0-DF over Zgv exists if and only if
(1) λg(v − 1) ≡ 0 (mod 6), v ≠ 2;
(2) v ≢ 2, 3 (mod 4) when g ≡ 2 (mod 4) and λ ≡ 1 (mod 2);
(3) v ≢ 2 (mod 4) when g ≡ 1 (mod 2) and λ ≡ 2 (mod 4);
(4) λ(3g − 1) ≡ 0 (mod 6) when v = 3;
(5) (g, v) ≠ (1, 3), (2, 3), (1, 6).

Proof. The necessity follows from Lemma 1.4. For the sufficiency, we only need to prove the existence of a (gv, g, 3, λ)0-DF
over Zgv when g ≢ 0 (mod 3), v ≡ 0 (mod 3) and λ ≡ 0 (mod 3) in the following three cases.

Case 1: g ≡ 1, 5 (mod 6). When λ ≡ 0 (mod 3), v ≡ 3 (mod 6) and (g, v) ≠ (1, 3), repeat the base blocks of a
(gv, g, 3, 3)0-DF over Zgvλ/3 times from Lemma 3.4(1). When λ ≡ 0 (mod 6) and v ≡ 0 (mod 12), since a (v, 1, 3, 6)0-
DF over Zv exists from Lemma 3.2, applying Theorem 2.7 with a CDM(3; g) from Lemma 2.1 we obtain a (gv, g, 3, 6)0-DF
over Zgv . Then repeat the base blocks of a (gv, g, 3, 6)0-DF over Zgvλ/6 times. When λ ≡ 0 (mod 12), v ≡ 6 (mod 12)
and v > 6, we apply Theorem 2.7 with a (v, 1, 3, 12)0-DF over Zv from Lemma 3.2 and a CDM(3; g) from Lemma 2.1
to get a (gv, g, 3, 12)0-DF over Zgv , and then repeat the base blocks of a (gv, g, 3, 12)0-DF over Zgvλ/12 times. When
λ ≡ 0 (mod 12), g > 1 and v = 6, repeat the base blocks of a (6g, g, 3, 12)0-DF over Z6gλ/12 times from Lemma 3.2.

Case 2: g ≡ 2, 10 (mod 12). When λ ≡ 3 (mod 6) and v ≡ 0, 9 (mod 12), repeat the base blocks of a (gv, g, 3, 3)0-DF
over Zgvλ/3 times from Lemma 3.4(2). When λ ≡ 0 (mod 6), v ≡ 0 (mod 3) and v > 3, since a (2v, 2, 3, 6)0-DF over Z2v
exists from Lemma 3.3, we apply Theorem 2.7 with a CDM(3; g/2) from Lemma 2.1 to obtain a (gv, g, 3, 6)0-DF over Zgv ,
and then repeat the base blocks of a (gv, g, 3, 6)0-DF over Zgvλ/6 times. When λ ≡ 0 (mod 6), g > 2 and v = 3, repeat the
base blocks of a (3g, g, 3, 6)0-DF over Z3gλ/6 times from Lemma 3.2.

Case 3: g ≡ 4, 8 (mod 12). When λ ≡ 0 (mod 3), v ≡ 0 (mod 3) and v > 3, repeat the base blocks of a (gv, g, 3, 3)0-DF
over Zgvλ/3 times from Lemma 3.4(3). When λ ≡ 0 (mod 6) and v = 3, repeat the base blocks of a (3g, g, 3, 6)0-DF over
Z3gλ/6 times from Lemma 3.2. This completes the proof. �
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4. (gv, g, 3, 3)3-DFs

By Lemma 1.4, the necessary conditions for the existence of a (gv, g, 3, 3)3-DF over Zgv are: (1)v ≡ 3 (mod 6) when
g ≡ 1, 5 (mod 6); (2)v ≡ 0 (mod 3) and v > 3 when g ≡ 4, 8 (mod 12); (3)v ≡ 0, 9 (mod 12)when g ≡ 2, 10 (mod 12).
In this section, we are mainly to prove that the necessary conditions for the existence of a (gv, g, 3, 3)3-DF over Zgv are also
sufficient.

The following Lemma 4.1 is proved in [14].

Lemma 4.1. (1) For v ≡ 9 (mod 12), there exists a (2v, 2, 3, 3)3-DF over Z2v .
(2) For v ≡ 3 (mod 6) and v > 3, there exists a (8v, 8, 3, 3)3-DF over Z8v .
(3) For g ≡ 5 (mod 6), there exists a (3g, g, 3, 3)3-DF over Z3g .
(4) For g ≡ 8 (mod 12), v ≡ 0 (mod 3) and 6 ≤ v ≤ 21, there exists a (gv, g, 3, 3)3-DF over Zgv .

Lemma 4.2. For v ≡ 3 (mod 6) and v ≥ 27, there exist ordered pairs (xl, yl), 1 ≤ l ≤ v − 1, such that yl − xl ∈

[4v/3 + 1, 10v/3 − 1]o \ {3v}, xl ∈ ([2v/3 + 1, 5v/3] \ {v, v + 1}) ∪ {1}, yl ∈ [3v + 1, 4v − 2] ∪ {3v − 1}.

Proof. Let v = 6s + 3 where s ≥ 4. Then for 1 ≤ l ≤ 6s + 2, yl − xl ∈ [8s + 5, 20s + 9]o \ {18s + 9}, xl ∈

([4s + 3, 10s + 5] \ {6s + 3, 6s + 4}) ∪ {1}, yl ∈ [18s + 10, 24s + 10] ∪ {18s + 8}. The desired ordered pairs (xl, yl)
are listed below:

• s ≡ 0 (mod 4) and s ≥ 4:
(1, 20s+10), (5s+2, 20s+9), (5s+3, 22s+14), (11s/2+2, 43s/2+13), (11s/2+3, 43s/2+12), (6s+5, 18s+8),
(10s + 5 − r, 18s + 10 + r), r ∈ [0, 2s − 2],
(5s + 1 − r, 23s + 12 + r), r ∈ [0, s − 2],
(8s + 6 − r, 20s + 11 + r), r ∈ [0, 3s/2],
(13s/2 + 5 − r, 43s/2 + 14 + r), r ∈ [0, s/2 − 1],
(6s + 2 − 2r, 22s + 15 + 2r), r ∈ [0, s/4 − 1],
(6s + 1 − 2r, 22s + 16 + 2r), r ∈ [0, s/4 − 2] (r ∈ ∅ when s = 4),
(11s/2 + 1 − 2r, 45s/2 + 14 + 2r), r ∈ [0, s/4 − 2] (r ∈ ∅ when s = 4),
(11s/2 − 2r, 45s/2 + 15 + 2r), r ∈ [0, s/4 − 2] (r ∈ ∅ when s = 4).

