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Abstract 

In this paper, we study the Kolmogorov and the linear widths on the generalized Besov classes  ,pB θ
Ω

 with mixed 

smoothness in the Monte Carlo setting.  Applying the discretization technique and some properties of pseudo-s-scale, 
we determine the exact asymptotic orders of the Kolmogorov and the linear widths for some values of the parameters 

, ,p q θ .
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1. Notation and main result 

Let ,X Y be Banach spaces and 
0X be the unit ball of X. Let S be a continuous operator from 

0X to Y .

We seek to approximate S by mappings of the form u Nϕ= o , where 0: nN X → � ,

0: ( )N X Yϕ → . N and ϕ  describe a numerical method. We mainly consider the following classes of 

methods. For fixed k ∈� , a rule 0:u X Y→ of the form u Nϕ= o is said to be a Kolmogorov method,

if the information operator N is an arbitrary mapping from 
0X to k�  and ϕ  extends to a linear 

mapping from k� to Y ; a linear method , if the information operator N is the restriction of a continuous 
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linear mapping from from 
0X to k�  and ϕ  extends to a linear mapping from k� to Y . Let 

0 0( , ), ( , )k kD X Y A X Y denote the sets of all Kolmogorov and linear methods which have cardinality 

equal to k , respectively and put 0 0 0 0
0 0

( , ) : ( , ); ( , ) : ( , )
n n

n n
k k

k k

X Y D X Y X Y A X Y
= =

= =U UD A , such that 

0 0 0 0( , ) : ( , ); ( , ) : ( , )n n

n n

X Y X Y X Y X Y
∈ ∈

= =
� �

U UD D A A give rise to the respective classes of 

Kolmogorov and linear methods. Denote by 0( , )X YM  any of the classes of Kolmogorov and linear 

methods in this paper. 

The worst case error of any method 0( , )u X Y∈M  is measured by 

0( , ) : sup{|| ( ) ( ) || , }Ye S u S f u f f X= − ∈ .

Minimizing the errors with respect to the choice of methods within the given class, we get the n -th
minimal error defined by 

1
0( , , , ) : inf{ ( , ), ( , )}n

ne S X Y e S u u X Y−= ∈M M .

Denote ( , , ) : ( , , , )n nd S X Y e S X Y= D ; ( , , ) : ( , , , )n na S X Y e S X Y= A .

Next we pass to the randomized setting. We assume that both 
0X and Y are equipped with their 

respective Borel σ -algebras 0( )XB  and ( )YB , i.e., the σ -algebras generated by the open sets. 

Definition 1[3]. Given a class of methods 0( , )X YM , a triple : ([ , , ], , )F P u kΡ = ΩM  is called an 

M -Monte Carlo method, if  
(1) [ , , ]F PΩ is a probability space; 

(2) 0: ( , )u X YΩ→M is such that the mapping 0: X YΦ ×Ω→ defined by 

( , ) : ( ( ))( )f u fω ωΦ = ,     0f X∈ , ω∈Ω ,

is product measurable into Y and the set 0{( ( ))( ), , }u f f Xω ω∈ ∈Ω is a separable subset in Y ;

(3) The cardinality function :k Ω→ � is a measurable natural number, for which 
( )

0: ( ) ( , )ku u X Yω
ω ω= ∈M , ω∈Ω .

The error of a Monte Carlo method ΡM is defined as 

( ){ }1/2
2

0( , ) : sup || ( ) ( ) || ( ) ,Ye S S f u f dP f Xω ω
Ω

Ρ = − ∈∫M ,

with the cardinality ( ) : ( ) ( )C card k dPω ω
Ω

Μ − Ρ = ∫M . The n -th Monte Carlo error is defined as  

( , , , ) : inf{ ( , ), ( ) 1}MC
ne S X Y e S C card n= Ρ Μ − Ρ ≤ −M MM .

Denote ( , , ) : ( , , , )MC MC
n nd S X Y e S X Y= D  ; ( , , ) : ( , , , )MC MC

n na S X Y e S X Y= A . It is obvious that 

                              ( , , ) ( , , )MC
n nd S X Y d S X Y≤ ;   ( , , ) ( , , )MC

n na S X Y a S X Y≤ .                          (1) 

Now we introduce the generalized Besov classes. Denote by ( ),1d
qL qΤ < < ∞ , the space of q -th 

powers Lebesgue integrable functions defined on the d -dimensional torus : [0,2 )d dπΤ = . Let 
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: {1, , }de d= K , : {1, , }de e d⊂ = K . If 1 1 2{ , , },m me j j j j j= < < <K K , then we write 

1
1: ( , , ), ( ,1 ) : ( , , )

m

e e e
dj jt t t t t t= =

$
K K , where it = it  for i e∈ , it =1 for \di e e e∈ =$ .

