Existence of cyclic $(3, \lambda)$-GDD of type g^{v} having prescribed number of short orbits

Xiaomiao Wang ${ }^{\text {a }}$, Yanxun Chang ${ }^{\text {a }}$, Ruizhong Wei ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China
${ }^{\text {b }}$ Department of Computer Science, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada

A R TICLE INFO

Article history:

Received 5 July 2009
Received in revised form 29 November 2010
Accepted 5 January 2011
Available online 4 February 2011

Keywords:

Difference family
Cyclic GDD
Short orbit
Incomplete difference matrix

Abstract

In this paper, the necessary and sufficient conditions for the existence of a cyclic $(3, \lambda)$ GDD of type g^{v} with exactly α short block orbits are determined for all possible parameters λ, g, v and α.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A (k, λ)-GDD of type g^{v} is an ordered triple $(X, \mathcal{G}, \mathcal{B})$, where X is a set of $\operatorname{size} g v, \mathcal{G}$ a partition of X into groups of size g, and \mathscr{B} a set of k-subsets of X (called blocks), such that each pair of elements from different groups appears in λ blocks and no block contains two elements from a common group. A GDD is cyclic if it admits a cyclic automorphism group G acting sharply transitively on X.

For a cyclic (k, λ)-GDD of type g^{v}, we may assume that $X=Z_{g v}$. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ be a block of a cyclic (k, λ)-GDD of type g^{v}. The block orbit generated by B is defined as the set of distinct blocks $B+i=\left\{b_{1}+i, b_{2}+i, \ldots, b_{k}+i\right\}(\bmod g v)$ for $i \in Z_{g v}$. If a block orbit has $g v$ blocks, then the block orbit is said to be full, otherwise short. In [13], the necessary and sufficient conditions have been determined for the existence of a cyclic ($3, \lambda$)-GDD of type g^{v}. In the present paper, we further investigate the existence spectrum of a cyclic $(3, \lambda)$-GDD of type g^{v} with exactly α short orbits, where α can be any possible value.

A cyclic $(3, \lambda)$-GDD is equivalent to a special difference family which we define below. Throughout this paper, $[a, b]$ denotes the set of integers n such that $a \leq n \leq b$, and $[a, b]_{o}$ denotes the set of odd integers in $[a, b]$. For a set $S, \lambda S$ denotes the multiset containing each element of S exactly λ times. A difference family of an abelian group G is a collection $\left\{B_{1}, B_{2}, \ldots, B_{t}\right\}$ of k-subsets (called base blocks) of G satisfying certain properties. For any base block B of a difference family over an abelian group G, the subgroup

$$
\{z \in G: B+z=B\}
$$

is called the stabilizer of B in G. A base block B is called full if its stabilizer is trivial, otherwise it is called short. The stabilizer of B is denoted as S_{B}.

[^0]Let H be a subgroup of order h of an abelian group G of order u. A collection $\left\{B_{1}, B_{2}, \ldots, B_{t}\right\}$ of k-subsets (called base blocks) of G forms a (u, h, k, λ) difference family over G and relative to H with α short base blocks if $\bigcup_{i=1}^{t} \partial B_{i}$ covers each element of $G-H$ exactly λ times but no element in H, and there are exactly α short base blocks, where $\partial B=\frac{1}{\left|S_{B}\right|}\{a-b: a, b \in B, a \neq b\}$. We denote such a design as $(u, h, k, \lambda)_{\alpha}$-DF. When the value of short base blocks is not specified, the design is denoted as (u, h, k, λ)-DF. Observe that if k is a prime and G is cyclic, then we could have short base blocks only when k is a divisor of u but not of h. For simplicity, our definition is just a special case of difference families. For general information of difference families, the readers refer to [1]. Note that the base blocks of a ($u,\left\{h, k_{\alpha}\right\}, k, \lambda$)-DF defined in [13] together with exactly α short base blocks $\{0, g v / 3,2 g v / 3\}$ form a $(u, h, k, \lambda)_{\alpha}$-DF, and $(u, h, k, 1)_{1}$-DF is denoted as $(u,\{h, k\}, k, 1)$-DF in [2].

It is not difficult to see that the existence of a $(g v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g v}$ is equivalent to the existence of a cyclic $(3, \lambda)$ GDD of type g^{v} with α short block orbits. For a cyclic (3, λ)-GDD of type g^{v}, the possible short orbit must be generated by $\{0, g v / 3,2 g v / 3\}$. Therefore in what follows, we only display the full base blocks for a $(g v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g v}$.

In [7], it is proved by Jiang that there exists a $(g v, g, 3,1)_{0}$-DF over $Z_{g v}$ when $g \equiv 0(\bmod 12)$ and $v>4$, or $g \equiv 6(\bmod 12), v \equiv 0,1(\bmod 4)$ and $v>4$.

In this paper, we should pay special attention to check those DFs constructed in [12,13] to see whether they are suitable for our purpose. The technique will be implemented all through this paper. Now we need to obtain the necessary conditions for the existence of a $(g v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g v}$.

Lemma 1.1. If there exists $a(g v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g v}$, then $v \neq 2, \lambda=\alpha$ when $(g, v)=(1,3), \lambda=2 \alpha$ when $(g, v)=(2,3), \lambda=4 \alpha$ when $(g, v)=(1,6), \lambda \geq 2 \alpha$ when $(g, v)=(2,6), \lambda \equiv 0(\bmod 3)$ when $(g, v)=(1,9)$ and $\lambda=\alpha$.

Proof. Suppose that there exists a $(g v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g v}$ for $(g, v)=(1,6)$, then all of the differences in the multiset $\lambda\{1\} \cup(\lambda-\alpha)\{2\} \cup \lambda / 2\{3\}$ can be partitioned into triples $\left\{a_{i}, b_{i}, c_{i}\right\}$, such that $a_{i}+b_{i}=c_{i}$ or $a_{i}+b_{i}+c_{i} \equiv 0(\bmod g v)$ except $\{g v / 3, g v / 3, g v / 3\}=\{2,2,2\}$. Clearly, the possible triples are the forms of $\{1,2,3\}$ and $\{1,1,2\}$. From $\lambda-\lambda / 2=$ $2(\lambda-\alpha-\lambda / 2)$, we have $\lambda=4 \alpha$.

Similar to the case $\lambda=4 \alpha$ when $(g, v)=(1,6)$, we can get the assertion for the other cases.
By a similar argument as Theorem 3.1 in [10], we can show the following result.
Lemma 1.2. If $a(3 g, g, 3, \lambda)_{\alpha}$-DF over $Z_{3 g}$ exists, then $\lambda(3 g-1)-2 \alpha g \equiv 0(\bmod 6)$.
Proof. When $\alpha=0$ or $g \equiv 1(\bmod 3)$, suppose that there exists a $(3 g, g, 3, \lambda)_{\alpha}$-DF over $Z_{3 g}$. The full base blocks are $\left\{0,3 a_{i}+1,3 b_{i}+2\right\}$, where $a_{i}, b_{i} \in[0, g-1]$ for $1 \leq i \leq(\lambda g-\alpha) / 3$. Each base block covers the differences $\left\{ \pm(3 x+1): x=a_{i}, b_{i}-a_{i}, g-b_{i}-1\right\}$. All of the $(\lambda g-\alpha) / 3$ base blocks together cover the difference $\pm(3 x+1)$ for each $x \in \lambda\{0,1, \ldots, g-1\} \backslash \alpha\{(g-1) / 3\}$. Note that $a_{i}+\left(b_{i}-a_{i}\right)+\left(g-b_{i}-1\right) \equiv-1(\bmod g)$. So we get $-(\lambda g-\alpha) / 3 \equiv$ $\lambda\left(\sum_{x=0}^{g-1} x\right)-\alpha(g-1) / 3(\bmod g)$. Then we have $\lambda(3 g-1)-2 \alpha \equiv 0(\bmod 6)$, i.e., $\lambda(3 g-1)-2 \alpha g \equiv 0(\bmod 6)$.

When $g \equiv 2(\bmod 3)$, similarly we get $-(\lambda g-\alpha) / 3 \equiv \lambda\left(\sum_{x=0}^{g-1} x\right)-\alpha(2 g-1) / 3(\bmod g)$. So we conclude that $\lambda(3 g-1)-4 \alpha \equiv 0(\bmod 6)$, that is $\lambda(3 g-1)-2 \alpha g \equiv 0(\bmod 6)$.

The proof of Lemma 1.3 is similar to that of Lemma 2 in [5].
Lemma 1.3. If there exists $a(g v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g v}$, then $v \not \equiv 2,3(\bmod 4)$ when $g \equiv 2(\bmod 4)$ and $\lambda \equiv 1(\bmod 2) ; v \not \equiv$ $2(\bmod 4)$ when $g \equiv 1(\bmod 2)$ and $\lambda \equiv 2(\bmod 4)$.

For $\alpha \in[0, \lambda]$, an obvious necessary condition for the existence of a $(g v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g v}$ is $\lambda g(v-1)-2 \alpha \equiv$ $0(\bmod 6)$, and $3 \mid v$ but $3 \nmid g$ when $\alpha \neq 0$. Combining Lemmas 1.1-1.3, we get the following necessary conditions for the existence of a $(g v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g v}$ for $\alpha \leq \lambda$.

Lemma 1.4. If there exists $a(g v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g v}$, then
(1) $\lambda g(v-1)-2 \alpha \equiv 0(\bmod 6), v \neq 2$;
(2) $v \not \equiv 2,3(\bmod 4)$ when $g \equiv 2(\bmod 4)$ and $\lambda \equiv 1(\bmod 2)$;
(3) $v \not \equiv 2(\bmod 4)$ when $g \equiv 1(\bmod 2)$ and $\lambda \equiv 2(\bmod 4)$;
(4) $g \not \equiv 0(\bmod 3)$ and $v \equiv 0(\bmod 3)$ when $\alpha \neq 0$;
(5) $\lambda(3 g-1)-2 \alpha g \equiv 0(\bmod 6)$ when $v=3$;
(6) $\lambda=\alpha$ when $(g, v)=(1,3), \lambda=2 \alpha$ when $(g, v)=(2,3), \lambda=4 \alpha$ when $(g, v)=(1,6), \lambda \geq 2 \alpha$ when $(g, v)=(2,6), \lambda \equiv 0(\bmod 3)$ when $(g, v)=(1,9)$ and $\lambda=\alpha$.

The rest of this paper are organized as follows. In Section 2, we introduce some useful recursive constructions. In Section 3, we investigate the existence of a $(g v, g, 3, \lambda)_{0}$-DF over $Z_{g v}$. In Section 4, we establish the necessary and sufficient conditions for the existence of a $(g v, g, 3,3)_{3}$-DF over $Z_{g v}$. In Section 5, we construct a $(g v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g v}$ for some α and λ which will be used in the next section. Finally in Section 6, we complete the existence spectrum of a cyclic ($3, \lambda$)-GDD of type g^{v} having α short orbits.

2. Recursive constructions

In this section, we describe some useful recursive constructions that will be required in Sections 3-5. We first introduce the following definition of perfect difference family from [3].

Let g be a divisor of v such that $v=g v_{0}$. Suppose that $\mathscr{F}=\left\{B_{i}: i=1,2, \ldots, t\right\}$ is the family of base blocks of a (hv,hg, $k, \lambda)_{0}$-DF over $Z_{h v}$ where $B_{i}=\left\{0, b_{1 i}, b_{2 i}, \ldots, b_{k-1, i}\right\}$ for $i=1,2, \ldots, t$. Define ele $(\mathscr{F})=$ $\cup_{i=1}^{t}\left\{b_{1 i}, b_{2 i}, \ldots, b_{k-1, i}\right\}$. The ($\left.h v, h g, k, \lambda\right)_{0}$-DF over $Z_{h v}$ is said to be h-perfect, denoted by $\left(h v, h g, k, \lambda\right.$)-h-PDF over $Z_{h v}$, if $\operatorname{ele}(\mathscr{F}) \subseteq\left\{a+b v: 0 \leq a \leq\left\lfloor\frac{v}{2}\right\rfloor, a \neq 0, v_{0}, 2 v_{0}, \ldots,(g-1) v_{0}, b=0,1, \ldots, h-1\right\}$. When $h=1$, write $(h v, h g, k, \lambda)-$ 1-PDF over $Z_{h v}$ briefly as (v, g, k, λ)-PDF over Z_{v}.