• s ≡ 2 (mod 4) and s ≥ 6:
(1, 20s+10), (5s+2, 20s+9), (5s+3, 22s+14), (11s/2+2, 43s/2+13), (11s/2+3, 43s/2+12), (6s+5, 18s+8),
(10s + 5 − r, 18s + 10 + r), r ∈ [0, 2s − 2],
(5s + 1 − r, 23s + 12 + r), r ∈ [0, s − 2],
(8s + 6 − r, 20s + 11 + r), r ∈ [0, 3s/2],
(13s/2 + 5 − r, 43s/2 + 14 + r), r ∈ [0, s/2 − 1],
(6s + 2 − 2r, 22s + 15 + 2r), r ∈ [0, (s − 6)/4],
(6s + 1 − 2r, 22s + 16 + 2r), r ∈ [0, (s − 6)/4],
(11s/2 + 1 − 2r, 45s/2 + 14 + 2r), r ∈ [0, (s − 6)/4],
(11s/2 − 2r, 45s/2 + 15 + 2r), r ∈ [0, (s − 10)/4] (r ∈ ∅ when s = 6).

• s ≡ 1 (mod 4) and s ≥ 5:
(1, 20s+10), (5s+2, 22s+14), (5s+3, 20s+9), ((11s+3)/2, (43s+25)/2), ((11s+5)/2, (43s+23)/2), (6s+5, 18s+8),
(10s + 5 − r, 18s + 10 + r), r ∈ [0, 2s − 2],
(5s + 1 − r, 23s + 12 + r), r ∈ [0, s − 2],
(8s + 6 − r, 20s + 11 + r), r ∈ [0, (3s − 1)/2],
((13s + 11)/2 − r, (43s + 27)/2 + r), r ∈ [0, (s − 1)/2],
(6s + 2 − 2r, 22s + 15 + 2r), r ∈ [0, (s − 5)/4],
(6s + 1 − 2r, 22s + 16 + 2r), r ∈ [0, (s − 5)/4],
((11s + 1)/2 − 2r, (45s + 29)/2 + 2r), r ∈ [0, (s − 9)/4] (r ∈ ∅ when s = 5),
((11s − 1)/2 − 2r, (45s + 31)/2 + 2r), r ∈ [0, (s − 9)/4] (r ∈ ∅ when s = 5).

• s ≡ 3 (mod 4) and s ≥ 7:
(1, 20s+10), (5s+2, 22s+14), (5s+3, 20s+9), ((11s+3)/2, (43s+25)/2), ((11s+5)/2, (43s+23)/2), (6s+5, 18s+8),
(10s + 5 − r, 18s + 10 + r), r ∈ [0, 2s − 2],
(5s + 1 − r, 23s + 12 + r), r ∈ [0, s − 2],
(8s + 6 − r, 20s + 11 + r), r ∈ [0, (3s − 1)/2],
((13s + 11)/2 − r, (43s + 27)/2 + r), r ∈ [0, (s − 1)/2],
(6s + 2 − 2r, 22s + 15 + 2r), r ∈ [0, (s − 3)/4],
(6s + 1 − 2r, 22s + 16 + 2r), r ∈ [0, (s − 7)/4],
((11s + 1)/2 − 2r, (45s + 29)/2 + 2r), r ∈ [0, (s − 7)/4],
((11s − 1)/2 − 2r, (45s + 31)/2 + 2r), r ∈ [0, (s − 11)/4] (r ∈ ∅ when s = 7). �

Lemma 4.3. There exists a (gv, g, 3, 3)3-DF over Zgv for g ≡ 8 (mod 12), v ≡ 3 (mod 6) and v > 3.
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Proof. For g ≡ 8 (mod 12) and v = 9, 15, 21, the conclusion follows by Lemma 4.1. For g = 8, v ≡ 3 (mod 6) and v > 3,
the conclusion follows by Lemma 4.1. For g ≡ 8 (mod 12), g ≥ 20, v ≡ 3 (mod 6) and v ≥ 27, let g = 12t + 8 where
t ≥ 1. Let (xl, yl) be the ordered pairs obtained in Lemma 4.2 for 1 ≤ l ≤ v − 1. The desired base blocks are as follows.
{0, 6, 12}, 2{0, 8, (3t + 2)v + 4}, 2{0, 11, (15t + 10)v/3 + 6},
{0, 6, (3t + 2)v + 2}, 2{0, 10, (3t + 2)v + 5}, 3{0, 3, (15t + 10)v/3 + 2},
{0, 8, (3t + 2)v + 5}, 2{0, 12, (3t + 2)v + 6}, 3{0, 7, (15t + 10)v/3 + 4},
{0, 10, (3t + 2)v + 4}, 3{0, 4, (3t + 2)v + 3}, 3{0, 9, (15t + 10)v/3 + 5},
{0, 11, (3t + 2)v + 6}, 3{0, 1, (12t + 8)v/3 − 1}, {0, 2, (15t + 10)v/3 + 3},
2{0, 5, (3t + 2)v + 2}, 2{0, 2, (15t + 10)v/3}, {0, 5, (15t + 10)v/3},
3{0, 2v/3 + 1, (2t + 2)v − 1}, {0, (6t + 4)v/3 − 4, (21t + 14)v/3 − 6},
3{0, v − 2, (5t + 3)v − 1}, 2{0, (6t + 4)v/3 − 4, (21t + 14)v/3 − 3},
3{0, 4v/3 − 1, (6t + 4)v/3 + 1}, 3{0, (6t + 4)v/3, ((42t + 25)v + 3)/6},
3{0, (3t + 2)v − 2, (6t + 4)v − 1}, 3{0, (6t + 4)v/3 + 2, ((42t + 25)v + 9)/6},
3{0, 14 + 2j, (3t + 2)v + 7 + j}, j ∈ [0, (3t + 2)v/3 − 10] \ {tv − 6}, and j ≢ v − 7(mod v),

3{0, 13 + 2j, (15t + 10)v/3 + 7 + j}, j ∈ [0, v/3 − 7],
3{0, 2v/3 + 3 + 2j, (15t + 11)v/3 + 1 + j}, j ∈ [0, v/3 − 3] \ {(v − 15)/6, (v − 9)/6},
and
3{0, (2t − 2)v + (yl − xl) − 2jv, 6tv + yl − jv}, where l ∈ [1, v − 1] and j ∈ [0, t − 1]. �

By checking with Lemmas 2.18, 3.8, 3.9, 3.11 and 3.4 of [13], we have the following results which will be used later.

Lemma 4.4 ([13]).