Definition 2[4]. For *( ) ltΩ = Ψ , we write , ( )d
pf B θ
Ω∈ Τ  if it satisfies 

(1) 0 ( )d
pf L∈ Τ ;

(2) for any non-empty de e⊂ ,

1/

2 2

0 0

( , )
,1 ,

( ,1 )

el e
p j

e e
j e j

f t dt

tt

θθ
π π

θ
∈

⎧ ⎫⎛ ⎞Ω⎪ ⎪⎜ ⎟ < ∞ ≤ < ∞⎨ ⎬⎜ ⎟Ω⎪ ⎪⎝ ⎠⎩ ⎭
∏∫ ∫ $L  and

0

( , )
sup ,

( ,1 )

e

e

l e
p

e e
t

f t

t
θ

>

Ω
< ∞ = ∞

Ω
$ ,

where ( , ) : sup ( , ) ,
e e

e
e e

l e l
p h ph t

f t f x
≤

Ω = Δ
1

: ( , , )
m

e
j jh h h= K  is the mixed modulus of smoothness. 

Let I denote the identical imbedding operator from the unit ball of , ( )d
pB θ
Ω Τ  to ( )d

qL Τ . We first 

recall some results on the Kolmogorov and the linear widths on , ( )d
pB θ
Ω Τ in the deterministic setting. 

Theorem 1[1]. Let 1( ) ( )dt t tωΩ = K , where *( ) ltω ∈Ψ  for some 0α > . Then for any natural 

numbers M and n  such that 12n dM n −� , we have
( 1)(1/2 1/ )

( 1)(1/2 1/ )

( 1)(1/ 1/ )(1/ 1/ )
,

(1/2 1/ )

(2 ) , 1 2 ,2 ;

(2 ) , 2 ,1 ;

( , , ) (2 )2 , 1 2,1 , 1/ 1/ ;

(2 )2 , 1 2, ' , 2 , 1 1/ ;

(2 )2

n d

dn

d qn n p q
M p q

n n q

n

n q p

n q p

a I B L n p q p q

p p q q q

θ

θ

θ
θ

ω θ
ω θ

ω θ α
ω θ α
ω

+

+

− − −

− −−

Ω − −− −

− −

−

< ≤ < < ∞ ≤ ≤ ∞
< ≤ < ∞ ≤ ≤ ∞

< ≤ ≤ ≤ ≤ ∞ > −
< ≤ < < ∞ ≤ ≤ > −

�

(1/ 1/ ) , 2 , 2 , 1/ 1/ ,n p q p q q p qθ α−

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪ ≤ ≤ < ∞ ≤ ≤ > −⎩

where 1/ ' 1/ 1p p+ = .

Our main result is the following theorem. 
Theorem 2. Under the assumption of Theorem 1, we have

, ,( , , ) ( , , )MC MC
M p q M p qd I B L a I B Lθ θ

Ω Ω� �

( 1)(1/2 1/ )

( 1)(1/2 1/ )

(1/ 1/ )

(1/ 1/2)

( 1)(1/2 1/ )

(2 ) , 1 2 ,2 ;

(2 ) , 2 , 2 ;

(2 )2 , 1 2,1 , 1/ 1/ ;

(2 )2 , 1 2 ,1 2, 1/ ;

(2 ) , 2 , 2 , 1/ 2.

n d

n d

n n p q

n n p

n d

n q p

n q p

p q q p q

p q p

n p q

θ

θ

θ

ω θ
ω θ
ω θ α
ω θ α
ω θ α

− − −

− − −

− −

− −

− − −

⎧ < ≤ < < ∞ ≤ ≤ ∞
< ≤ < ∞ ≤ ≤ ∞

< ≤ ≤ ≤ ≤ > −
< ≤ ≤ < ∞ ≤ ≤ >
≤ ≤ < ∞ ≤ ≤ ∞ >

�

⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

Comparing Theorem 1 with Theorem 2, one can see that the randomized methods lead to considerably 
better rates than those of the deterministic ones for 2 p q≤ ≤ < ∞ . Quantitatively, the gain can reach a 

factor 1 1 1/ 1/( log )d p qM M− − −  roughly. 
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2. Proof of main result 

To prove the main result, we use the discretization technique due to Maiorov[2] to reduce the 
approximation of Besov embedding to those of identity mappings between finite-dimensional spaces. For 
this purpose, we need some auxiliary notations and lemmas. 

We associate every vector 1( , , )ds s s= K whose coordinates are nonnegative integers with the set 

{ }1( ) : 2 2 , 1, ,j js sd
js k k j dρ −⎢ ⎥= ∈ ≤ < =⎣ ⎦ KZ ，

and for n∈� ,  let 

( ,1)

: ( )n
s n

Q k k sρ
≤

⎧ ⎫⎪ ⎪= ∈⎨ ⎬
⎪ ⎪⎩ ⎭

U

be a step hyperbolic cross. Consider the Fourier partial sum operators ( )
n nQ QS f f D= ∗ (see [5]) where 

( , )( )
n n

i k x
Q k Q

D x e
∈

=∑  and a sequence of operators nT  from ,pB θ
Ω  to qL ,

00 0,QT S= =
1
,

n nn Q QT S S
−

= −        for 1n ≥ .