Let (G, \cdot) be a finite group of order v and H a subgroup of order h in G. An H-regular $(v, k ; \lambda)$-incomplete difference matrix over G is a $k \times(v-h) \lambda$ matrix $D=\left(d_{i j}\right), 0 \leq i \leq k-1,1 \leq j \leq \lambda(v-h)$, with entries from G, such that for any $0 \leq i<j \leq k-1$, the multiset $\left\{d_{i l} \cdot d_{j l}^{-1}: 1 \leq l \leq \lambda(v-h)\right\}$ contains every element of $G \backslash H$ exactly λ times. When G is an abelian group, typically additive notation is used, so that the differences $d_{i l}-d_{j l}$ are employed. In what follows, we assume that $G=Z_{v}$, and H is a subgroup of order h in Z_{v}. Then $H=\{i v / h: 0 \leq i \leq h-1\}$. We usually denote an H-regular ($v, k ; \lambda$)-incomplete difference matrix over Z_{v} by h-regular $\operatorname{ICDM}(k, \lambda ; v)$ if $|H|=h$. When $H=\emptyset$ or $h=0$, an H-regular $(v, k ; \lambda)$-incomplete difference matrix over Z_{v} is termed as $\operatorname{CDM}(k, \lambda ; v)$. When $\lambda=1$, write h-regular $\operatorname{ICDM}(k, 1 ; v)$ (or $\operatorname{CDM}(k, 1 ; v))$ briefly as h-regular $\operatorname{ICDM}(k ; v)$ (or $\operatorname{CDM}(k ; v)$, respectively). The following simple result can be found in [6] (also see [8]). For more general results on difference matrices the readers refer to [4].

Lemma 2.1 ([6]). Let v and k be positive integers such that $\operatorname{gcd}(v,(k-1)!)=1$. Let $d_{i j} \equiv i j(\bmod v)$ for $i=0,1, \ldots, k-1$ and $j=0,1, \ldots, v-1$. Then $D=\left(d_{i j}\right)$ is $a \operatorname{CDM}(k ; v)$. In particular, if v is an odd prime number, then there exists $a \operatorname{CDM}(k ; v)$ for integer $k, 2 \leq k \leq v$.

Since there exists a 2-regular $\operatorname{ICDM}\left(4 ; 2^{n}\right)$ for $n \geq 3$ from Lemma 3.6 in [3], the following fact is evidently true.
Lemma 2.2. There exists a 2-regular $\operatorname{ICDM}\left(3 ; 2^{n}\right)$ for any integer $n \geq 3$.
Theorem 2.3 ([3, Theorem 2.5]). If there are $a(v, g, k, \lambda)$-PDF over $Z_{v}, a(h v, h g, k, \lambda)$-h-PDF over $Z_{h v}$ and an h-regular $\operatorname{ICDM}(k ; m)$, then there is an $(m v, m g, k, \lambda)$-m-PDF over $Z_{m v}$.

Theorems 2.4 and 2.5 can be derived with similar technique as Construction 4.1 in [15]. Here we only exhibit the results and omit their proofs.

Theorem 2.4. If there are $a(g h v, g h, 3, \lambda)_{0}$-DF over $Z_{g h v}$ and $a(g h, g, 3, \lambda)_{\alpha}$-DF over $Z_{g h}$, then there is $a(g h v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g h v}$.

Theorem 2.5. If there are $a(g h v, g h, 3, \lambda)_{\alpha}-\mathrm{DF}$ over $Z_{g h v}$ and $a(g h, g, 3, \lambda)_{0}-\mathrm{DF}$ over $Z_{g h}$, then there is $a(g h v, g, 3, \lambda)_{\alpha}-\mathrm{DF}$ over $Z_{\text {ghv }}$.

The following construction serves to combine known DFs into a new one. The proof is similar to that of Construction 4.2 in [15].

Theorem 2.6. If there are $a(g v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g v}, a(3 m, m, 3, \alpha)_{\alpha}$-DF over $Z_{3 m}$ and $a \operatorname{CDM}(3 ; m)$, then there is an ($m g v, m g, 3, \lambda)_{\alpha}$-DF over $Z_{m g v}$.
Proof. Suppose that \mathscr{F}, \mathscr{E} be the families of full base blocks of the given $(g v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g v}$ and $(3 m, m, 3, \alpha)_{\alpha}$-DF over $Z_{3 m}$, respectively. Let $D=\left(d_{i j}\right)$ be a $\operatorname{CDM}(3 ; m)$ where $d_{i j} \in Z_{m}$ for $0 \leq i \leq 2$ and $0 \leq j \leq m-1$. For each base block $A=\left\{0, a_{1}, a_{2}\right\} \in \mathscr{F}$ we take m base blocks $A_{j}=\left\{0, a_{1}+g v d_{1 j}, a_{2}+g v d_{2 j}\right\}$ for $j=0,1, \ldots, m-1$, where the additive operation is performed in $Z_{m g v}$. For each $B=\left\{0, b_{1}, b_{2}\right\} \in \mathscr{E}$ we take one base block $u B=\left\{0, u b_{1}, u b_{2}\right\}$ (mod $m g v$) where $u=g v / 3$. It can be checked that the family $\left\{A_{j}: A \in \mathscr{F}, j=0,1, \ldots, m-1\right\} \cup\{u B: B \in \mathscr{E}\}$ forms the full base blocks of the desired $(m g v, m g, 3, \lambda)_{\alpha}$-DF over $Z_{m g v}$.

The following result is a corollary of Theorem 2.6 with $\alpha=0$.
Theorem 2.7. Suppose that both $a(v, g, 3, \lambda)_{0}$-DF over Z_{v} and $a \operatorname{CDM}(3 ; m)$ exist. Then there exists an $(m v, m g, 3, \lambda)_{0}$-DF over $Z_{m v}$.

3. $(g v, g, 3, \lambda)_{0}$-DFs

In [12], it is shown that the necessary and sufficient conditions for the existence of a $(g v, g, 3, \lambda)$-DF over $Z_{g v}$ are (1) $\lambda g(v-1) \equiv 0(\bmod 6), v \neq 2 ;(2) \lambda \equiv 0(\bmod 6)$, or $\lambda \equiv 3(\bmod 6)$ and $g \equiv 1(\bmod 2)$ when $v=3 ;(3) v \not \equiv 2,3(\bmod 4)$ when $g \equiv 2(\bmod 4)$ and $\lambda \equiv 1(\bmod 2) ;(4) v \not \equiv 2(\bmod 4)$ when $g \equiv 1(\bmod 2)$ and $\lambda \equiv 2(\bmod 4)$. Note that $\{0, g v / 3,2 g v / 3\}$ may be contained in the base blocks of a $(g v, g, 3, \lambda)$-DF over $Z_{g v}$ only if $g \not \equiv 0(\bmod 3), v \equiv 0(\bmod 3)$ and $\lambda \equiv 0(\bmod 3)$. Therefore, in order to present the sufficiency for a $(g v, g, 3, \lambda)_{0}$-DF over $Z_{g v}$, we only need to consider the conditions of $g \not \equiv 0(\bmod 3), v \equiv 0(\bmod 3)$ and $\lambda \equiv 0(\bmod 3)$ within Lemma 1.4.

The $(g v, g, 3,3)$-DFs in $Z_{g v}$ from Lemmas 4.2, 4.4 and 4.5 of [12] contain no base block $\{0, g v / 3,2 g v / 3\}$ and hence we have the following result.

Lemma 3.1 ([12]).

(1) There exists $a(2 v, 2,3,3)_{0}$-DF over $Z_{2 v}$ for $v \equiv 0,9(\bmod 12)$;
(2) There exists a $8 v, 8,3,3)-2$-PDF over $Z_{8 v}$ for $v \equiv 0(\bmod 3)$ and $v>3$;
(3) There exists a $(16 v, 16,3,3)_{0}$-DF over $Z_{16 v}$ for $v \equiv 0(\bmod 3)$ and $v>3$.

The following Lemmas 3.2 and 3.3 are proved in [14].
Lemma 3.2. (1) For $g \equiv 1,5(\bmod 6)$ and $g>1$, there exists a $(3 g, g, 3,3)_{0}$-DF over $Z_{3 g}$.
(2) For $v \equiv 3(\bmod 6)$ and $v>3$, there exists $a(v, 1,3,3)_{0}$-DF over Z_{v}.
(3) For $v \equiv 0(\bmod 12)$, there exists $a(v, 1,3,6)_{0}$-DF over Z_{v}.
(4) For $v \equiv 6(\bmod 12)$ and $v>6$, there exists $a(v, 1,3,12)_{0}$-DF over Z_{v}.
(5) For $g \equiv 2,4(\bmod 6)$ and $g>2$, there exists a $(3 g, g, 3,6)_{0}$-DF over $Z_{3 g}$.
(6) For $g \equiv 1,5(\bmod 6)$ and $g>1$, there exists a $(6 g, g, 3,12)_{0}$-DF over $Z_{6 g}$.

Lemma 3.3. There exists $a(4 v, 4,3,3)-\mathrm{PDF}$ over $Z_{4 v}$ which is also $a(2 v, 2,3,6)_{0}$-DF over $Z_{2 v}$ for $v \equiv 0(\bmod 3)$ and $v>3$.
Lemma 3.4. $A(g v, g, 3,3)_{0}$-DF over $Z_{g v}$ exists for
(1) $v \equiv 3(\bmod 6)$ when $g \equiv 1,5(\bmod 6),(g, v) \neq(1,3)$;
(2) $v \equiv 0,9(\bmod 12)$ when $g \equiv 2,10(\bmod 12)$;
(3) $v \equiv 0(\bmod 3)$ and $v>3$ when $g \equiv 4,8(\bmod 12)$.

Proof. (1) When $v=3$, a $(3 g, g, 3,3)_{0}$-DF over $Z_{3 g}$ exists by Lemma 3.2 for $g \equiv 1,5(\bmod 6)$ and $g>1$. When $v \equiv 3(\bmod 6)$ and $v>3$, since a $(v, 1,3,3)_{0}$-DF over Z_{v} exists from Lemma 3.2, applying Theorem 2.7 with a CDM $(3 ; g)$ from Lemma 2.1, we can get a $(g v, g, 3,3)_{0}$-DF over $Z_{g v}$.
(2) By Lemma 3.1(1), we know that a $(2 v, 2,3,3)_{0}$-DF over $Z_{2 v}$ exists for $v \equiv 0,9(\bmod 12)$, hence we apply Theorem 2.7 with a $\operatorname{CDM}(3 ; g / 2)$ from Lemma 2.1 to obtain a $(g v, g, 3,3)_{0}$-DF over $Z_{g v}$.
(3) First we prove that a $\left(2^{n} v, 2^{n}, 3,3\right)_{0}$-DF over $Z_{2^{n} v}$ exists for $v \equiv 0(\bmod 3), v>3$ and $n \geq 2$. For $n=2$, 3, 4, the conclusion follows by Lemmas 3.3 and 3.1 (2) and (3). For $n \geq 5$, since a ($4 v, 4,3,3$)-PDF over $Z_{4 v}$ and a ($8 v, 8,3,3$)-2-PDF over $Z_{8 v}$ exist by Lemmas 3.3 and $3.1(2)$, applying Theorem 2.3 with a 2 -regular ICDM($3 ; 2^{n-2}$) from Lemma 2.2 gives a $\left(2^{n} v, 2^{n}, 3,3\right)-2^{n-2}$-PDF over $Z_{2^{n} v}$. That is a $\left(2^{n} v, 2^{n}, 3,3\right)_{0}$-DF over $Z_{2^{n} v}$.