(1) There exists a (gv, g, 3, 1)1-DF over Zgv for g ≡ 4 (mod 12), v ≡ 0 (mod 3) and v > 3, or g ≡ 10 (mod 12) and
v ≡ 0, 9 (mod 12), or g ≡ 1 (mod 6), v ≡ 3 (mod 6) and (g, v) ≠ (1, 9);

(2) There exists a (gv, g, 3, 2)1-DF over Zgv for g ≡ 2 (mod 6) and v ≡ 0 (mod 3), or g ≡ 5 (mod 6), v ≡ 0 (mod 3) and
v ≢ 2 (mod 4);

(3) There exists a (gv, g, 3, 2)2-DF over Zgv for g ≡ 4 (mod 6) and v ≡ 0 (mod 3), or g ≡ 1 (mod 6), v ≡ 0 (mod 3), v ≢

2 (mod 4) and (g, v) ≠ (1, 9);
(4) There exists a (gv, g, 3, 4)2-DF over Zgv for g ≡ 2 (mod 3) and v ≡ 0 (mod 3);
(5) There exists a (6g, g, 3, 4)1-DF over Z6g for g ≡ 1 (mod 6).

Now the necessary and sufficient conditions for the existence of a (gv, g, 3, 3)3-DF over Zgv are determined as follows.

Lemma 4.5. A (gv, g, 3, 3)3-DF over Zgv exists if and only if

(1) v ≡ 3 (mod 6) when g ≡ 1, 5 (mod 6);
(2) v ≡ 0 (mod 3) and v > 3 when g ≡ 4, 8 (mod 12);
(3) v ≡ 0, 9 (mod 12) when g ≡ 2, 10 (mod 12).

Proof. The necessity follows from Lemma 1.4. So we establish the sufficiency as follows.
(1) For g ≡ 1 (mod 6) and v = 3, the conclusion follows by repeating the base blocks of a (gv, g, 3, 1)1-DF over Zgv

three times from Lemma 4.4(1). For g ≡ 5 (mod 6) and v = 3, the result follows by Lemma 4.1. For g ≡ 1, 5 (mod 6), v ≡

3 (mod 6) and v ≥ 9, let v = 3v′ where v′
≡ 1 (mod 2) and v′

≥ 3. Since 3g ≡ 1 (mod 2), there exists a (3gv′, 3g, 3, 3)0-
DF over Z3gv′ by Lemma 3.5. That is a (gv, 3g, 3, 3)0-DF over Zgv for v ≡ 3 (mod 6) and v ≥ 9. Then we apply Theorem 2.4
with a (3g, g, 3, 3)3-DF over Z3g mentioned above to obtain a (gv, g, 3, 3)3-DF over Zgv .

(2) For g ≡ 4 (mod 12), v ≡ 0 (mod 3) and v > 3, repeating the base blocks of a (gv, g, 3, 1)1-DF over Zgv three times
from Lemma 4.4(1), we can draw the conclusion. For g ≡ 8 (mod 12), v ≡ 3 (mod 6) and v > 3, the conclusion follows
from Lemma 4.3. For g ≡ 8 (mod 12) and v = 6, 12, 18, the desired DFs come from Lemma 4.1. For g ≡ 8 (mod 12),
v ≡ 0 (mod 6) and v > 18, let v = 6v′, where v′ > 3. Since 6g ≡ 0 (mod 4), we observe that there is a (6gv′, 6g, 3, 3)0-DF
over Z6gv′ by Lemma 3.5. That is a (gv, 6g, 3, 3)0-DF over Zgv for v ≡ 0 (mod 6) and v > 18. Hence we use Theorem 2.4
with a (6g, g, 3, 3)3-DF over Z3g from Lemma 4.1 to get a (gv, g, 3, 3)3-DF over Zgv .

(3) For g = 2 and v = 12, the base blocks are 3{0, 1, 11}, {0, 2, 6}, 2{0, 2, 7}, {0, 3, 7}, 2{0, 3, 9}, {0, 4, 9}. For
g = 2, v ≡ 0 (mod 12) and v > 12, let v = 4v′ where v′

≡ 0 (mod 3) and v′ > 3. Since there exists a (8v′, 8, 3, 3)3-DF
over Z8v′ from (2), which is a (2v, 8, 3, 3)3-DF over Z2v .We apply Theorem2.5with a (8, 2, 3, 3)0-DF over Z8 from Lemma 3.5
to get a (2v, 2, 3, 3)3-DF over Z2v . For g = 2 and v ≡ 9 (mod 12), by Lemma 4.1 there exists a (gv, g, 3, 3)3-DF over Zgv . For
g ≡ 2, 10 (mod 12), g ≥ 10 and v ≡ 0, 9 (mod 12), g can be written as g = 2g ′ where g ′

≡ 1, 5 (mod 6) and g ′
≥ 5. Start

with a (2v, 2, 3, 3)3-DF over Z2v mentioned above and a (3g ′, g ′, 3, 3)3-DF over Z3g ′ from (1), applying Theorem 2.6 with a
CDM(3; g ′) from Lemma 2.1, we obtain a (2g ′v, 2g ′, 3, 3)3-DF over Z2g ′v , which is a (gv, g, 3, 3)3-DF over Zgv . �
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5. Some other constructions

In this section, we need to build certain classes of DFs for later use in Section 6. We first list some direct constructions
from [14].

Lemma 5.1. (1) For v ≡ 0 (mod 3) and v > 9, there exists a (v, 1, 3, 4)1-DF over Zv .
(2) For v ≡ 0 (mod 3) and v ≥ 9, there exists a (2v, 2, 3, 6)6-DF over Z2v .
(3) For g ≡ 4 (mod 6), there exists a (3g, g, 3, 4)1-DF over Z3g .
(4) For g ≡ 2 (mod 6) and g > 2, there exists a (3g, g, 3, 6)6-DF over Z3g .
(5) For g ≡ 10 (mod 12), there exists a (6g, g, 3, 4)1-DF over Z6g .
(6) For g ≡ 5 (mod 6), α ∈ {1, 7}, there exists a (6g, g, 3, 8)α-DF over Z6g .
(7) For g ≡ 1 (mod 6) and g > 1, there exists a (6g, g, 3, 4)4-DF over Z6g .
(8) For g ≡ 2 (mod 12) and g > 2, there exists a (6g, g, 3, 6)6-DF over Z6g .
(9) For g ≡ 5 (mod 6), there exists a (6g, g, 3, 12)12-DF over Z6g .

Lemma 5.2. There exists a (gv, g, 3, 4)1-DF over Zgv for g ≡ 1 (mod 3), v ≡ 0 (mod 3) and (g, v) ≠ (1, 3).

Proof. First we deal with the case of v = 3, 6, 9. For (g, v) = (1, 9), the base blocks are 2{0, 1, 3}, {0, 1, 4}, {0, 2, 4}, {0,
1, 5}. For g ≡ 1 (mod 6), v = 3 and (g, v) ≠ (1, 3), or g ≡ 4 (mod 12) and v = 6, or g ≡ 1 (mod 3), v = 9 and
(g, v) ≠ (1, 9), the conclusion follows by taking together the base blocks of a (gv, g, 3, 1)1-DF over Zgv from Lemma 4.4(1),
and a (gv, g, 3, 3)0-DF over Zgv from Lemma 3.5. For g ≡ 4 (mod 6) and v = 3, or g ≡ 1, 7, 10 (mod 12) and v = 6, a
(gv, g, 3, 4)1-DF over Zgv exists from Lemmas 4.4(5) and 5.1.

