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Abstract

This paper proposes a new robust and quickly convergent pattern search method based on an implementation of OCSSR1
(Optimal Conditioning Based Self-Scaling Symmetric Rank-One) algorithm [M.R. Osborne, L.P. Sun, A new approach to
symmetric rank-one updating, IMA Journal of Numerical Analysis 19 (1999) 497–507] for unconstrained optimization. This
method utilizes the factorization of approximating Hessian matrices to provide a series of convergent positive bases needed in
pattern search process. Numerical experiments on some famous optimization test problems show that the new method performs
well and is competitive in comparison with some other derivative-free methods.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider the unconstrained optimization problem

min f (x) (1.1)

where f (x) : Rn
→ R and f (x) is assumed to be a continuously differentiable function.

To the best of our knowledge, quasi-Newton methods are one of the most classic and effective methods for solving
problems (1.1). If given an approximation B(k) to ∇

2 f (x (k)), H (k) the [∇
2 f (x (k))]−1 and g(k) the gradient ∇ f (x (k))

at current iterate x (k), a search direction d(k) can be obtained:

d(k)
= −H (k)g(k).

Then we implement inexact line search along d(k) to get a new iterate:

x (k+1)
= x (k)

− αH (k)g(k) (1.2)
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where α > 0 is chosen such that

f (x (k)) − f (x (k+1)) ≥ σαg(k)T
H (k)g(k) (1.3a)

and

|g(k+1)T
H (k)g(k)

| ≤ τg(k)T
H (k)g(k) (1.3b)

are satisfied. Here, σ ∈ (0, 1
2 ), τ ∈ (σ, 1).

Finally, update H (k) to H (k+1) by requiring the quasi-Newton equation to hold, which is

H (k+1)y(k)
= s(k)

where y(k)
= g(k+1)

− g(k), s(k)
= x (k+1)

− x (k).
There are a lot of update formulae for generating H (k+1). Among them, Symmetric Rank-One (SR1) method

employs the symmetric rank-one update

H (k+1)
= H (k)

+
(s(k)

− H (k)y(k))(s(k)
− H (k)y(k))T

(s(k) − H (k)y(k))T y(k)
(1.4)

and possesses an interesting finite termination property without requiring exact line searches. However, SR1 update
is unstable in the sense that, even if H (k) is positive definite, H (k+1) may be singular, indefinite or undefined. On
the other hand, the rank-two update, including DFP update and BFGS update, is most widely used in quasi-Newton
methods. Particularly, BFGS update has merits in paratic use. For example, BFGS update could keep the positive
definition of matrix H (k+1) if H (k) is positive definite.

Some recent results on SR1 update show that when SR1 update and some other quasi-Newton updates, such as
DFP update and BFGS update, are available simultaneously, SR1 update is more efficient. Meanwhile, the sequence

of H (k)−1
, the approximation to Hessian matrix of f (x) at iterate x (k), can converge to the actual Hessian matrix at

the solution. This has encouraged a lot of researchers to seek some modified schemes of SR1 update which possess
not only good features of original SR1 update but also greater numerical stability. We consider the self-scaling SR1
formula given by Sun [2]:

H (k+1)
= θ H (k)

+
(s(k)

− θ H (k)y(k))(s(k)
− θ H (k)y(k))T

(s(k) − θ H (k)y(k))T y(k)
. (1.5)

For this update formula, Osborne and Sun [1] proposed a new algorithm(OCSSR1) with Davidon’s optimal condition,
in which the scaling factor θ is taken either as

θ1 =
c

b
−

√
c2

b2 −
c

a
(1.6)

or

θ2 =
c

b
+

√
c2

b2 −
c

a
(1.7)

where a = y(k)T
H (k)y(k), b = s(k)T

y(k) and c = s(k)T
H (k)−1

s(k). Numerical reports show that this algorithm
compares favorably with good implementations of the BFGS method.