When $g \equiv 4,8(\bmod 12), g$ can be written as $g=2^{n} g^{\prime}$ where $n \geq 2$ and g^{\prime} is odd. Start with a $\left(2^{n} v, 2^{n}, 3,3\right)_{0}$-DF over $Z_{2^{n} v}$ and apply Theorem 2.7 with a $\operatorname{CDM}\left(3 ; g^{\prime}\right)$ from Lemma 2.1 to get a $\left(2^{n} g^{\prime} v, 2^{n} g^{\prime}, 3,3\right){ }_{0}$-DF over $Z_{2^{n} g^{\prime} v}$ for $n \geq 2$, odd integer g^{\prime} and $v>3$, which conclude to a $(g v, g, 3,3)_{0}$-DF over $Z_{g v}$.

Now we give the necessary and sufficient conditions for the existence of a $(g v, g, 3, \lambda)_{0}$-DF over $Z_{g v}$.
Lemma 3.5. $A(g v, g, 3, \lambda)_{0}$-DF over $Z_{g v}$ exists if and only if
(1) $\lambda g(v-1) \equiv 0(\bmod 6), v \neq 2$;
(2) $v \not \equiv 2,3(\bmod 4)$ when $g \equiv 2(\bmod 4)$ and $\lambda \equiv 1(\bmod 2)$;
(3) $v \not \equiv 2(\bmod 4)$ when $g \equiv 1(\bmod 2)$ and $\lambda \equiv 2(\bmod 4)$;
(4) $\lambda(3 g-1) \equiv 0(\bmod 6)$ when $v=3$;
(5) $(g, v) \neq(1,3),(2,3),(1,6)$.

Proof. The necessity follows from Lemma 1.4. For the sufficiency, we only need to prove the existence of a $(g v, g, 3, \lambda)_{0}$-DF over $Z_{g v}$ when $g \not \equiv 0(\bmod 3), v \equiv 0(\bmod 3)$ and $\lambda \equiv 0(\bmod 3)$ in the following three cases.

Case $1: g \equiv 1,5(\bmod 6)$. When $\lambda \equiv 0(\bmod 3), v \equiv 3(\bmod 6)$ and $(g, v) \neq(1,3)$, repeat the base blocks of a $(g v, g, 3,3)_{0}$-DF over $Z_{g v} \lambda / 3$ times from Lemma $3.4(1)$. When $\lambda \equiv 0(\bmod 6)$ and $v \equiv 0(\bmod 12)$, since a $(v, 1,3,6)_{0^{-}}$ DF over Z_{v} exists from Lemma 3.2, applying Theorem 2.7 with a $\operatorname{CDM}(3 ; g)$ from Lemma 2.1 we obtain a $(g v, g, 3,6)_{0}$-DF over $Z_{g v}$. Then repeat the base blocks of a $(g v, g, 3,6)_{0}$-DF over $Z_{g v} \lambda / 6$ times. When $\lambda \equiv 0(\bmod 12), v \equiv 6(\bmod 12)$ and $v>6$, we apply Theorem 2.7 with a $(v, 1,3,12)_{0}$-DF over Z_{v} from Lemma 3.2 and a $\operatorname{CDM}(3 ; g)$ from Lemma 2.1 to get a $(g v, g, 3,12)_{0}$-DF over $Z_{g v}$, and then repeat the base blocks of a $(g v, g, 3,12)_{0}$-DF over $Z_{g v} \lambda / 12$ times. When $\lambda \equiv 0(\bmod 12), g>1$ and $v=6$, repeat the base blocks of a $(6 g, g, 3,12)_{0}$-DF over $Z_{6 g} \lambda / 12$ times from Lemma 3.2.

Case $2: g \equiv 2,10(\bmod 12)$. When $\lambda \equiv 3(\bmod 6)$ and $v \equiv 0,9(\bmod 12)$, repeat the base blocks of a $(g v, g, 3,3)_{0}-$ DF over $Z_{g v} \lambda / 3$ times from Lemma 3.4(2). When $\lambda \equiv 0(\bmod 6), v \equiv 0(\bmod 3)$ and $v>3$, since a $(2 v, 2,3,6)_{0}$-DF over $Z_{2 v}$ exists from Lemma 3.3, we apply Theorem 2.7 with a $\operatorname{CDM}(3 ; g / 2)$ from Lemma 2.1 to obtain a $(g v, g, 3,6)_{0}$-DF over $Z_{g v}$, and then repeat the base blocks of a $(g v, g, 3,6)_{0}$-DF over $Z_{g v} \lambda / 6$ times. When $\lambda \equiv 0(\bmod 6), g>2$ and $v=3$, repeat the base blocks of a ($3 g, g, 3,6)_{0}$-DF over $Z_{3 g} \lambda / 6$ times from Lemma 3.2.

Case $3: g \equiv 4,8(\bmod 12)$. When $\lambda \equiv 0(\bmod 3), v \equiv 0(\bmod 3)$ and $v>3$, repeat the base blocks of a $(g v, g, 3,3)_{0}$-DF over $Z_{g v} \lambda / 3$ times from Lemma 3.4(3). When $\lambda \equiv 0(\bmod 6)$ and $v=3$, repeat the base blocks of a $(3 g, g, 3,6)_{0}$-DF over $Z_{3 g} \lambda / 6$ times from Lemma 3.2. This completes the proof.

4. $(g v, g, 3,3)_{3}$-DFs

By Lemma 1.4, the necessary conditions for the existence of a $(g v, g, 3,3)_{3}$-DF over $Z_{g v}$ are: (1) $v \equiv 3(\bmod 6)$ when $g \equiv 1,5(\bmod 6) ;(2) v \equiv 0(\bmod 3)$ and $v>3$ when $g \equiv 4,8(\bmod 12) ;(3) v \equiv 0,9(\bmod 12)$ when $g \equiv 2,10(\bmod 12)$. In this section, we are mainly to prove that the necessary conditions for the existence of a $(g v, g, 3,3)_{3}$-DF over $Z_{g v}$ are also sufficient.

The following Lemma 4.1 is proved in [14].
Lemma 4.1. (1) For $v \equiv 9(\bmod 12)$, there exists $a(2 v, 2,3,3)_{3}$-DF over $Z_{2 v}$.
(2) For $v \equiv 3(\bmod 6)$ and $v>3$, there exists $a(8 v, 8,3,3)_{3}$-DF over $Z_{8 v}$.
(3) For $g \equiv 5(\bmod 6)$, there exists $a(3 g, g, 3,3)_{3}$-DF over $Z_{3 g}$.
(4) For $g \equiv 8(\bmod 12), v \equiv 0(\bmod 3)$ and $6 \leq v \leq 21$, there exists a $(g v, g, 3,3)_{3}$-DF over $Z_{g v}$.

Lemma 4.2. For $v \equiv 3(\bmod 6)$ and $v \geq 27$, there exist ordered pairs $\left(x_{l}, y_{l}\right), 1 \leq l \leq v-1$, such that $y_{l}-x_{l} \in$ $[4 v / 3+1,10 v / 3-1]_{o} \backslash\{3 v\}, x_{l} \in([2 v / 3+1,5 v / 3] \backslash\{v, v+1\}) \cup\{1\}, y_{l} \in[3 v+1,4 v-2] \cup\{3 v-1\}$.
Proof. Let $v=6 s+3$ where $s \geq 4$. Then for $1 \leq l \leq 6 s+2, y_{l}-x_{l} \in[8 s+5,20 s+9]_{o} \backslash\{18 s+9\}, x_{l} \in$ $([4 s+3,10 s+5] \backslash\{6 s+3,6 s+4\}) \cup\{1\}, y_{l} \in[18 s+10,24 s+10] \cup\{18 s+8\}$. The desired ordered pairs $\left(x_{l}, y_{l}\right)$ are listed below:

- $s \equiv 0(\bmod 4)$ and $s \geq 4$:
$(1,20 s+10),(5 s+2,20 s+9),(5 s+3,22 s+14),(11 s / 2+2,43 s / 2+13),(11 s / 2+3,43 s / 2+12),(6 s+5,18 s+8)$,
$(10 s+5-r, 18 s+10+r), r \in[0,2 s-2]$,
$(5 s+1-r, 23 s+12+r), r \in[0, s-2]$,
$(8 s+6-r, 20 s+11+r), r \in[0,3 s / 2]$,
$(13 s / 2+5-r, 43 s / 2+14+r), r \in[0, s / 2-1]$,
$(6 s+2-2 r, 22 s+15+2 r), r \in[0, s / 4-1]$,
$(6 s+1-2 r, 22 s+16+2 r), r \in[0, s / 4-2](r \in \emptyset$ when $s=4)$,
$(11 s / 2+1-2 r, 45 s / 2+14+2 r), r \in[0, s / 4-2](r \in \emptyset$ when $s=4)$,
$(11 s / 2-2 r, 45 s / 2+15+2 r), r \in[0, s / 4-2](r \in \emptyset$ when $s=4)$.
- $s \equiv 2(\bmod 4)$ and $s \geq 6$:
$(1,20 s+10),(5 s+2,20 s+9),(5 s+3,22 s+14),(11 s / 2+2,43 s / 2+13),(11 s / 2+3,43 s / 2+12),(6 s+5,18 s+8)$,
$(10 s+5-r, 18 s+10+r), r \in[0,2 s-2]$,
$(5 s+1-r, 23 s+12+r), r \in[0, s-2]$,
$(8 s+6-r, 20 s+11+r), r \in[0,3 s / 2]$,
$(13 s / 2+5-r, 43 s / 2+14+r), r \in[0, s / 2-1]$,
$(6 s+2-2 r, 22 s+15+2 r), r \in[0,(s-6) / 4]$,
$(6 s+1-2 r, 22 s+16+2 r), r \in[0,(s-6) / 4]$,
$(11 s / 2+1-2 r, 45 s / 2+14+2 r), r \in[0,(s-6) / 4]$,
$(11 s / 2-2 r, 45 s / 2+15+2 r), r \in[0,(s-10) / 4](r \in \emptyset$ when $s=6)$.
- $s \equiv 1(\bmod 4)$ and $s \geq 5$:
$(1,20 s+10),(5 s+2,22 s+14),(5 s+3,20 s+9),((11 s+3) / 2,(43 s+25) / 2),((11 s+5) / 2,(43 s+23) / 2),(6 s+5,18 s+8)$,
$(10 s+5-r, 18 s+10+r), r \in[0,2 s-2]$,
$(5 s+1-r, 23 s+12+r), r \in[0, s-2]$,
$(8 s+6-r, 20 s+11+r), r \in[0,(3 s-1) / 2]$,
$((13 s+11) / 2-r,(43 s+27) / 2+r), r \in[0,(s-1) / 2]$,
$(6 s+2-2 r, 22 s+15+2 r), r \in[0,(s-5) / 4]$,
$(6 s+1-2 r, 22 s+16+2 r), r \in[0,(s-5) / 4]$,
$((11 s+1) / 2-2 r,(45 s+29) / 2+2 r), r \in[0,(s-9) / 4](r \in \emptyset$ when $s=5)$,
$((11 s-1) / 2-2 r,(45 s+31) / 2+2 r), r \in[0,(s-9) / 4](r \in \emptyset$ when $s=5)$.
- $s \equiv 3(\bmod 4)$ and $s \geq 7$:
$(1,20 s+10),(5 s+2,22 s+14),(5 s+3,20 s+9),((11 s+3) / 2,(43 s+25) / 2),((11 s+5) / 2,(43 s+23) / 2),(6 s+5,18 s+8)$,
$(10 s+5-r, 18 s+10+r), r \in[0,2 s-2]$,
$(5 s+1-r, 23 s+12+r), r \in[0, s-2]$,
$(8 s+6-r, 20 s+11+r), r \in[0,(3 s-1) / 2]$,
$((13 s+11) / 2-r,(43 s+27) / 2+r), r \in[0,(s-1) / 2]$,
$(6 s+2-2 r, 22 s+15+2 r), r \in[0,(s-3) / 4]$,
$(6 s+1-2 r, 22 s+16+2 r), r \in[0,(s-7) / 4]$,
$((11 s+1) / 2-2 r,(45 s+29) / 2+2 r), r \in[0,(s-7) / 4]$,
$((11 s-1) / 2-2 r,(45 s+31) / 2+2 r), r \in[0,(s-11) / 4](r \in \emptyset$ when $s=7)$.
Lemma 4.3. There exists $a(g v, g, 3,3)_{3}$-DF over $Z_{g v}$ for $g \equiv 8(\bmod 12), v \equiv 3(\bmod 6)$ and $v>3$.