Then the case of v > 9 can be solved as follows. For g = 1, v ≡ 0 (mod 3) and v > 9, the required DF comes from
Lemma 5.1. For g ≡ 1 (mod 3), g > 1, v ≡ 0 (mod 3) and v > 9, let v = 3v′ where v′ > 3. Note that 3g ≡ 0 (mod 3), so
by Lemma 3.5 there exists a (3gv′, 3g, 3, 4)0-DF over Z3gv′ , which is a (gv, 3g, 3, 4)0-DF over Zgv . Combining a (3g, g, 3, 4)1-
DF over Z3g mentioned above, the existence of a (gv, g, 3, 4)1-DF over Zgv then follows immediately by Theorem 2.4. �

Lemma 5.3. There exists a (gv, g, 3, 4)4-DF over Zgv for g ≡ 1 (mod 3), v ≡ 0 (mod 3) and (g, v) ≠ (1, 6), (1, 9).

Proof. For g ≡ 1 (mod 6), v = 6 and (g, v) ≠ (1, 6), the conclusion follows by Lemma 5.1. For g ≡ 4 (mod 6) and
v ≡ 0 (mod 3), or g ≡ 1 (mod 6), v = 3, 9 and (g, v) ≠ (1, 9), repeating the base blocks of a (gv, g, 3, 2)2-DF over
Zgv twice from Lemma 4.4(3), we can obtain a (gv, g, 3, 4)4-DF over Zgv . For g ≡ 1 (mod 6), v ≡ 0 (mod 3) and v > 9,
let v = 3v′ where v′ > 3. 3g ≡ 0 (mod 3), so by Lemma 3.5 there exists a (3gv′, 3g, 3, 4)0-DF over Z3gv′ , which is a
(gv, 3g, 3, 4)0-DF over Zgv . The conclusion follows by Theorem 2.4 with a (3g, g, 3, 4)4-DF over Z3g mentioned above. �

Lemma 5.4. There exists a (gv, g, 3, 6)3-DF over Zgv for g ≡ 2, 4 (mod 6) and v ≡ 0 (mod 3), or g ≡ 1, 5 (mod 6), v ≡

0 (mod 3), v ≢ 2 (mod 4) and (g, v) ≠ (1, 3).

Proof. For (g, v) = (1, 9), a (gv, g, 3, 6)3-DF over Zgv is obtained by taking together the base blocks of a (gv, g, 3, 3)0-DF
from Lemma 3.5 and a (gv, g, 3, 3)3-DF over Zgv from Lemma 4.5. For g ≡ 1 (mod 6), v ≡ 0 (mod 3), v ≢ 2 (mod 4) and
(g, v) ≠ (1, 3), (1, 9), or g ≡ 4 (mod 6) and v ≡ 0 (mod 3), by taking together the base blocks of a (gv, g, 3, 2)2-DF from
Lemma 4.4(3) and a (gv, g, 3, 4)1-DF over Zgv from Lemma 5.2, we can obtain the desired design. For g ≡ 5 (mod 6), v ≡

0 (mod 3) and v ≢ 2 (mod 4), or g ≡ 2 (mod 6) and v ≡ 0 (mod 3), repeat the base blocks of a (gv, g, 3, 2)1-DF over Zgv
three times from Lemma 4.4(2) to get the result. �

Lemma 5.5. There exists a (gv, g, 3, 6)6-DF over Zgv for g ≡ 2, 4 (mod 6), v ≡ 0 (mod 3) and (g, v) ≠ (2, 3), (2, 6), or
g ≡ 1, 5 (mod 6), v ≡ 0 (mod 3) and v ≢ 2 (mod 4).

Proof. Case 1: g ≡ 2, 4 (mod 6) and v = 3, 6. For g ≡ 4 (mod 6) and v = 3, 6, we repeat the base blocks of a (gv, g, 3, 2)2-
DF over Zgv three times from Lemma 4.4(3) to get the required design. For g ≡ 2 (mod 6), v = 3 and (g, v) ≠ (2, 3), or
g ≡ 2 (mod 12), v = 6 and (g, v) ≠ (2, 6), the result follows by Lemma 5.1. For g ≡ 8 (mod 12) and v = 6, repeating the
base blocks of a (gv, g, 3, 3)3-DF over Zgv twice from Lemma 4.5, we can get a (gv, g, 3, 6)6-DF over Zgv .

Case 2: g ≡ 2, 4 (mod 6) and v ≥ 9. For g = 2, v ≡ 0 (mod 3) and v ≥ 9, the conclusion follows from Lemma 5.1.
For g ≡ 2, 4 (mod 6), g ≥ 4, v ≡ 0 (mod 3) and v ≥ 9, let v = 3v′, where v′

≥ 3. Since 3g ≡ 0 (mod 2), there exists a
(3gv′, 3g, 3, 6)0-DF over Z3gv′ for v′

≥ 3 by Lemma 3.5. That is a (gv, 3g, 3, 6)0-DF over Zgv for v ≡ 0 (mod 3) and v ≥ 9.
Applying Theorem 2.4 with a (3g, g, 3, 6)6-DF over Z3g from Case 1, we obtain a (gv, g, 3, 6)6-DF over Zgv .

Case 3: g ≡ 1, 5 (mod 6). For g ≡ 1, 5 (mod 6) and v = 3, repeating the base blocks of a (gv, g, 3, 3)3-DF over Zgv twice
from Lemma 4.5 to get the result. For g ≡ 1, 5 (mod 6), v ≡ 0 (mod 3), v ≢ 2 (mod 4) and v ≥ 9, let v = 3v′ where
v′

≢ 2 (mod 4) and v′
≥ 3. Since 3g ≡ 1 (mod 2), there exists a (3gv′, 3g, 3, 6)0-DF over Z3gv′ for v′

≢ 2 (mod 4) and
v′

≥ 3 by Lemma 3.5. That is a (gv, 3g, 3, 6)0-DF over Zgv for v ≡ 0 (mod 3), v ≢ 2 (mod 4) and v ≥ 9. We now apply
Theorem 2.4 with a (3g, g, 3, 6)6-DF over Z3g from above to get a (gv, g, 3, 6)6-DF over Zgv . �

Lemma 5.6. There exists a (gv, g, 3, 8)1-DF over Zgv for g ≡ 2 (mod 3), v ≡ 0 (mod 3) and (g, v) ≠ (2, 3).
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Proof. For g ≡ 5 (mod 6) and v = 6, the conclusion holds by Lemma 5.1. For g ≡ 2 (mod 3), v = 3, 9 and (g, v) ≠ (2, 3),
or g ≡ 2 (mod 6) and v = 6, or g = 2, v ≡ 0 (mod 3) and v ≥ 6, the conclusion follows by taking together
the base blocks of a (gv, g, 3, 2)1-DF over Zgv from Lemma 4.4(2), and a (gv, g, 3, 6)0-DF over Zgv from Lemma 3.5. For
g ≡ 2 (mod 3), g > 2, v ≡ 0 (mod 3) and v > 9, let v = 3v′ where v′ > 3. We start with a (3gv′, 3g, 3, 8)0-DF over
Z3gv′ for v′ > 3 from Lemma 3.5 since 3g ≡ 0 (mod 3). That is a (gv, 3g, 3, 8)0-DF over Zgv for v ≡ 0 (mod 3) and v > 9.
Then we use Theorem 2.4 with a (3g, g, 3, 8)1-DF over Z3g mentioned above to produce the desired (gv, g, 3, 8)1-DF over
Zgv . �

Lemma 5.7. There exists a (gv, g, 3, 8)5-DF over Zgv for g ≡ 1 (mod 3), v ≡ 0 (mod 3) and (g, v) ≠ (1, 3), (1, 6).

Proof. For (g, v) = (1, 9), put together the base blocks of a (9, 1, 3, 5)2-DF over Z9 whose base blocks are
3{0, 1, 3}, 2{0, 1, 5}, {0, 2, 4}, and a (9, 1, 3, 3)3-DF over Z9 from Lemma 4.5, then we can draw the conclusion. For g ≡

1 (mod 3), v ≡ 0 (mod 3) and (g, v) ≠ (1, 3), (1, 6), (1, 9), the conclusion follows by taking together the base blocks of a
(gv, g, 3, 4)1-DF over Zgv from Lemma 5.2, and a (gv, g, 3, 4)4-DF over Zgv from Lemma 5.3. �

Lemma 5.8. There exists a (gv, g, 3, 8)7-DF over Zgv for g ≡ 2 (mod 3), v ≡ 0 (mod 3) and (g, v) ≠ (2, 3), (2, 6).

Proof. For g ≡ 5 (mod 6) and v = 6, a (gv, g, 3, 8)7-DF over Zgv exists from Lemma 5.1. For g ≡ 2 (mod 3), v = 3, 9 and
(g, v) ≠ (2, 3), or g ≡ 2 (mod 6), v = 6 and (g, v) ≠ (2, 6), or g = 2, v ≡ 0 (mod 3) and v ≥ 9, the conclusion follows by
taking together the base blocks of a (gv, g, 3, 2)1-DF from Lemma 4.4(2), and a (gv, g, 3, 6)6-DF over Zgv from Lemma 5.5.
For g ≡ 2 (mod 3), g > 2, v ≡ 0 (mod 3) and v > 9, let v = 3v′ where v′ > 3. Note that there is a (3gv′, 3g, 3, 8)0-DF
over Z3gv′ for v′ > 3 by Lemma 3.5 since 3g ≡ 0 (mod 3). That is a (gv, 3g, 3, 8)0-DF over Zgv for v ≡ 0 (mod 3) and v > 9.
Hence we use Theorem 2.4 with a (3g, g, 3, 8)7-DF over Z3g mentioned above to get a (gv, g, 3, 8)7-DF over Zgv . �

Lemma 5.9. There exists a (gv, g, 3, 12)3-DF over Zgv for g ≡ 1, 2 (mod 3), v ≡ 0 (mod 3) and (g, v) ≠ (1, 3), (2, 3).

Proof. For g ≡ 1 (mod 3), v ≡ 0 (mod 3) and (g, v) ≠ (1, 3), we repeat the base blocks of a (gv, g, 3, 4)1-DF over Zgv
three times from Lemma 5.2 to get the result. For g ≡ 2 (mod 3), v ≡ 0 (mod 3) and (g, v) ≠ (2, 3), taking together
the base blocks of a (gv, g, 3, 8)1-DF from Lemma 5.6 and a (gv, g, 3, 4)2-DF over Zgv from Lemma 4.4(4), we produce a
(gv, g, 3, 12)3-DF over Zgv . �

Lemma 5.10. There exists a (gv, g, 3, 12)6-DF over Zgv for g ≡ 1, 2 (mod 3), v ≡ 0 (mod 3) and (g, v) ≠ (1, 3), (1, 6).

Proof. For g ≡ 1 (mod 3), v ≡ 0 (mod 3) and (g, v) ≠ (1, 3), (1, 6), the conclusion follows by taking together the
base blocks of a (gv, g, 3, 4)1-DF from Lemma 5.2, and a (gv, g, 3, 8)5-DF over Zgv from Lemma 5.7. For g ≡ 2 (mod 3)
and v ≡ 0 (mod 3), repeating the base blocks of a (gv, g, 3, 4)2-DF over Zgv three times from Lemma 4.4(4), we obtain a
(gv, g, 3, 12)6-DF over Zgv . �

Lemma 5.11. There exists a (gv, g, 3, 12)9-DF over Zgv for g ≡ 1, 2 (mod 3), v ≡ 0 (mod 3) and (g, v) ≠ (1, 3), (2, 3),
(1, 6), (2, 6).

Proof. Wedealwith the problemby considering three cases, and each case is solved by a similarmethod. For (g, v) = (1, 9),
take together the base blocks of a (gv, g, 3, 6)3-DF over Zgv fromLemma5.4, and a (gv, g, 3, 6)6-DF over Zgv fromLemma5.5.
For g ≡ 1 (mod 3), v ≡ 0 (mod 3) and (g, v) ≠ (1, 3), (1, 6), (1, 9), take together the base blocks of a (gv, g, 3, 4)4-DF
over Zgv twice from Lemma 5.3, and a (gv, g, 3, 4)1-DF over Zgv from Lemma 5.2. For g ≡ 2 (mod 3), v ≡ 0 (mod 3) and
(g, v) ≠ (2, 3), (2, 6), take together the base blocks of a (gv, g, 3, 4)2-DF from Lemma 4.4(4), and a (gv, g, 3, 8)7-DF over
Zgv from Lemma 5.8. The conclusion then follows. �

Lemma 5.12. There exists a (gv, g, 3, 12)12-DF over Zgv for g ≡ 1, 2 (mod 3), v ≡ 0 (mod 3) and (g, v) ≠ (2, 3),
(1, 6), (2, 6).

Proof. For g ≡ 1 (mod 6), v = 6 and (g, v) ≠ (1, 6), repeat the base blocks of a (gv, g, 3, 4)4-DF over Zgv three times from
Lemma 5.3 to get the result. For g ≡ 5 (mod 6) and v = 6, the needed DF is from Lemma 5.1. For g ≡ 1, 2 (mod 3), v = 3
and (g, v) ≠ (2, 3), or g ≡ 2, 4 (mod 6), v = 6 and (g, v) ≠ (2, 6), or g = 2, v ≡ 0 (mod 3) and v ≥ 9, the conclusion
follows by repeating the base blocks of a (gv, g, 3, 6)6-DF over Zgv twice from Lemma 5.5.