It is well-known that when the information of derivatives of objective function is unreliable or unavailable,
those derivative-based methods will not perform well including quasi-Newton methods. This problem inspires an
implementation [3] of OCSSR1 algorithm which compares favorably with good implementations of the BFGS
method. If the derivatives are available, the implementation is equivalent to the OCSSR1 algorithm. Moreover, it
is especially useful when gradient information is estimated by finite difference formulae.

However, in some cases, for example, random errors may render finite difference approximations to the gradient
unreliable. Hence, we cannot only depend on analytical derivatives and need to consider derivative-free methods, such
as direct search methods.
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Pattern search methods are a kind of classic direct search methods. The original pattern search methods were
proposed by Box [4] in the late 1950s and by Hooke and Jeeves [5] in the early 1960s. Owing to their simplicity and
practical use, pattern search methods have been still widely used. Recently, more and more researchers paid attention
to pattern search methods for unconstrained optimization and did a lot of work on them, including multidirectional
search of Dennis and Torczon [6], generalized pattern search method of Torczon [7], and grid-based framework of
Coope and Price [8].

However, every sword has two edges. Although simplicity is its characteristic, the implementation of this algorithm
is relatively time consuming in comparison with the conventional derivative-based algorithms. This is because there
are so many search directions in every pattern search process. To overcome this limitation, many researchers modified
the pattern search methods by adopting some techniques.

Generally speaking, there are two difficulties in improving the pattern search method, i.e., choice of the iterate
acceptance criterion and determination of the search direction set. Filter approach and nonmonotone technique are
used to establish new acceptance criteria [9,10]. For the latter one, in the old time search direction set Φ usually
consisted of a basis of Rn and its opposite direction. Although it is able to explore the full space of Rn , it will bring
too many search directions and consequently reduce the efficiency of algorithms. Recently, positive bases, conjugate
property and parallel processing are used to deal with this problem, especially positive bases [11,12]. Positive basis
is very suitable for replacing basis in Φ. It could explore the full space of Rn too, but the number of its cardinality is
between n + 1 and 2n. For example, if V is a basis of Rn , then

V+ = [V, −V e] (1.8)

is a positive basis of Rn , where e = [1, 1, . . . , 1]
T . Hence, it can reduce at most a half of search directions as before.

However, this replacement brings a new problem, that is how to select a series of different positive bases in algorithms,
which is never referred to in many references to the best of our knowledge.

Based on long-range research on OCSSR1 algorithm and pattern search methods, a new quasi-Newton pattern
search method based on symmetric rank-one update is proposed. In this method, the conjugate factorization of
approximating Hessian matrices B(k) is utilized to provide a series of positive bases which are needed in pattern
search process. The use of conjugate directions will bring benefit to pattern search [13]. Furthermore, the participation
of symmetric rank-one algorithm can accelerate the convergence of pattern search methods and save the function
evaluations. Besides, a switch [14] can be set here to control the choice of difference formulae according to the
property of positive bases which will be detailed below.

This paper is organized as follows. The next section is concerned with a brief description of generalized pattern
search methods. Then an implementation of OCSSR1 algorithm is introduced in Section 3. In Section 4, the framework
of our new method is proposed, while the convergence analysis is examined in Section 5. Finally, numerical results
are reported to show the feasibility and effectiveness of the proposed new method.

2. Pattern search methods

Generally speaking, pattern search methods generate a sequence of iterates {x (k)
} without using any information

of the derivatives, including gradient and second-order derivative, of the objective function. They only depend on
function values. In fact, ordinal information about function values is enough. At each iteration, the objective function
is evaluated at a finite number of trial points (defined below) and the purpose is to look for one point which can yield
a lower function value than the current iterate. If such a point is found, it is set to be the new iterate, and the iteration
is called successful; Otherwise, we declare it unsuccessful and update the trial points.

Torczon [7] generalizes this kind of methods and presents a global convergence theory for them. In Torczon’s
generalized pattern search method, two components are needed, one is a pattern P(k), and the other one is a real scale
factor ∆(k) > 0.