Proof. For $g \equiv 8(\bmod 12)$ and $v=9,15,21$, the conclusion follows by Lemma 4.1. For $g=8, v \equiv 3(\bmod 6)$ and $v>3$, the conclusion follows by Lemma 4.1. For $g \equiv 8(\bmod 12), g \geq 20, v \equiv 3(\bmod 6)$ and $v \geq 27$, let $g=12 t+8$ where $t \geq 1$. Let (x_{l}, y_{l}) be the ordered pairs obtained in Lemma 4.2 for $1 \leq l \leq v-1$. The desired base blocks are as follows.
$\{0,6,12\}, \quad 2\{0,8,(3 t+2) v+4\}, \quad 2\{0,11,(15 t+10) v / 3+6\}$,
$\{0,6,(3 t+2) v+2\}, \quad 2\{0,10,(3 t+2) v+5\}, \quad 3\{0,3,(15 t+10) v / 3+2\}$,
$\{0,8,(3 t+2) v+5\}, \quad 2\{0,12,(3 t+2) v+6\}, \quad 3\{0,7,(15 t+10) v / 3+4\}$,
$\{0,10,(3 t+2) v+4\}, \quad 3\{0,4,(3 t+2) v+3\}, \quad 3\{0,9,(15 t+10) v / 3+5\}$,
$\{0,11,(3 t+2) v+6\}, \quad 3\{0,1,(12 t+8) v / 3-1\}, \quad\{0,2,(15 t+10) v / 3+3\}$,
$2\{0,5,(3 t+2) v+2\}, \quad 2\{0,2,(15 t+10) v / 3\}, \quad\{0,5,(15 t+10) v / 3\}$,
$3\{0,2 v / 3+1,(2 t+2) v-1\}, \quad\{0,(6 t+4) v / 3-4,(21 t+14) v / 3-6\}$,
$3\{0, v-2,(5 t+3) v-1\}, \quad 2\{0,(6 t+4) v / 3-4,(21 t+14) v / 3-3\}$,
$3\{0,4 v / 3-1,(6 t+4) v / 3+1\}, \quad 3\{0,(6 t+4) v / 3,((42 t+25) v+3) / 6\}$,
$3\{0,(3 t+2) v-2,(6 t+4) v-1\}, \quad 3\{0,(6 t+4) v / 3+2,((42 t+25) v+9) / 6\}$,
$3\{0,14+2 j,(3 t+2) v+7+j\}, j \in[0,(3 t+2) v / 3-10] \backslash\{t v-6\}$, and $j \not \equiv v-7(\bmod v)$,
$3\{0,13+2 j,(15 t+10) v / 3+7+j\}, j \in[0, v / 3-7]$,
$3\{0,2 v / 3+3+2 j,(15 t+11) v / 3+1+j\}, j \in[0, v / 3-3] \backslash\{(v-15) / 6,(v-9) / 6\}$,
and
$3\left\{0,(2 t-2) v+\left(y_{l}-x_{l}\right)-2 j v, 6 t v+y_{l}-j v\right\}$, where $l \in[1, v-1]$ and $j \in[0, t-1]$.
By checking with Lemmas $2.18,3.8,3.9,3.11$ and 3.4 of [13], we have the following results which will be used later.

Lemma 4.4 ([13]).

(1) There exists $a(g v, g, 3,1)_{1}-$ DF over $Z_{g v}$ for $g \equiv 4(\bmod 12), v \equiv 0(\bmod 3)$ and $v>3$, or $g \equiv 10(\bmod 12)$ and $v \equiv 0,9(\bmod 12)$, or $g \equiv 1(\bmod 6), v \equiv 3(\bmod 6)$ and $(g, v) \neq(1,9)$;
(2) There exists $a(g v, g, 3,2)_{1}$-DF over $Z_{g v}$ for $g \equiv 2(\bmod 6)$ and $v \equiv 0(\bmod 3)$, or $g \equiv 5(\bmod 6)$, $v \equiv 0(\bmod 3)$ and $v \not \equiv 2(\bmod 4) ;$
(3) There exists $a(g v, g, 3,2)_{2}-D F$ over $Z_{g v}$ for $g \equiv 4(\bmod 6)$ and $v \equiv 0(\bmod 3)$, or $g \equiv 1(\bmod 6), v \equiv 0(\bmod 3), v \not \equiv$ $2(\bmod 4)$ and $(g, v) \neq(1,9)$;
(4) There exists $a(g v, g, 3,4)_{2}$-DF over $Z_{g v}$ for $g \equiv 2(\bmod 3)$ and $v \equiv 0(\bmod 3)$;
(5) There exists $a(6 g, g, 3,4)_{1}$-DF over $Z_{6 g}$ for $g \equiv 1(\bmod 6)$.

Now the necessary and sufficient conditions for the existence of a $(g v, g, 3,3)_{3}$-DF over $Z_{g v}$ are determined as follows.

Lemma 4.5. $A(g v, g, 3,3)_{3}$-DF over $Z_{g v}$ exists if and only if
(1) $v \equiv 3(\bmod 6)$ when $g \equiv 1,5(\bmod 6)$;
(2) $v \equiv 0(\bmod 3)$ and $v>3$ when $g \equiv 4,8(\bmod 12)$;
(3) $v \equiv 0,9(\bmod 12)$ when $g \equiv 2,10(\bmod 12)$.

Proof. The necessity follows from Lemma 1.4. So we establish the sufficiency as follows.
(1) For $g \equiv 1(\bmod 6)$ and $v=3$, the conclusion follows by repeating the base blocks of a $(g v, g, 3,1)_{1}$-DF over $Z_{g v}$ three times from Lemma $4.4(1)$. For $g \equiv 5(\bmod 6)$ and $v=3$, the result follows by Lemma 4.1. For $g \equiv 1,5(\bmod 6), v \equiv$ $3(\bmod 6)$ and $v \geq 9$, let $v=3 v^{\prime}$ where $v^{\prime} \equiv 1(\bmod 2)$ and $v^{\prime} \geq 3$. Since $3 g \equiv 1(\bmod 2)$, there exists a $\left(3 g v^{\prime}, 3 g, 3,3\right)_{0^{-}}$ DF over $Z_{3 g v^{\prime}}$ by Lemma 3.5. That is a $(g v, 3 g, 3,3)_{0}$-DF over $Z_{g v}$ for $v \equiv 3(\bmod 6)$ and $v \geq 9$. Then we apply Theorem 2.4 with a $(3 g, g, 3,3)_{3}$-DF over $Z_{3 g}$ mentioned above to obtain a $(g v, g, 3,3)_{3}$-DF over $Z_{g v}$.
(2) For $g \equiv 4(\bmod 12), v \equiv 0(\bmod 3)$ and $v>3$, repeating the base blocks of a $(g v, g, 3,1)_{1}$-DF over $Z_{g v}$ three times from Lemma 4.4(1), we can draw the conclusion. For $g \equiv 8(\bmod 12), v \equiv 3(\bmod 6)$ and $v>3$, the conclusion follows from Lemma 4.3. For $g \equiv 8(\bmod 12)$ and $v=6,12,18$, the desired DFs come from Lemma 4.1. For $g \equiv 8(\bmod 12)$, $v \equiv 0(\bmod 6)$ and $v>18$, let $v=6 v^{\prime}$, where $v^{\prime}>3$. Since $6 g \equiv 0(\bmod 4)$, we observe that there is a $\left(6 g v^{\prime}, 6 g, 3,3\right)_{0}-\mathrm{DF}$ over $Z_{6 g v^{\prime}}$ by Lemma 3.5. That is a $(g v, 6 g, 3,3)_{0}$-DF over $Z_{g v}$ for $v \equiv 0(\bmod 6)$ and $v>18$. Hence we use Theorem 2.4 with a $(6 g, g, 3,3)_{3}$-DF over $Z_{3 g}$ from Lemma 4.1 to get a $(g v, g, 3,3)_{3}$-DF over $Z_{g v}$.
(3) For $g=2$ and $v=12$, the base blocks are $3\{0,1,11\},\{0,2,6\}, 2\{0,2,7\},\{0,3,7\}, 2\{0,3,9\},\{0,4,9\}$. For $g=2, v \equiv 0(\bmod 12)$ and $v>12$, let $v=4 v^{\prime}$ where $v^{\prime} \equiv 0(\bmod 3)$ and $v^{\prime}>3$. Since there exists a $\left(8 v^{\prime}, 8,3,3\right)_{3}$-DF over $Z_{8 v^{\prime}}$ from (2), which is a $(2 v, 8,3,3)_{3}$-DF over $Z_{2 v}$. We apply Theorem 2.5 with a $(8,2,3,3)_{0}$-DF over Z_{8} from Lemma 3.5 to get a $(2 v, 2,3,3)_{3}$-DF over $Z_{2 v}$. For $g=2$ and $v \equiv 9(\bmod 12)$, by Lemma 4.1 there exists a $(g v, g, 3,3)_{3}$-DF over $Z_{g v}$. For $g \equiv 2,10(\bmod 12), g \geq 10$ and $v \equiv 0,9(\bmod 12), g$ can be written as $g=2 g^{\prime}$ where $g^{\prime} \equiv 1,5(\bmod 6)$ and $g^{\prime} \geq 5$. Start with a $(2 v, 2,3,3)_{3}$-DF over $Z_{2 v}$ mentioned above and a $\left(3 g^{\prime}, g^{\prime}, 3,3\right)_{3}$-DF over $Z_{3 g^{\prime}}$ from (1), applying Theorem 2.6 with a $\operatorname{CDM}\left(3 ; g^{\prime}\right)$ from Lemma 2.1, we obtain a $\left(2 g^{\prime} v, 2 g^{\prime}, 3,3\right)_{3}$-DF over $Z_{2 g^{\prime} v}$, which is a $(g v, g, 3,3)_{3}$-DF over $Z_{g v}$.

5. Some other constructions

In this section, we need to build certain classes of DFs for later use in Section 6. We first list some direct constructions from [14].