For g ≡ 1, 2 (mod 3), g ≠ 2, v ≡ 0 (mod 3) and v ≥ 9, let v = 3v′ where v′
≥ 3. Since 3g ≡ 0 (mod 3), there exists a

(3gv′, 3g, 3, 12)0-DF over Z3gv′ for v′
≥ 3 by Lemma 3.5. That is a (gv, 3g, 3, 12)0-DF over Zgv for v ≡ 0 (mod 3) and v ≥ 9.

Applying Theorem 2.4 with a (3g, g, 3, 12)12-DF mentioned above gives a (gv, g, 3, 12)12-DF over Zgv . �

6. Conclusions

Theorem 6.1. A (gv, g, 3, λ)α-DF over Zgv exists if and only if
(1) λg(v − 1) − 2α ≡ 0 (mod 6), v ≠ 2;
(2) v ≢ 2, 3 (mod 4) when g ≡ 2 (mod 4) and λ ≡ 1 (mod 2);
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(3) v ≢ 2 (mod 4) when g ≡ 1 (mod 2) and λ ≡ 2 (mod 4);
(4) g ≢ 0 (mod 3) and v ≡ 0 (mod 3) when α ≠ 0;
(5) λ(3g − 1) − 2αg ≡ 0 (mod 6) when v = 3;
(6) λ = α when (g, v) = (1, 3), λ = 2α when (g, v) = (2, 3), λ = 4α when (g, v) = (1, 6), λ ≥ 2α when

(g, v) = (2, 6), λ ≡ 0 (mod 3) when (g, v) = (1, 9) and λ = α.

Proof. The necessity follows by Lemma 1.4, so we establish the sufficiency as follows.
When (g, v) = (1, 3) and λ = α, the DF is degenerate. When (g, v) = (2, 3), (1, 6), or (2, 6), repeat the base blocks of

certain DFs over Zgv as listed at the table below to obtain the required designs.

Condition DF used Repetition Source
(g, v) = (2, 3), λ = 2α (gv, g, 3, 2)1-DF α Lemma 4.4(2)
(g, v) = (1, 6), λ = 4α (gv, g, 3, 4)1-DF α Lemma 5.2

(g, v) = (2, 6), λ ≥ 2α (gv, g, 3, 2)1-DF α Lemma 4.4(2)
(gv, g, 3, 6)0-DF (λ − 2α)/6 Lemma 3.5

For (g, v) ≠ (1, 3), (2, 3), (1, 6), (2, 6), the sufficiency is obtained in the following four cases.
Case 1: α = 0: The conclusion holds by Lemma 3.5.
Case 2: α ≡ 0 (mod 3), α ≥ 3:

When λ ≡ 3 (mod 6), we have (i) g ≡ 1, 5 (mod 6) and v ≡ 3 (mod 6), (ii) g ≡ 2, 10 (mod 12) and v ≡ 0, 9 (mod 12),
(iii) g ≡ 4, 8 (mod 12), v ≡ 0 (mod 3) and v > 3.

Condition DF used Repetition Source

λ ≥ α
(gv, g, 3, 3)3-DF α/3 Lemma 4.5
(gv, g, 3, 3)0-DF (λ − α)/3 Lemma 3.5

When λ ≡ 6 (mod 12), we have (i) g ≡ 1, 5 (mod 6), v ≡ 0 (mod 3) and v ≢ 2 (mod 4), (ii) g ≡ 2, 4 (mod 6) and
v ≡ 0 (mod 3).

Condition DF used Repetition Source

α ≡ 3 (mod 6), λ ≥ α + 3
(gv, g, 3, 6)3-DF 1 Lemma 5.4
(gv, g, 3, 6)6-DF (α − 3)/6 Lemma 5.5
(gv, g, 3, 6)0-DF (λ − α − 3)/6 Lemma 3.5

α ≡ 0 (mod 6), λ ≥ α
(gv, g, 3, 6)6-DF α/6 Lemma 5.5
(gv, g, 3, 6)0-DF (λ − α)/6 Lemma 3.5

When λ ≡ 0 (mod 12), we have g ≡ 1, 2 (mod 3) and v ≡ 0 (mod 3).

Condition DF used Repetition Source

α ≡ 0 (mod 12), λ ≥ α
(gv, g, 3, 12)12-DF α/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ − α)/12 Lemma 3.5

α ≡ 3 (mod 12), λ ≥ α + 9
(gv, g, 3, 12)3-DF 1 Lemma 5.9
(gv, g, 3, 12)12-DF (α − 3)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ − α − 9)/12 Lemma 3.5

α ≡ 6 (mod 12), λ ≥ α + 6
(gv, g, 3, 12)6-DF 1 Lemma 5.10
(gv, g, 3, 12)12-DF (α − 6)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ − α − 6)/12 Lemma 3.5

α ≡ 9 (mod 12), λ ≥ α + 3
(gv, g, 3, 12)9-DF 1 Lemma 5.11
(gv, g, 3, 12)12-DF (α − 9)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ − α − 3)/12 Lemma 3.5

Case 3: α ≡ 1 (mod 3):
When λ ≡ 1 (mod 6), we have (i) g ≡ 1 (mod 6) and v ≡ 3 (mod 6), (ii) g ≡ 10 (mod 12) and v ≡ 0, 9 (mod 12),

(iii) g ≡ 4 (mod 12), v ≡ 0 (mod 3) and v > 3, (iv) (g, v) ≠ (1, 9) when λ = α.

Condition DF used Repetition Source

λ ≥ α + 3
(gv, g, 3, 4)1-DF 1 Lemma 5.2
(gv, g, 3, 3)3-DF (α − 1)/3 Lemma 4.5
(gv, g, 3, 3)0-DF (λ − α)/3 − 1 Lemma 3.5

λ = α, (g, v) ≠ (1, 9) (gv, g, 3, 1)1-DF 1 Lemma4.4(1)
(gv, g, 3, 3)3-DF (α − 1)/3 Lemma 4.5
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When λ ≡ 5 (mod 6), we have (i) g ≡ 5 (mod 6) and v ≡ 3 (mod 6), (ii) g ≡ 2 (mod 12) and v ≡ 0, 9 (mod 12),
(iii) g ≡ 8 (mod 12), v ≡ 0 (mod 3) and v > 3.

Condition DF used Repetition Source

λ ≥ α + 1
(gv, g, 3, 2)1-DF 1 Lemma 4.4(2)
(gv, g, 3, 3)3-DF (α − 1)/3 Lemma 4.5
(gv, g, 3, 3)0-DF (λ − α − 1)/3 Lemma 3.5

When λ ≡ 2 (mod 12), we have (i) g ≡ 2 (mod 6) and v ≡ 0 (mod 3), (ii) g ≡ 5 (mod 6), v ≡ 0 (mod 3) and
v ≢ 2 (mod 4).