The pattern P(k) consists of a basis matrix A and a generating matrix C (k). Among them, any nonsingular matrix
in Rn×n could be chosen as A and C (k)

∈ Zn×p(p > 2n) could be partitioned into three parts:

C (k)
= [M (k)

− M (k) D(k)
]

where M (k)
∈ M ⊂ Zn×n , M is a finite set of nonsingular matrices, D(k)

∈ Zn×(p−2n) contains at least one column,
the column of zeros.
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Then P(k) could be written as

P(k)
= AC (k)

= [AM (k)
− AM (k) AD(k)

].

It is noted that because both the basis matrix A and the generating matrix C (k) have rank n, the columns of P(k) can
span Rn .

The real scale factor ∆(k) works as a step length parameter. Let C (k)
= [c(k)

1 , c(k)
2 , . . . , c(k)

p ], then a trial step s(k)
i is

defined as any vector of the form

s(k)
i = ∆(k) Ac(k)

i .

In fact, Ac(k)
i determines the direction of the step and at iteration k, all the trial points possess the form of

x (k)
i = x (k)

+ s(k)
i

where x (k) is the current iterate.
Then a generalized pattern search method could be outlined as follows:
Let initial iterate x (0)

∈ Rn , A ∈ Rn×n , C (0)
∈ Zn×p, ∆(0) > 0, k = 0.

While (Stopping conditions do not hold) do

Step 1. Find a step s(k) using Exploratory Moves(∆(k), AC (k)).
Step 2. If f (x (k)

+ s(k)) < f (x (k)), then x (k+1)
= x (k)

+ s(k). Otherwise, x (k+1)
= x (k).

Step 3. Update C (k) and ∆(k)to C (k+1) and ∆(k+1), k = k + 1.

More specific information about generalized pattern search method can be seen in [7].
Torczon’s generalized pattern search method (GPSM) could be regarded as a method on successively refined

meshes G(k)
= {x (k)

+ ∆(k) Ac(k)
i }, where c(k)

i , i = 1, 2, . . . , p are the columns of C (k). Later, Coope and Price [8]
proposed a class of grid-based methods (GBM) which are similar to Torczon’s method, but permit greater freedom in
the orientation and scaling of successive grids.

Compared with GPSM, the analogues of the matrix A, C (k) and the scaling factor ∆(k) in GBM are less restricted.
Firstly, in GPSM A is fixed and independent of iteration k and only the integer matrix C (k) could be changed in every
iteration. However, in GBM Coope and Price use positive bases to replace A and they could change from time to
time. Secondly, at every iteration GBM also considers other trial points on the grid besides the points on the directions
of positive bases. This behavior equals the effects of integer matrix C (k) in GPSM. Finally, the mesh size in GBM
could be irrational, while the scaling factor ∆(k) in GPSM only could be rational. Anyway, they are both proved to be
convergent by different methods.

3. An approach to symmetric rank-one update without derivatives

As the BFGS update formula and the original SR1 update formula [15], formula (1.5) too could be written in
product form and consequently generates an implementation of OCSSR1 algorithm.

At first, we rewrite update formula (1.5) in product form:

H (k+1)
= (I + u(k)v(k)T

)θ H(I + u(k)v(k)T
)T (3.1)

where

u(k)
= µ(s(k)

− θ H (k)y(k)) (3.2)

v(k)
=

(B(k)s(k)
− θy(k))

θ
(3.3)

µ =
−θ ±

√
(cθ − bθ2)/(b − aθ)

c − 2bθ + aθ2 . (3.4)

Let

B(k)−1
= L(k)L(k)T

,

where L(k)
= [l(k)

1 , l(k)
2 , . . . , l(k)

n ] is a nonsingular n × n matrix.
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Then (1.5) equals to

L(k+1)
=

√
θ [I + u(k)v(k)T

]L(k). (3.5)

Clearly, two points should be noted:

Firstly, Osborne and Sun [1] pointed out that if θ > 0 and s(k)T
y(k) > 0, then H (k+1) is positive definite if and

only if

θ 6∈

[
s(k)T

y(k)

y(k)T H (k)y(k)
,

s(k)T
H (k)−1

s(k)

s(k)T y(k)

]
. (3.6)

Thus, in (3.4), it always holds that (cθ−bθ2)
(b−aθ)

> 0. In addition, c − 2bθ + aθ2 > 0 because ac ≥ b2.