Lemma 5.1. (1) For $v \equiv 0(\bmod 3)$ and $v>9$, there exists $a(v, 1,3,4)_{1}$-DF over Z_{v}.
(2) For $v \equiv 0(\bmod 3)$ and $v \geq 9$, there exists $a(2 v, 2,3,6)_{6}$-DF over $Z_{2 v}$.
(3) For $g \equiv 4(\bmod 6)$, there exists a $(3 g, g, 3,4)_{1}$-DF over $Z_{3 g}$.
(4) For $g \equiv 2(\bmod 6)$ and $g>2$, there exists a $(3 g, g, 3,6)_{6}-$ DF over $Z_{3 g}$.
(5) For $g \equiv 10(\bmod 12)$, there exists a $(6 g, g, 3,4)_{1}$-DF over $Z_{6 g}$.
(6) For $g \equiv 5(\bmod 6), \alpha \in\{1,7\}$, there exists $a(6 g, g, 3,8)_{\alpha}$-DF over $Z_{6 g}$.
(7) For $g \equiv 1(\bmod 6)$ and $g>1$, there exists a $(6 g, g, 3,4)_{4}$-DF over $Z_{6 g}$.
(8) For $g \equiv 2(\bmod 12)$ and $g>2$, there exists a $(6 g, g, 3,6)_{6}$-DF over $Z_{6 g}$.
(9) For $g \equiv 5(\bmod 6)$, there exists $a(6 g, g, 3,12)_{12}$-DF over $Z_{6 g}$.

Lemma 5.2. There exists $a(g v, g, 3,4)_{1}-D F$ over $Z_{g v}$ for $g \equiv 1(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(1,3)$.
Proof. First we deal with the case of $v=3,6,9$. For $(g, v)=(1,9)$, the base blocks are $2\{0,1,3\},\{0,1,4\},\{0,2,4\},\{0$, $1,5\}$. For $g \equiv 1(\bmod 6), v=3$ and $(g, v) \neq(1,3)$, or $g \equiv 4(\bmod 12)$ and $v=6$, or $g \equiv 1(\bmod 3), v=9$ and $(g, v) \neq(1,9)$, the conclusion follows by taking together the base blocks of a $(g v, g, 3,1)_{1}$-DF over $Z_{g v}$ from Lemma 4.4(1), and a $(g v, g, 3,3)_{0}$-DF over $Z_{g v}$ from Lemma 3.5. For $g \equiv 4(\bmod 6)$ and $v=3$, or $g \equiv 1,7,10(\bmod 12)$ and $v=6$, a $(g v, g, 3,4)_{1}$-DF over $Z_{g v}$ exists from Lemmas 4.4(5) and 5.1.

Then the case of $v>9$ can be solved as follows. For $g=1, v \equiv 0(\bmod 3)$ and $v>9$, the required DF comes from Lemma 5.1. For $g \equiv 1(\bmod 3), g>1, v \equiv 0(\bmod 3)$ and $v>9$, let $v=3 v^{\prime}$ where $v^{\prime}>3$. Note that $3 g \equiv 0(\bmod 3)$, so by Lemma 3.5 there exists a $\left(3 g v^{\prime}, 3 g, 3,4\right)_{0}$-DF over $Z_{3 g v^{\prime}}$, which is a $(g v, 3 g, 3,4)_{0}$-DF over $Z_{g v}$. Combining a $(3 g, g, 3,4)_{1-}$ DF over $Z_{3 g}$ mentioned above, the existence of a $(g v, g, 3,4)_{1}$-DF over $Z_{g v}$ then follows immediately by Theorem 2.4.

Lemma 5.3. There exists $a(g v, g, 3,4)_{4}$-DF over $Z_{g v}$ for $g \equiv 1(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(1,6),(1,9)$.
Proof. For $g \equiv 1(\bmod 6), v=6$ and $(g, v) \neq(1,6)$, the conclusion follows by Lemma 5.1. For $g \equiv 4(\bmod 6)$ and $v \equiv 0(\bmod 3)$, or $g \equiv 1(\bmod 6), v=3,9$ and $(g, v) \neq(1,9)$, repeating the base blocks of a $(g v, g, 3,2)_{2}$-DF over $Z_{g v}$ twice from Lemma 4.4(3), we can obtain a $(g v, g, 3,4)_{4}$-DF over $Z_{g v}$. For $g \equiv 1(\bmod 6), v \equiv 0(\bmod 3)$ and $v>9$, let $v=3 v^{\prime}$ where $v^{\prime}>3.3 g \equiv 0(\bmod 3)$, so by Lemma 3.5 there exists a $\left(3 g v^{\prime}, 3 g, 3,4\right)_{0}-D F$ over $Z_{3 g v^{\prime}}$, which is a $(g v, 3 g, 3,4)_{0}$-DF over $Z_{g v}$. The conclusion follows by Theorem 2.4 with a $(3 g, g, 3,4)_{4}$-DF over $Z_{3 g}$ mentioned above.

Lemma 5.4. There exists $a(g v, g, 3,6)_{3}$-DF over $Z_{g v}$ for $g \equiv 2,4(\bmod 6)$ and $v \equiv 0(\bmod 3)$, or $g \equiv 1,5(\bmod 6), v \equiv$ $0(\bmod 3), v \not \equiv 2(\bmod 4)$ and $(g, v) \neq(1,3)$.

Proof. For $(g, v)=(1,9)$, a $(g v, g, 3,6)_{3}$-DF over $Z_{g v}$ is obtained by taking together the base blocks of a $(g v, g, 3,3)_{0}$-DF from Lemma 3.5 and a $(g v, g, 3,3)_{3}$-DF over $Z_{g v}$ from Lemma 4.5 . For $g \equiv 1(\bmod 6), v \equiv 0(\bmod 3), v \not \equiv 2(\bmod 4)$ and $(g, v) \neq(1,3),(1,9)$, or $g \equiv 4(\bmod 6)$ and $v \equiv 0(\bmod 3)$, by taking together the base blocks of a $(g v, g, 3,2)_{2}$-DF from Lemma 4.4(3) and a $(g v, g, 3,4)_{1}$-DF over $Z_{g v}$ from Lemma 5.2, we can obtain the desired design. For $g \equiv 5(\bmod 6), v \equiv$ $0(\bmod 3)$ and $v \not \equiv 2(\bmod 4)$, or $g \equiv 2(\bmod 6)$ and $v \equiv 0(\bmod 3)$, repeat the base blocks of a $(g v, g, 3,2)_{1}$-DF over $Z_{g v}$ three times from Lemma 4.4(2) to get the result.

Lemma 5.5. There exists $a(g v, g, 3,6)_{6}$-DF over $Z_{g v}$ for $g \equiv 2,4(\bmod 6), v \equiv 0(\bmod 3)$ and $(g, v) \neq(2,3),(2,6)$, or $g \equiv 1,5(\bmod 6), v \equiv 0(\bmod 3)$ and $v \not \equiv 2(\bmod 4)$.

Proof. Case $1: g \equiv 2,4(\bmod 6)$ and $v=3,6$. For $g \equiv 4(\bmod 6)$ and $v=3,6$, we repeat the base blocks of a $(g v, g, 3,2)_{2^{-}}$ DF over $Z_{g v}$ three times from Lemma $4.4(3)$ to get the required design. For $g \equiv 2(\bmod 6), v=3$ and $(g, v) \neq(2,3)$, or $g \equiv 2(\bmod 12), v=6$ and $(g, v) \neq(2,6)$, the result follows by Lemma 5.1 . For $g \equiv 8(\bmod 12)$ and $v=6$, repeating the base blocks of a $(g v, g, 3,3)_{3}$-DF over $Z_{g v}$ twice from Lemma 4.5, we can get a $(g v, g, 3,6)_{6}$-DF over $Z_{g v}$.

Case $2: g \equiv 2,4(\bmod 6)$ and $v \geq 9$. For $g=2, v \equiv 0(\bmod 3)$ and $v \geq 9$, the conclusion follows from Lemma 5.1. For $g \equiv 2,4(\bmod 6), g \geq 4, v \equiv 0(\bmod 3)$ and $v \geq 9$, let $v=3 v^{\prime}$, where $v^{\prime} \geq 3$. Since $3 g \equiv 0(\bmod 2)$, there exists a ($\left.3 g v^{\prime}, 3 g, 3,6\right)_{0}$-DF over $Z_{3 g v^{\prime}}$ for $v^{\prime} \geq 3$ by Lemma 3.5. That is a $(g v, 3 g, 3,6)_{0}$-DF over $Z_{g v}$ for $v \equiv 0(\bmod 3)$ and $v \geq 9$. Applying Theorem 2.4 with a $(3 g, g, 3,6)_{6}$-DF over $Z_{3 g}$ from Case 1, we obtain a $(g v, g, 3,6)_{6}$-DF over $Z_{g v}$.

Case $3: g \equiv 1,5(\bmod 6)$. For $g \equiv 1,5(\bmod 6)$ and $v=3$, repeating the base blocks of a $(g v, g, 3,3)_{3}$-DF over $Z_{g v}$ twice from Lemma 4.5 to get the result. For $g \equiv 1,5(\bmod 6), v \equiv 0(\bmod 3), v \not \equiv 2(\bmod 4)$ and $v \geq 9$, let $v=3 v^{\prime}$ where $v^{\prime} \not \equiv 2(\bmod 4)$ and $v^{\prime} \geq 3$. Since $3 g \equiv 1(\bmod 2)$, there exists a $\left(3 g v^{\prime}, 3 g, 3,6\right)_{0}$-DF over $Z_{3 g v^{\prime}}$ for $v^{\prime} \not \equiv 2(\bmod 4)$ and $v^{\prime} \geq 3$ by Lemma 3.5. That is a $(g v, 3 g, 3,6)_{0}$-DF over $Z_{g v}$ for $v \equiv 0(\bmod 3), v \not \equiv 2(\bmod 4)$ and $v \geq 9$. We now apply Theorem 2.4 with a $(3 g, g, 3,6)_{6}$-DF over $Z_{3 g}$ from above to get a $(g v, g, 3,6)_{6}$-DF over $Z_{g v}$.

Lemma 5.6. There exists $a(g v, g, 3,8)_{1}$-DF over $Z_{g v}$ for $g \equiv 2(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(2,3)$.

Proof. For $g \equiv 5(\bmod 6)$ and $v=6$, the conclusion holds by Lemma 5.1. For $g \equiv 2(\bmod 3), v=3,9$ and $(g, v) \neq(2,3)$, or $g \equiv 2(\bmod 6)$ and $v=6$, or $g=2, v \equiv 0(\bmod 3)$ and $v \geq 6$, the conclusion follows by taking together the base blocks of a $(g v, g, 3,2)_{1}$-DF over $Z_{g v}$ from Lemma 4.4(2), and a $(g v, g, 3,6)_{0}$-DF over $Z_{g v}$ from Lemma 3.5. For $g \equiv 2(\bmod 3), g>2, v \equiv 0(\bmod 3)$ and $v>9$, let $v=3 v^{\prime}$ where $v^{\prime}>3$. We start with a $\left(3 g v^{\prime}, 3 g, 3,8\right)_{0}$-DF over $Z_{3 g v^{\prime}}$ for $v^{\prime}>3$ from Lemma 3.5 since $3 g \equiv 0(\bmod 3)$. That is a $(g v, 3 g, 3,8)_{0}$-DF over $Z_{g v}$ for $v \equiv 0(\bmod 3)$ and $v>9$. Then we use Theorem 2.4 with a $(3 g, g, 3,8)_{1}$-DF over $Z_{3 g}$ mentioned above to produce the desired $(g v, g, 3,8)_{1}$-DF over Z_{g}.

Lemma 5.7. There exists $a(g v, g, 3,8)_{5}-D F$ over $Z_{g v}$ for $g \equiv 1(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(1,3),(1,6)$.
Proof. For $(g, v)=(1,9)$, put together the base blocks of a $(9,1,3,5)_{2}$-DF over Z_{9} whose base blocks are $3\{0,1,3\}, 2\{0,1,5\},\{0,2,4\}$, and a $(9,1,3,3)_{3}$-DF over Z_{9} from Lemma 4.5 , then we can draw the conclusion. For $g \equiv$ $1(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(1,3),(1,6),(1,9)$, the conclusion follows by taking together the base blocks of a $(g v, g, 3,4)_{1}$-DF over $Z_{g v}$ from Lemma 5.2, and a $(g v, g, 3,4)_{4}$-DF over $Z_{g v}$ from Lemma 5.3.