We set 1{ ( , , ) : ( ,1) }d
n dS s s s s n= = ∈ =K �  and ( , ){ : ( ), }

n

i k x
S nF span e k s s Sρ= ∈ ∈ .

     In what follows, we will give the discretization inequalities which are important for the estimates of 
widths. These inequalities can be obtained following the idea in Mathe [3]. Here we omit the proofs. 

Lemma 1. Let Ms denote any of ,MC MC
M Md a . For ,M n∈�  and 1 pθ≤ ≤ , then we have 

(1/2 1/ )(1/ 1/ ) (1/ 1/ )
, ,( , , ) (2 ) | | | | 2 ( , , ).n nS Sqn p n p q

M p q n n M p q p qs I B L S S s Iθ
θ ω −−Ω − − −� � �

Lemma 2. Let Ms denote any of ,MC MC
M Md a . For 1 ,p q< < ∞ , and , kM j ∈� with 

0

,k
k

j M
∞

=

≤∑
then the following inequality holds 

�(1/2 1/ ) (1/2 1/ )(1/ 1/ )
, ,

0

( , , ) 2 | | | | ( , , ),k k

k

S Sp qn p q
kM p q k k j p q p q

k

s I B L S S T s Iθ
− +

∞
− − −Ω −

=
∑� � �

where the operators � kT  from ,pB θ
Ω  to 

kS pF LI  have the same definitions as the operators kT .

Proof of Theorem 2. By the definitions, we have , ,( , , ) ( , , )MC MC
M p q M p qd I B L a I B Lθ θ

Ω Ω≤ . We only need 

to estimate the upper bounds for ,( , , )MC
M p qa I B Lθ

Ω and the lower bounds for ,( , , )MC
M p qd I B Lθ

Ω .

We start with the estimates of the lower bounds and divide our consideration into the two cases 
according to p . First, for max{2, }q p< < ∞ and 1 p< < ∞ , it is sufficient to estimate the lower 

bounds for 1 2q p< ≤ ≤ < ∞ . In this case, we first deal with 2 pθ≤ ≤ . By Lemma 1 and the width 

of finite-dimensional ball [3], for any M , choosing a natural number n  satisfying nM S�  and 

' nr M S≤ , we have 

(1/ 1/ ) (1/2 1/ ) (1/ 1/ )
, ,( , , ) (2 ) | | | | 2 ( , , )n nS SMC n p q n p q MC

M p q n n M p q p qd I B L S S d Iθ
θ ωΩ − − − −� � �

( 1)(1/2 1/ )(2 )n dn θω − − −� .                                                                                 (2) 
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For p θ< , by (2) we can obtain 
( 1)(1/2 1/ )

, ,( , , ) ( , , ) (2 )MC MC n d
M p q M qd I B L d I B L n θ

θ θ θ ωΩ Ω − − −≥ .

Next, for 1 min{2, }p q< ≤  and 1 q< < ∞ , by the monotonicity of qL norm, we only need to 

estimate the lower bounds for 1 2p q< ≤ ≤ . For p θ=  and 2q = , by Lemma 1 and the widths of 

finite-dimensional ball[3], we get 
(1/ 1/2)

, 2( , , ) (2 )2MC n n p
M p pd I B L ωΩ − − .

Further, for p qθ≤ ≤ , we have 

                                 (1/ 1/2)
, 2 , 2( , , ) ( , , ) (2 )2MC MC n n p

M p M p pd I B L d I B Lθ ωΩ Ω − −≥ .                                (3) 

According to the above estimate (3), we obtain 

              (1/2 1/ ) (1/ 1/ )
, , 2( , , ) 2 ( , , ) (2 )2

n n

MC n q MC n n p q
M p q M p S Sd I B L d I B F L Fθ θ ωΩ − Ω − − .            (4) 

For p θ> , by the embedding relation 1
, ,pB Bθ θ θ
Ω Ω⊂ , where 1( ) ( ) , 1/ 1/t t t pβ β θΩ = Ω = −  and the 

estimate (4) , we can still get the required lower bounds. 
   Now we pass to the estimates of the upper bounds. By the relation (1) and Theorem 1, it remains to 
prove the upper bounds for 2 p q≤ < < ∞  and 1 2p q< < ≤ < ∞ . In fact, we only need deal with 

the case 2 p q≤ < < ∞ . By the embedding theorem the latter can also be solved. Similar to the lower 

estimates, by Lemma 2 and the widths of finite-dimensional ball [3], we can obtain the required upper 
bounds. Here we omit the details of proof. 
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