Condition DF used Repetition Source

α ≡ 1 (mod 6), λ ≥ α + 1
(gv, g, 3, 2)1-DF 1 Lemma4.4(2)
(gv, g, 3, 6)6-DF (α − 1)/6 Lemma 5.5
(gv, g, 3, 6)0-DF (λ − α − 1)/6 Lemma 3.5

α ≡ 4 (mod 6), λ ≥ α + 4
(gv, g, 3, 2)1-DF 4 Lemma4.4(2)
(gv, g, 3, 6)6-DF (α − 4)/6 Lemma 5.5
(gv, g, 3, 6)0-DF (λ − α − 4)/6 Lemma 3.5

When λ ≡ 10 (mod 12), we have (i) g ≡ 4 (mod 6) and v ≡ 0 (mod 3), (ii) g ≡ 1 (mod 6), v ≡ 0 (mod 3) and
v ≢ 2 (mod 4), (iii) (g, v) ≠ (1, 9) when λ = α.

Condition DF used Repetition Source

α ≡ 1 (mod 6), λ ≥ α + 3
(gv, g, 3, 4)1-DF 1 Lemma 5.2
(gv, g, 3, 6)6-DF (α − 1)/6 Lemma 5.5
(gv, g, 3, 6)0-DF (λ − α − 3)/6 Lemma 3.5

α ≡ 4 (mod 6), λ ≥ α + 6

(gv, g, 3, 4)1-DF 1 Lemma 5.2
(gv, g, 3, 6)3-DF 1 Lemma 5.4
(gv, g, 3, 6)6-DF (α − 4)/6 Lemma 5.5
(gv, g, 3, 6)0-DF (λ − α)/6 − 1 Lemma 3.5

λ = α, (g, v) ≠ (1, 9) (gv, g, 3, 2)2-DF 2 Lemma4.4(3)
(gv, g, 3, 6)6-DF (α − 4)/6 Lemma 5.5

When λ ≡ 4 (mod 12), we have (i) g ≡ 1 (mod 3) and v ≡ 0 (mod 3), (ii) (g, v) ≠ (1, 9) when λ = α.

Condition DF used Repetition Source

α ≡ 1 (mod 12), λ ≥ α + 3
(gv, g, 3, 4)1-DF 1 Lemma 5.2
(gv, g, 3, 12)12-DF (α − 1)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ−α−3)/12 Lemma 3.5

α ≡ 4 (mod 12), λ ≥ α + 12

(gv, g, 3, 4)1-DF 1 Lemma 5.2
(gv, g, 3, 12)3-DF 1 Lemma 5.9
(gv, g, 3, 12)12-DF (α − 4)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ−α)/12−1 Lemma 3.5

λ = α, (g, v) ≠ (1, 9) (gv, g, 3, 4)4-DF 1 Lemma 5.3
(gv, g, 3, 12)12-DF (α − 4)/12 Lemma 5.12

α ≡ 7 (mod 12), λ ≥ α + 9

(gv, g, 3, 4)1-DF 1 Lemma 5.2
(gv, g, 3, 12)6-DF 1 Lemma 5.10
(gv, g, 3, 12)12-DF (α − 7)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ−α−9)/12 Lemma 3.5

α ≡ 10 (mod 12), λ ≥ α + 6

(gv, g, 3, 4)1-DF 1 Lemma 5.2
(gv, g, 3, 12)9-DF 1 Lemma 5.11
(gv, g, 3, 12)12-DF (α − 10)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ−α−6)/12 Lemma 3.5
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When λ ≡ 8 (mod 12), we have g ≡ 2 (mod 3) and v ≡ 0 (mod 3).

Condition DF used Repetition Source

α ≡ 1 (mod 12), λ ≥ α + 7
(gv, g, 3, 8)1-DF 1 Lemma 5.6
(gv, g, 3, 12)12-DF (α − 1)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ − α − 7)/12 Lemma 3.5

α ≡ 4 (mod 12), λ ≥ α + 4
(gv, g, 3, 4)2-DF 2 Lemma4.4(4)
(gv, g, 3, 12)12-DF (α − 4)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ − α − 4)/12 Lemma 3.5

α ≡ 7 (mod 12), λ ≥ α + 1
(gv, g, 3, 8)7-DF 1 Lemma 5.8
(gv, g, 3, 12)12-DF (α − 7)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ − α − 1)/12 Lemma 3.5

α ≡ 10 (mod 12), λ ≥ α+10

(gv, g, 3, 8)1-DF 1 Lemma 5.6
(gv, g, 3, 12)9-DF 1 Lemma 5.11
(gv, g, 3, 12)12-DF (α − 10)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ − α − 10)/12 Lemma 3.5

Case 4: α ≡ 2 (mod 3):
When λ ≡ 1 (mod 6), we have (i) g ≡ 5 (mod 6) and v ≡ 3 (mod 6), (ii) g ≡ 2 (mod 12) and v ≡ 0, 9 (mod 12), (iii)

g ≡ 8 (mod 12), v ≡ 0 (mod 3) and v > 3.

Condition DF used Repetition Source

λ ≥ α + 2
(gv, g, 3, 4)2-DF 1 Lemma4.4(4)
(gv, g, 3, 3)3-DF (α − 2)/3 Lemma 4.5
(gv, g, 3, 3)0-DF (λ − α − 2)/3 Lemma 3.5

When λ ≡ 5 (mod 6), we have (i) g ≡ 1 (mod 6) and v ≡ 3 (mod 6), (ii) g ≡ 10 (mod 12) and v ≡ 0, 9 (mod 12), (iii)
g ≡ 4 (mod 12), v ≡ 0 (mod 3) and v > 3, (iv) (g, v) ≠ (1, 9) when λ = α.

Condition DF used Repetition Source

λ ≥ α, (g, v) ≠ (1, 9)
(gv, g, 3, 1)1-DF 2 Lemma4.4(1)
(gv, g, 3, 3)3-DF (α − 2)/3 Lemma 4.5
(gv, g, 3, 3)0-DF (λ − α)/3 Lemma 3.5

λ ≥ α + 3, (g, v) = (1, 9)
(gv, g, 3, 5)2-DF 1 Lemma 5.7
(gv, g, 3, 3)3-DF (α − 2)/3 Lemma 4.5
(gv, g, 3, 3)0-DF (λ − α)/3 − 1 Lemma 3.5

When λ ≡ 2 (mod 12), we have (i) g ≡ 4 (mod 6) and v ≡ 0 (mod 3), (ii) g ≡ 1 (mod 6), v ≡ 0 (mod 3) and
v ≢ 2 (mod 4), (iii) (g, v) ≠ (1, 9) when λ = α.