Lemma 5.8. There exists $a(g v, g, 3,8)_{7}-D F$ over $Z_{g v}$ for $g \equiv 2(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(2,3),(2,6)$.
Proof. For $g \equiv 5(\bmod 6)$ and $v=6, \mathrm{a}(g v, g, 3,8)_{7}$-DF over $Z_{g v}$ exists from Lemma 5.1. For $g \equiv 2(\bmod 3), v=3,9$ and $(g, v) \neq(2,3)$, or $g \equiv 2(\bmod 6), v=6$ and $(g, v) \neq(2,6)$, or $g=2, v \equiv 0(\bmod 3)$ and $v \geq 9$, the conclusion follows by taking together the base blocks of a $(g v, g, 3,2)_{1}$-DF from Lemma 4.4(2), and a $(g v, g, 3,6)_{6}$-DF over $Z_{g v}$ from Lemma 5.5. For $g \equiv 2(\bmod 3), g>2, v \equiv 0(\bmod 3)$ and $v>9$, let $v=3 v^{\prime}$ where $v^{\prime}>3$. Note that there is a $\left(3 g v^{\prime}, 3 g, 3,8\right)_{0}-\mathrm{DF}$ over $Z_{3 g v^{\prime}}$ for $v^{\prime}>3$ by Lemma 3.5 since $3 g \equiv 0(\bmod 3)$. That is a $(g v, 3 g, 3,8)_{0}$-DF over $Z_{g v}$ for $v \equiv 0(\bmod 3)$ and $v>9$. Hence we use Theorem 2.4 with a $(3 g, g, 3,8)_{7}$-DF over $Z_{3 g}$ mentioned above to get a $(g v, g, 3,8)_{7}$-DF over $Z_{g v}$.

Lemma 5.9. There exists $a(g v, g, 3,12)_{3}$-DF over $Z_{g v}$ for $g \equiv 1,2(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(1,3),(2,3)$.
Proof. For $g \equiv 1(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(1,3)$, we repeat the base blocks of a $(g v, g, 3,4)_{1}$-DF over $Z_{g v}$ three times from Lemma 5.2 to get the result. For $g \equiv 2(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(2,3)$, taking together the base blocks of a $(g v, g, 3,8)_{1}$-DF from Lemma 5.6 and a $(g v, g, 3,4)_{2}$-DF over $Z_{g v}$ from Lemma 4.4(4), we produce a $(g v, g, 3,12)_{3}$-DF over $Z_{g v}$.

Lemma 5.10. There exists $a(g v, g, 3,12)_{6}$-DF over $Z_{g v}$ for $g \equiv 1,2(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(1,3),(1,6)$.
Proof. For $g \equiv 1(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(1,3),(1,6)$, the conclusion follows by taking together the base blocks of a $(g v, g, 3,4)_{1}$-DF from Lemma 5.2, and a $(g v, g, 3,8)_{5}$-DF over $Z_{g v}$ from Lemma 5.7. For $g \equiv 2(\bmod 3)$ and $v \equiv 0(\bmod 3)$, repeating the base blocks of a $(g v, g, 3,4)_{2}$-DF over $Z_{g v}$ three times from Lemma 4.4(4), we obtain a $(g v, g, 3,12)_{6}$-DF over $Z_{g v}$.

Lemma 5.11. There exists $a(g v, g, 3,12)_{9}$-DF over $Z_{g v}$ for $g \equiv 1,2(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(1,3),(2,3)$, $(1,6),(2,6)$.

Proof. We deal with the problem by considering three cases, and each case is solved by a similar method. For $(g, v)=(1,9)$, take together the base blocks of a $(g v, g, 3,6)_{3}$-DF over $Z_{g v}$ from Lemma 5.4, and a $(g v, g, 3,6)_{6}$-DF over $Z_{g v}$ from Lemma 5.5. For $g \equiv 1(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(1,3),(1,6),(1,9)$, take together the base blocks of a $(g v, g, 3,4)_{4}$-DF over $Z_{g v}$ twice from Lemma 5.3, and a $(g v, g, 3,4)_{1}$-DF over $Z_{g v}$ from Lemma 5.2. For $g \equiv 2(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(2,3),(2,6)$, take together the base blocks of a $(g v, g, 3,4)_{2}$-DF from Lemma 4.4(4), and a $(g v, g, 3,8)_{7}$-DF over $Z_{g v}$ from Lemma 5.8. The conclusion then follows.

Lemma 5.12. There exists $a(g v, g, 3,12)_{12}$-DF over $Z_{g v}$ for $g \equiv 1,2(\bmod 3), v \equiv 0(\bmod 3)$ and $(g, v) \neq(2,3)$, $(1,6),(2,6)$.

Proof. For $g \equiv 1(\bmod 6), v=6$ and $(g, v) \neq(1,6)$, repeat the base blocks of a $(g v, g, 3,4)_{4}$-DF over $Z_{g v}$ three times from Lemma 5.3 to get the result. For $g \equiv 5(\bmod 6)$ and $v=6$, the needed DF is from Lemma 5.1 . For $g \equiv 1,2(\bmod 3), v=3$ and $(g, v) \neq(2,3)$, or $g \equiv 2,4(\bmod 6), v=6$ and $(g, v) \neq(2,6)$, or $g=2, v \equiv 0(\bmod 3)$ and $v \geq 9$, the conclusion follows by repeating the base blocks of a $(g v, g, 3,6)_{6}$-DF over $Z_{g v}$ twice from Lemma 5.5.

For $g \equiv 1,2(\bmod 3), g \neq 2, v \equiv 0(\bmod 3)$ and $v \geq 9$, let $v=3 v^{\prime}$ where $v^{\prime} \geq 3$. Since $3 g \equiv 0(\bmod 3)$, there exists a $\left(3 g v^{\prime}, 3 g, 3,12\right)_{0}$-DF over $Z_{3 g v^{\prime}}$ for $v^{\prime} \geq 3$ by Lemma 3.5. That is a $(g v, 3 g, 3,12)_{0}$-DF over $Z_{g v}$ for $v \equiv 0(\bmod 3)$ and $v \geq 9$. Applying Theorem 2.4 with a $(3 g, g, 3,12)_{12}$-DF mentioned above gives a $(g v, g, 3,12)_{12}$-DF over $Z_{g v}$.

6. Conclusions

Theorem 6.1. $A(g v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g v}$ exists if and only if
(1) $\lambda g(v-1)-2 \alpha \equiv 0(\bmod 6), v \neq 2$;
(2) $v \not \equiv 2,3(\bmod 4)$ when $g \equiv 2(\bmod 4)$ and $\lambda \equiv 1(\bmod 2)$;
(3) $v \not \equiv 2(\bmod 4)$ when $g \equiv 1(\bmod 2)$ and $\lambda \equiv 2(\bmod 4)$;
(4) $g \not \equiv 0(\bmod 3)$ and $v \equiv 0(\bmod 3)$ when $\alpha \neq 0$;
(5) $\lambda(3 g-1)-2 \alpha g \equiv 0(\bmod 6)$ when $v=3$;
(6) $\lambda=\alpha$ when $(g, v)=(1,3), \lambda=2 \alpha$ when $(g, v)=(2,3), \lambda=4 \alpha$ when $(g, v)=(1,6), \lambda \geq 2 \alpha$ when $(g, v)=(2,6), \lambda \equiv 0(\bmod 3)$ when $(g, v)=(1,9)$ and $\lambda=\alpha$.

Proof. The necessity follows by Lemma 1.4 , so we establish the sufficiency as follows.
When $(g, v)=(1,3)$ and $\lambda=\alpha$, the DF is degenerate. When $(g, v)=(2,3),(1,6)$, or $(2,6)$, repeat the base blocks of certain DFs over $Z_{g v}$ as listed at the table below to obtain the required designs.

Condition	DF used	Repetition	Source
$(g, v)=(2,3), \lambda=2 \alpha$	$(g v, g, 3,2)_{1}-\mathrm{DF}$	α	Lemma 4.4(2)
$(g, v)=(1,6), \lambda=4 \alpha$	$(g v, g, 3,4)_{1}-\mathrm{DF}$	α	Lemma 5.2
$(g, v)=(2,6), \lambda \geq 2 \alpha$	$(g v, g, 3,2)_{1}-\mathrm{DF}$	α	Lemma 4.4(2)
	$(g v, g, 3,6)_{0}-\mathrm{DF}$	$(\lambda-2 \alpha) / 6$	Lemma 3.5

For $(g, v) \neq(1,3),(2,3),(1,6),(2,6)$, the sufficiency is obtained in the following four cases.
Case 1: $\alpha=0$: The conclusion holds by Lemma 3.5.
Case 2: $\alpha \equiv 0(\bmod 3), \alpha \geq 3$:
When $\lambda \equiv 3(\bmod 6)$, we have $(\mathrm{i}) g \equiv 1,5(\bmod 6)$ and $v \equiv 3(\bmod 6),(\mathrm{ii}) g \equiv 2,10(\bmod 12)$ and $v \equiv 0,9(\bmod 12)$, (iii) $g \equiv 4,8(\bmod 12), v \equiv 0(\bmod 3)$ and $v>3$.

Condition	DF used	Repetition	Source
$\lambda \geq \alpha$	$(g v, g, 3,3)_{3}-\mathrm{DF}$	$\alpha / 3$	Lemma 4.5
	$(g v, g, 3,3)_{0}-\mathrm{DF}$	$(\lambda-\alpha) / 3$	Lemma 3.5

When $\lambda \equiv 6(\bmod 12)$, we have $(\mathrm{i}) g \equiv 1,5(\bmod 6), v \equiv 0(\bmod 3)$ and $v \not \equiv 2(\bmod 4),(\mathrm{ii}) g \equiv 2,4(\bmod 6)$ and $v \equiv 0(\bmod 3)$.

Condition	DF used	Repetition	Source				
$\alpha \equiv 3(\bmod 6), \lambda \geq \alpha+3$	$(g v, g, 3,6)_{3}-\mathrm{DF}$	1	Lemma 5.4				
	$(g v, g, 3,6)_{6}-\mathrm{DF}$	$(\alpha-3) / 6$	Lemma 5.5				
$(g v, g, 3,6)_{0}-\mathrm{DF}$					$(\lambda-\alpha-3) / 6$	Lemma 3.5	
:---	:---	:---					
$\alpha \equiv 0(\bmod 6), \lambda \geq \alpha$	$\left(\begin{array}{l}(g v, g, 3,6)_{6}-\mathrm{DF} \\ (g v, g, 3,6)_{0}-\mathrm{DF}\end{array}\right.$	$\alpha / 6$ $(\lambda-\alpha) / 6$					

When $\lambda \equiv 0(\bmod 12)$, we have $g \equiv 1,2(\bmod 3)$ and $v \equiv 0(\bmod 3)$.

Condition	DF used	Repetition	Source
$\alpha \equiv 0(\bmod 12), \lambda \geq \alpha$	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$\alpha / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha) / 12$	Lemma 3.5
$\alpha \equiv 3(\bmod 12), \lambda \geq \alpha+9$	$(g v, g, 3,12)_{3}$-DF	1	Lemma 5.9
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-3) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-9) / 12$	Lemma 3.5
$\alpha \equiv 6(\bmod 12), \lambda \geq \alpha+6$	$(g v, g, 3,12)_{6}-\mathrm{DF}$	1	Lemma 5.10
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-6) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-6) / 12$	Lemma 3.5
$\alpha \equiv 9(\bmod 12), \lambda \geq \alpha+3$	$(g v, g, 3,12)_{9}-\mathrm{DF}$	1	Lemma 5.11
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-9) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-3) / 12$	Lemma 3.5

Case 3: $\alpha \equiv 1(\bmod 3)$:
When $\lambda \equiv 1(\bmod 6)$, we have $(\mathrm{i}) \mathrm{g} \equiv 1(\bmod 6)$ and $v \equiv 3(\bmod 6),(\mathrm{ii}) g \equiv 10(\bmod 12)$ and $v \equiv 0,9(\bmod 12)$, (iii) $g \equiv 4(\bmod 12), v \equiv 0(\bmod 3)$ and $v>3$, (iv) $(g, v) \neq(1,9)$ when $\lambda=\alpha$.

Condition	DF used	Repetition	Source
$\lambda \geq \alpha+3$	$(g v, g, 3,4)_{1}-\mathrm{DF}$	1	Lemma 5.2
	$(g v, g, 3,3)_{3}-\mathrm{DF}$	$(\alpha-1) / 3$	Lemma 4.5
	$(g v, g, 3,3)_{0}-\mathrm{DF}$	$(\lambda-\alpha) / 3-1$	Lemma 3.5
$\lambda=\alpha,(g, v) \neq(1,9)$	$(g v, g, 3,1)_{1}-\mathrm{DF}$	1	Lemma 4.4(1)
	$(g v, g, 3,3)_{3}-\mathrm{DF}$	$(\alpha-1) / 3$	Lemma 4.5

When $\lambda \equiv 5(\bmod 6)$, we have $(\mathrm{i}) g \equiv 5(\bmod 6)$ and $v \equiv 3(\bmod 6),(\mathrm{ii}) g \equiv 2(\bmod 12)$ and $v \equiv 0,9(\bmod 12)$, (iii) $g \equiv 8(\bmod 12), v \equiv 0(\bmod 3)$ and $v>3$.

Condition	DF used	Repetition	Source
$\lambda \geq \alpha+1$	$(g v, g, 3,2)_{1}-\mathrm{DF}$	1	Lemma 4.4(2)
	$(g v, g, 3,3)_{3}-\mathrm{DF}$	$(\alpha-1) / 3$	Lemma 4.5
	$(g v, g, 3,3)_{0}-\mathrm{DF}$	$(\lambda-\alpha-1) / 3$	Lemma 3.5

When $\lambda \equiv 2(\bmod 12)$, we have $(\mathrm{i}) \mathrm{g} \equiv 2(\bmod 6)$ and $v \equiv 0(\bmod 3),(\mathrm{ii}) g \equiv 5(\bmod 6), v \equiv 0(\bmod 3)$ and $v \not \equiv 2(\bmod 4)$.

Condition	DF used	Repetition	Source
$\alpha \equiv 1(\bmod 6), \lambda \geq \alpha+1$	$(g v, g, 3,2)_{1}-\mathrm{DF}$	1	Lemma 4.4(2)
	$(g v, g, 3,6)_{6}-\mathrm{DF}$	$(\alpha-1) / 6$	Lemma 5.5
	$(g v, g, 3,6)_{0}-\mathrm{DF}$	$(\lambda-\alpha-1) / 6$	Lemma 3.5
$\alpha \equiv 4(\bmod 6), \lambda \geq \alpha+4$	$(g v, g, 3,2)_{1}-\mathrm{DF}$	4	Lemma 4.4(2)
	$(g v, g, 3,6)_{6}-\mathrm{DF}$	$(\alpha-4) / 6$	Lemma 5.5
	$(g v, g, 3,6)_{0}-\mathrm{DF}$	$(\lambda-\alpha-4) / 6$	Lemma 3.5

When $\lambda \equiv 10(\bmod 12)$, we have $(\mathrm{i}) \mathrm{g} \equiv 4(\bmod 6)$ and $v \equiv 0(\bmod 3),(\mathrm{ii}) g \equiv 1(\bmod 6), v \equiv 0(\bmod 3)$ and $v \not \equiv 2(\bmod 4)$, (iii) $(g, v) \neq(1,9)$ when $\lambda=\alpha$.

Condition	DF used	Repetition	Source
$\alpha \equiv 1(\bmod 6), \lambda \geq \alpha+3$	$(g v, g, 3,4)_{1}-\mathrm{DF}$	1	Lemma 5.2
	$(g v, g, 3,6)_{6}-\mathrm{DF}$	$(\alpha-1) / 6$	Lemma 5.5
	$(g v, g, 3,6)_{0}-\mathrm{DF}$	$(\lambda-\alpha-3) / 6$	Lemma 3.5
$\alpha \equiv 4(\bmod 6), \lambda \geq \alpha+6$	$(g v, g, 3,4)_{1}-\mathrm{DF}$	1	Lemma 5.2
	$(g v, g, 3,6)_{3}-\mathrm{DF}$	1	Lemma 5.4
	$(g v, g, 3,6)_{6}-\mathrm{DF}$	$(\alpha-4) / 6$	Lemma 5.5
	$(g v, g, 3,6)_{0}-\mathrm{DF}$	$(\lambda-\alpha) / 6-1$	Lemma 3.5
$\lambda=\alpha,(g, v) \neq(1,9)$	$(g v, g, 3,2)_{2}-\mathrm{DF}$	2	Lemma 4.4(3)
	$(g v, g, 3,6)_{6}-\mathrm{DF}$	$(\alpha-4) / 6$	Lemma 5.5

When $\lambda \equiv 4(\bmod 12)$, we have $(\mathrm{i}) g \equiv 1(\bmod 3)$ and $v \equiv 0(\bmod 3),(\mathrm{ii})(g, v) \neq(1,9)$ when $\lambda=\alpha$.

Condition	DF used	Repetition	Source
$\alpha \equiv 1(\bmod 12), \lambda \geq \alpha+3$	$(\mathrm{g} v, \mathrm{~g}, 3,4)_{1}$-DF		Lemma 5.2
	$(\mathrm{g} v, g, 3,12)_{12}$-DF	$(\alpha-1) / 12$	Lemma 5.12
	$(\mathrm{g} v, \mathrm{~g}, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-3) / 12$	Lemma 3.5
$\alpha \equiv 4(\bmod 12), \lambda \geq \alpha+12$	$(\mathrm{gv}, \mathrm{g}, 3,4)_{1-\mathrm{DF}}$	1	Lemma 5.2
	$(\mathrm{g} v, g, 3,12)_{3}-\mathrm{DF}$	1	Lemma 5.9
	$(\mathrm{g} v, \mathrm{~g}, 3,12)_{12}-\mathrm{DF}$	$(\alpha-4) / 12$	Lemma 5.12
	$(\mathrm{g} v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha) / 12-1$	Lemma 3.5
$\lambda=\alpha,(g, v) \neq(1,9)$	$(\mathrm{g} v, \mathrm{~g}, 3,4)_{4}$-DF	1	Lemma 5.3
	$(\mathrm{g} v, \mathrm{~g}, 3,12)_{12}$-DF	$(\alpha-4) / 12$	Lemma 5.12
$\alpha \equiv 7(\bmod 12), \lambda \geq \alpha+9$	$(\mathrm{g} v, g, 3,4)_{1}$-DF	1	Lemma 5.2
	$(\mathrm{g} v, \mathrm{~g}, 3,12)_{6}-\mathrm{DF}$	1	Lemma 5.10
	$(\mathrm{g} v, \mathrm{~g}, 3,12)_{12}-\mathrm{DF}$	$(\alpha-7) / 12$	Lemma 5.12
	$(\mathrm{g} v, \mathrm{~g}, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-9) / 12$	Lemma 3.5
$\alpha \equiv 10(\bmod 12), \lambda \geq \alpha+6$	($g v, g, 3,4)_{1}-\mathrm{DF}$	1	Lemma 5.2
	$(\mathrm{g} v, \mathrm{~g}, 3,12)_{9}-\mathrm{DF}$	1	Lemma 5.11
	$(\mathrm{g} v, \mathrm{~g}, 3,12)_{12}-\mathrm{DF}$	$(\alpha-10) / 12$	Lemma 5.12
	$(\mathrm{g} v, \mathrm{~g}, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-6) / 12$	Lemma 3.5

When $\lambda \equiv 8(\bmod 12)$, we have $g \equiv 2(\bmod 3)$ and $v \equiv 0(\bmod 3)$.

Condition	DF used	Repetition	Source
$\alpha \equiv 1(\bmod 12), \lambda \geq \alpha+7$	$(g v, g, 3,8)_{1}-\mathrm{DF}$	1	Lemma 5.6
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-1) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-7) / 12$	Lemma 3.5
$\alpha \equiv 4(\bmod 12), \lambda \geq \alpha+4$	$(g v, g, 3,4)_{2}-\mathrm{DF}$	2	Lemma 4.4(4)
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-4) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-4) / 12$	Lemma 3.5
$(\bmod 12), \lambda \geq \alpha+1$	$(g v, g, 3,8)_{7}-\mathrm{DF}$	1	Lemma 5.8
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-7) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-1) / 12$	Lemma 3.5
	$(g v, g, 3,8)_{1}-\mathrm{DF}$	1	Lemma 5.6
$\alpha \equiv 10(\bmod 12), \lambda \geq \alpha+10$	$(g v, g, 3,12)_{9}-\mathrm{DF}$	1	Lemma 5.11
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-10) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-10) / 12$	Lemma 3.5

Case 4: $\alpha \equiv 2(\bmod 3)$:
When $\lambda \equiv 1(\bmod 6)$, we have $(\mathrm{i}) g \equiv 5(\bmod 6)$ and $v \equiv 3(\bmod 6),(\mathrm{ii}) g \equiv 2(\bmod 12)$ and $v \equiv 0,9(\bmod 12),(\mathrm{iii})$ $g \equiv 8(\bmod 12), v \equiv 0(\bmod 3)$ and $v>3$.

Condition	DF used	Repetition	Source
	$(g v, g, 3,4)_{2}-\mathrm{DF}$	1	Lemma 4.4(4)
$\lambda \geq \alpha+2$	$(g v, g, 3,3)_{3}-\mathrm{DF}$	$(\alpha-2) / 3$	Lemma 4.5
	$(g v, g, 3,3)_{0}-\mathrm{DF}$	$(\lambda-\alpha-2) / 3$	Lemma 3.5

When $\lambda \equiv 5(\bmod 6)$, we have $(\mathrm{i}) g \equiv 1(\bmod 6)$ and $v \equiv 3(\bmod 6),(\mathrm{ii}) g \equiv 10(\bmod 12)$ and $v \equiv 0,9(\bmod 12)$, (iii) $g \equiv 4(\bmod 12), v \equiv 0(\bmod 3)$ and $v>3$, (iv) $(g, v) \neq(1,9)$ when $\lambda=\alpha$.

Condition	DF used	Repetition	Source
$\lambda \geq \alpha,(g, v) \neq(1,9)$	$(g v, g, 3,1)_{1}-\mathrm{DF}$	2	Lemma 4.4(1)
	$(g v, g, 3,3)_{3}-\mathrm{DF}$	$(\alpha-2) / 3$	Lemma 4.5
	$(g v, g, 3,3)_{0}-\mathrm{DF}$	$(\lambda-\alpha) / 3$	Lemma 3.5
$\lambda \geq \alpha+3,(g, v)=(1,9)$	$(g v, g, 3,5)_{2}-\mathrm{DF}$	1	Lemma 5.7
	$(g v, g, 3,3)_{3}-\mathrm{DF}$	$(\alpha-2) / 3$	Lemma 4.5
	$(g v, g, 3,3)_{0}-\mathrm{DF}$	$(\lambda-\alpha) / 3-1$	Lemma 3.5

When $\lambda \equiv 2(\bmod 12)$, we have $(\mathrm{i}) \mathrm{g} \equiv 4(\bmod 6)$ and $v \equiv 0(\bmod 3)$, $(\mathrm{ii}) g \equiv 1(\bmod 6), v \equiv 0(\bmod 3)$ and $v \not \equiv 2(\bmod 4)$, (iii) $(g, v) \neq(1,9)$ when $\lambda=\alpha$.