Condition DF used Repetition Source

α ≡ 5 (mod 6), λ ≥ α + 3
(gv, g, 3, 8)5-DF 1 Lemma 5.7
(gv, g, 3, 6)6-DF (α − 5)/6 Lemma 5.5
(gv, g, 3, 6)0-DF (λ−α − 3)/6 Lemma 3.5

α ≡ 2 (mod 6), λ ≥ α + 6
(gv, g, 3, 4)1-DF 2 Lemma 5.2
(gv, g, 3, 6)6-DF (α − 2)/6 Lemma 5.5
(gv, g, 3, 6)0-DF (λ−α)/6− 1 Lemma 3.5

λ = α, (g, v) ≠ (1, 9) (gv, g, 3, 2)2-DF 1 Lemma4.4(3)
(gv, g, 3, 6)6-DF (α − 2)/6 Lemma 5.5

When λ ≡ 10 (mod 12), we have (i) g ≡ 2 (mod 6) and v ≡ 0 (mod 3), (ii) g ≡ 5 (mod 6), v ≡ 0 (mod 3) and
v ≢ 2 (mod 4).

Condition DF used Repetition Source

α ≡ 2 (mod 6), λ ≥ α + 2
(gv, g, 3, 2)1-DF 2 Lemma4.4(2)
(gv, g, 3, 6)6-DF (α − 2)/6 Lemma 5.5
(gv, g, 3, 6)0-DF (λ−α − 2)/6 Lemma 3.5

α ≡ 5 (mod 6), λ ≥ α + 5
(gv, g, 3, 2)1-DF 5 Lemma4.4(2)
(gv, g, 3, 6)6-DF (α − 5)/6 Lemma 5.5
(gv, g, 3, 6)0-DF (λ−α − 5)/6 Lemma 3.5
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When λ ≡ 4 (mod 12), we have g ≡ 2 (mod 3) and v ≡ 0 (mod 3).

Condition DF used Repetition Source

α ≡ 2 (mod 12), λ ≥ α + 2
(gv, g, 3, 4)2-DF 1 Lemma4.4(4)
(gv, g, 3, 12)12-DF (α − 2)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ − α − 2)/12 Lemma 3.5

α ≡ 5 (mod 12), λ ≥ α + 11

(gv, g, 3, 4)2-DF 1 Lemma4.4(4)
(gv, g, 3, 12)3-DF 1 Lemma 5.9
(gv, g, 3, 12)12-DF (α − 5)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ−α−11)/12 Lemma 3.5

α ≡ 8 (mod 12), λ ≥ α + 8
(gv, g, 3, 4)2-DF 4 Lemma4.4(4)
(gv, g, 3, 12)12-DF (α − 8)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ − α − 8)/12 Lemma 3.5

α ≡ 11 (mod 12), λ ≥ α + 5

(gv, g, 3, 4)2-DF 1 Lemma4.4(4)
(gv, g, 3, 12)9-DF 1 Lemma 5.11
(gv, g, 3, 12)12-DF (α − 11)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ − α − 5)/12 Lemma 3.5

When λ ≡ 8 (mod 12), we have (i) g ≡ 1 (mod 3) and v ≡ 0 (mod 3), (ii) (g, v) ≠ (1, 9) when λ = α.

Condition DF used Repetition Source

α ≡ 2 (mod 12), λ ≥ α + 6
(gv, g, 3, 4)1-DF 2 Lemma 5.2
(gv, g, 3, 12)12-DF (α − 2)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ−α−6)/12 Lemma 3.5

α ≡ 5 (mod 12), λ ≥ α + 3
(gv, g, 3, 8)5-DF 1 Lemma 5.7
(gv, g, 3, 12)12-DF (α − 5)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ−α−3)/12 Lemma 3.5

α ≡ 8 (mod 12), λ ≥ α + 12

(gv, g, 3, 4)1-DF 2 Lemma 5.2
(gv, g, 3, 12)6-DF 1 Lemma 5.10
(gv, g, 3, 12)12-DF (α − 8)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ−α)/12−1 Lemma 3.5

λ = α, (g, v) ≠ (1, 9) (gv, g, 3, 4)4-DF 2 Lemma 5.3
(gv, g, 3, 12)12-DF (α − 8)/12 Lemma 5.12

α ≡ 11 (mod 12), λ ≥ α + 9

(gv, g, 3, 4)1-DF 2 Lemma 5.2
(gv, g, 3, 12)9-DF 1 Lemma 5.11
(gv, g, 3, 12)12-DF (α − 11)/12 Lemma 5.12
(gv, g, 3, 12)0-DF (λ−α−9)/12 Lemma 3.5

This completes the proof of Theorem 6.1. �

Now we are in the position to establish the following main result.

Theorem 6.2. A cyclic (3, λ)-GDD of type gv having α short orbits exists if and only if
(1) λg(v − 1) − 2α ≡ 0 (mod 6), α ≤ λ, v ≥ 3;
(2) v ≢ 2, 3 (mod 4) when g ≡ 2 (mod 4) and λ ≡ 1 (mod 2);
(3) v ≢ 2 (mod 4) when g ≡ 1 (mod 2) and λ ≡ 2 (mod 4);
(4) g ≢ 0 (mod 3) and v ≡ 0 (mod 3) when α ≠ 0;
(5) λ(3g − 1) − 2αg ≡ 0 (mod 6) when v = 3;
(6) λ = α when (g, v) = (1, 3), λ = 2α when (g, v) = (2, 3), λ = 4α when (g, v) = (1, 6), λ ≥ 2α when

(g, v) = (2, 6), λ ≡ 0 (mod 3) when (g, v) = (1, 9) and λ = α.

Proof. Suppose that there exists a cyclic (3, λ)-GDD of type gv , in which a is the number of full orbits. A simple counting
shows that 6a+2α = λg(v−1), that is λg(v−1)−2α ≡ 0 (mod 6). Condition (1) of Theorem 6.2 then follows. Conditions
(2) and (3) are obtained with similar arguments as Lemma 1.3. It is easy to see that g ≢ 0 (mod 3) and v ≡ 0 (mod 3)when
α ≠ 0. So Condition (4) follows. With a similar proof to that of Lemma 1.2, we can get λ(3g − 1) − 2αg ≡ 0 (mod 6) when
v = 3, but here we consider the differences covered by a full orbits. Therefore, Condition (5) follows. Condition (6) follows
with similar arguments as Lemma 1.1.

Now we are going to prove the sufficiency. Note that a (gv, g, 3, λ)α-DF over Zgv generates a cyclic (3, λ)-GDD of type
gv having α short orbits. By Theorem 6.1 the conclusion then holds. �

It should be pointed out that a cyclic (3, 1)-GDD of type 32n+1 and of type 23n+1 are equivalent, respectively, to the well-
known cyclic and 1-rotational (6n + 3, 3, 1)-BIBD (see [11,9]). Their existence is contained in Theorem 6.2 as special cases.
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