Condition	DF used	Repetition	Source
$\alpha \equiv 5(\bmod 6), \lambda \geq \alpha+3$	$(g v, g, 3,8)_{5}-\mathrm{DF}$	1	Lemma 5.7
	$(g v, g, 3,6)_{6}-\mathrm{DF}$	$(\alpha-5) / 6$	Lemma 5.5
	$(g v, g, 3,6)_{0}-\mathrm{DF}$	$(\lambda-\alpha-3) / 6$	Lemma 3.5
$\alpha \equiv 2(\bmod 6), \lambda \geq \alpha+6$	$(g v, g, 3,4)_{1}-\mathrm{DF}$	2	Lemma 5.2
	$(g v, g, 3,6)_{6}-\mathrm{DF}$	$(\alpha-2) / 6$	Lemma 5.5
	$(g v, g, 3,6)_{0}-\mathrm{DF}$	$(\lambda-\alpha) / 6-1$	Lemma 3.5
$\lambda=\alpha,(g, v) \neq(1,9)$	$(g v, g, 3,2)_{2}-\mathrm{DF}$	1	Lemma 4.4(3)
	$(g v, g, 3,6)_{6}-\mathrm{DF}$	$(\alpha-2) / 6$	Lemma 5.5

When $\lambda \equiv 10(\bmod 12)$, we have $(\mathrm{i}) \mathrm{g} \equiv 2(\bmod 6)$ and $v \equiv 0(\bmod 3),(\mathrm{ii}) g \equiv 5(\bmod 6), v \equiv 0(\bmod 3)$ and $v \not \equiv 2(\bmod 4)$.

Condition	DF used	Repetition	Source
$\alpha \equiv 2(\bmod 6), \lambda \geq \alpha+2$	$(g v, g, 3,2)_{1}-\mathrm{DF}$	2	Lemma 4.4(2)
	$(g v, g, 3,6)_{6}-\mathrm{DF}$	$(\alpha-2) / 6$	Lemma 5.5
	$(g v, g, 3,6)_{0}-\mathrm{DF}$	$(\lambda-\alpha-2) / 6$	Lemma 3.5
$\alpha \equiv 5(\bmod 6), \lambda \geq \alpha+5$	$(g v, g, 3,2)_{1}-\mathrm{DF}$	5	Lemma 4.4(2)
	$(g v, g, 3,6)_{6}-\mathrm{DF}$	$(\alpha-5) / 6$	Lemma 5.5
	$(g v, g, 3,6)_{0}-\mathrm{DF}$	$(\lambda-\alpha-5) / 6$	Lemma 3.5

When $\lambda \equiv 4(\bmod 12)$, we have $g \equiv 2(\bmod 3)$ and $v \equiv 0(\bmod 3)$.

Condition	DF used	Repetition	Source
$\alpha \equiv 2(\bmod 12), \lambda \geq \alpha+2$	$(g v, g, 3,4)_{2}-\mathrm{DF}$	1	Lemma 4.4(4)
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-2) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-2) / 12$	Lemma 3.5
	$(g v, g, 3,4)_{2}-\mathrm{DF}$	1	Lemma 4.4(4)
$\alpha \equiv 5(\bmod 12), \lambda \geq \alpha+11$	$(g v, g, 3,12)_{3}-\mathrm{DF}$	1	Lemma 5.9
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-5) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-11) / 12$	Lemma 3.5
$\alpha \equiv 8(\bmod 12), \lambda \geq \alpha+8$	$(g v, g, 3,4)_{2}-\mathrm{DF}$	4	Lemma 4.4(4)
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-8) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-8) / 12$	Lemma 3.5
	$(g v, g, 3,4)_{2}-\mathrm{DF}$	1	Lemma 4.4(4)
$\alpha \equiv 11(\bmod 12), \lambda \geq \alpha+5$	$(g v, g, 3,12)_{9}$-DF	1	Lemma 5.11
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-11) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-5) / 12$	Lemma 3.5

When $\lambda \equiv 8(\bmod 12)$, we have $(\mathrm{i}) g \equiv 1(\bmod 3)$ and $v \equiv 0(\bmod 3),(\mathrm{ii})(g, v) \neq(1,9)$ when $\lambda=\alpha$.

Condition	DF used	Repetition	Source
$\alpha \equiv 2(\bmod 12), \lambda \geq \alpha+6$	$(g v, g, 3,4)_{1}-\mathrm{DF}$	2	Lemma 5.2
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-2) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-6) / 12$	Lemma 3.5
$\alpha \equiv 5(\bmod 12), \lambda \geq \alpha+3$	$(g v, g, 3,8)_{5}-\mathrm{DF}$	1	Lemma 5.7
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-5) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-3) / 12$	Lemma 3.5
$\alpha \equiv 8(\bmod 12), \lambda \geq \alpha+12$	$(g v, g, 3,4)_{1}-\mathrm{DF}$	2	Lemma 5.2
	$(g v, g, 3,12)_{6}-\mathrm{DF}$	1	Lemma 5.10
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-8) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha) / 12-1$	Lemma 3.5
$\lambda=\alpha,(g, v) \neq(1,9)$	$(g v, g, 3,4)_{4}-\mathrm{DF}$	2	Lemma 5.3
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-8) / 12$	Lemma 5.12
	$(g v, g, 3,4)_{1}-\mathrm{DF}$	2	Lemma 5.2
$\alpha \equiv 11(\bmod 12), \lambda \geq \alpha+9$	$(g v, g, 3,12)_{9}-\mathrm{DF}$	1	Lemma 5.11
	$(g v, g, 3,12)_{12}-\mathrm{DF}$	$(\alpha-11) / 12$	Lemma 5.12
	$(g v, g, 3,12)_{0}-\mathrm{DF}$	$(\lambda-\alpha-9) / 12$	Lemma 3.5

This completes the proof of Theorem 6.1.
Now we are in the position to establish the following main result.
Theorem 6.2. A cyclic (3, λ)-GDD of type g^{v} having α short orbits exists if and only if
(1) $\lambda g(v-1)-2 \alpha \equiv 0(\bmod 6), \alpha \leq \lambda, v \geq 3$;
(2) $v \not \equiv 2,3(\bmod 4)$ when $g \equiv 2(\bmod 4)$ and $\lambda \equiv 1(\bmod 2)$;
(3) $v \not \equiv 2(\bmod 4)$ when $g \equiv 1(\bmod 2)$ and $\lambda \equiv 2(\bmod 4)$;
(4) $g \not \equiv 0(\bmod 3)$ and $v \equiv 0(\bmod 3)$ when $\alpha \neq 0$;
(5) $\lambda(3 g-1)-2 \alpha g \equiv 0(\bmod 6)$ when $v=3$;
(6) $\lambda=\alpha$ when $(g, v)=(1,3), \lambda=2 \alpha$ when $(g, v)=(2,3), \lambda=4 \alpha$ when $(g, v)=(1,6), \lambda \geq 2 \alpha$ when $(g, v)=(2,6), \lambda \equiv 0(\bmod 3)$ when $(g, v)=(1,9)$ and $\lambda=\alpha$.
Proof. Suppose that there exists a cyclic (3, λ)-GDD of type g^{v}, in which a is the number of full orbits. A simple counting shows that $6 a+2 \alpha=\lambda g(v-1)$, that is $\lambda g(v-1)-2 \alpha \equiv 0(\bmod 6)$. Condition (1) of Theorem 6.2 then follows. Conditions (2) and (3) are obtained with similar arguments as Lemma 1.3. It is easy to see that $g \not \equiv 0(\bmod 3)$ and $v \equiv 0(\bmod 3)$ when $\alpha \neq 0$. So Condition (4) follows. With a similar proof to that of Lemma 1.2 , we can get $\lambda(3 g-1)-2 \alpha g \equiv 0(\bmod 6)$ when $v=3$, but here we consider the differences covered by a full orbits. Therefore, Condition (5) follows. Condition (6) follows with similar arguments as Lemma 1.1.

Now we are going to prove the sufficiency. Note that a $(g v, g, 3, \lambda)_{\alpha}$-DF over $Z_{g v}$ generates a cyclic ($3, \lambda$)-GDD of type g^{v} having α short orbits. By Theorem 6.1 the conclusion then holds.

It should be pointed out that a cyclic $(3,1)$-GDD of type $3^{2 n+1}$ and of type $2^{3 n+1}$ are equivalent, respectively, to the wellknown cyclic and 1-rotational ($6 n+3,3,1$)-BIBD (see [11,9]). Their existence is contained in Theorem 6.2 as special cases.

Acknowledgements

The authors would like to thank the two anonymous referees for their valuable comments. The second author's research was supported by NSFC grant Nos. 61071221 and 10831002. The third author's research was supported by NSERC discovery grant 239135-06.

References

[1] R.J.R. Abel, M. Buratti, Difference families, in: C.J. Colbourn, J.H. Dinitz (Eds.), Handbook of Combinatorial Designs, second ed., Chapman \& Hall, CRC, Boca Raton, FL, 2006, pp. 392-409.
[2] M. Buratti, On point-regular linear spaces, J. Statist. Plann. Inference 94 (2001) 139-146.
[3] Y. Chang, Y. Miao, Constructions for optimal optical orthogonal codes, Discrete Math. 261 (2003) 127-139.
[4] C.J. Colbourn, Difference matrices, in: C.J. Colbourn, J.H. Dinitz (Eds.), Handbook of Combinatorial Designs, second ed., Chapman \& Hall, CRC, Boca Raton, FL, 2006, pp. 411-419.
[5] M.J. Colbourn, C.J. Colbourn, Cyclic block designs with block size 3, European J. Combin. 2 (1981) 21-26.
[6] M.J. Colbourn, C.J. Colbourn, Recursive constructions for cyclic block designs, J. Statist. Plann. Inference 10 (1984) 97-103.
[7] Z. Jiang, Concerning cyclic group divisible designs with block size three, Australas. J. Combin. 13 (1996) 227-245.
[8] D. Jungnickel, On difference matrices, resolvable transversal designs and generalized Hadamard matrices, Math. Z. 167 (1979) 49-60.
[9] K.T. Phelps, A. Rosa, Steiner triple systems with rotational automorphisms, Discrete Math. 33 (1981) 57-66.
[10] K. Phelps, A. Rosa, E. Mendelsohn, Cyclic Steiner triple systems with cyclic subsystems, European J. Combin. 10 (1989) 363-367.
[11] A. Rosa, A note on Steiner triple systems, Mat. Fyz. Casopis 16 (1966) 285-290 (in Slovak).
[12] X. Wang, Y. Chang, The spectrum of $(g v, g, 3, \lambda)$-DF in $Z_{g v}$, Sci. China Ser. A 52 (5) (2009) 1004-1016.
[13] X. Wang, Y. Chang, The spectrum of cyclic (3, λ)-GDD of type g^{v}, Sci. China Ser. A 53 (2) (2010) 431-446.
[14] X. Wang, Y. Chang, R. Wei, Some direct constructions of cyclic ($3, \lambda$)-GDD of type g^{v} having prescribed number of short orbits. http://peace.lakeheadu.ca/Df7/GDD-appen.pdf.
[15] J. Yin, Some combinatorial constructions for optical orthogonal codes, Discrete Math. 185 (1998) 201-219.

[^0]: E-mail addresses: yxchang@bjtu.edu.cn (Y. Chang), rwei@lakeheadu.ca (R. Wei).
 0012-365X/\$ - see front matter © 2011 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2011.01.008