Secondly, the columns of L(k) satisfy the conjugacy conditions{
l(k)
i

T
B(k)l(k)

j = 0, i 6= j,

l(k)
i

T
B(k)l(k)

i = 1, otherwise

and L(k) is not unique here. In fact, if L(k) is post-multiplied by a n × n orthogonal matrix N , then we have

L(k)N · (L(k)N )T
= L(k)N N T L(k)T

= L(k)L(k)T
= B(k)−1

.

L(k)N has the same property as L(k).

Now let ĝ(k)
= L(k)T

g(k), and its components are:

ĝ(k)
i = l(k)

i
T

g(k) i = 1, 2, . . . , n. (3.7)

They are just the directional derivatives of f (x) in the directions l(k)
i , i = 1, 2, . . . , n, which are the columns of L(k).

At the same time, we obtain the quasi-Newton direction

d(k)
= −L(k)ĝ(k).

According to (3.7), the components of ĝ(k) from ĝ(k)
1 to ĝ(k)

n could be calculated directly by finite difference method,
and there are two kinds of difference formulae to be chosen, i.e., forward difference formula and the more accurate
central difference formula.

Forward difference formula:

ĝ(k)
i =

f (x (k)
+ δi l

(k)
i ) − f (x (k))

δi
+ O(δi ). (3.8a)

Central difference formula:

ĝ(k)
i =

f (x (k)
+ δi l

(k)
i ) − f (x (k)

− δi l
(k)
i )

2δi
+ O(δ2

i ). (3.8b)

Now let

ω(k)
= L(k)T

v(k) (3.9)

then

u(k)
= θµL(k)ω(k) (3.10)

and

L(k+1)
=

√
θ L(k)

[I + θµω(k)ω(k)T
]. (3.11)
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Moreover, we have

ŷ(k)
= L(k)T

y(k)
= ğ(k+1)

− ĝ(k), (3.12)

where ğ(k+1)
= L(k)T

g(k+1) and (3.9) can be written as

ω(k)
= −

[
ŷ(k)

+

(α

θ
ĝ(k)

)]
. (3.13)

In order to calculate θ , the following equations are obtained by using (3.12) and ĝ(k)
= L(k)T

g(k):

a = ŷ(k)T
ŷ(k) (3.14a)

b = −αĝ(k)T
ŷ(k) (3.14b)

and

c = α2ĝ(k)T
ĝ(k). (3.14c)

Finally, we will consider the key point of the implementation, that is how to choose θ . θ is chosen by a heuristic

strategy which aims at making κ(L(k+1)L(k+1)T
) smaller, where κ(·) denotes the condition number of a matrix. We

choose θ = θ1 except when the following condition is satisfied:

Tr(L(k+1)L(k+1)T
)θ=θ1 ≥ Tr(L(k+1)L(k+1)T

)θ=θ2 (3.15)

where Tr(·) is the trace of a matrix. In fact, from Osborne and Sun [1] we know that

det(L(k+1)L(k+1)T
)θ=θ1 ≤ det(L(k+1)L(k+1)T

)θ=θ2 (3.16)

which implies that

n∏
i=1

λ
θ1
i <

n∏
i=1

λ
θ2
i

where λθ
i are the eigenvalues of the matrix (L(k+1)L(k+1)T

)θ at θ = θ j ( j = 1, 2) with λθ
1 ≤ λθ

2 ≤ · · · ≤ λθ
n . On the

other hand,

Tr(L(k+1)L(k+1)T
)θ =

n∑
i=1

λθ
i .

Thus, κ(L(k+1)L(k+1)T
)θ=θ2 is probably smaller than κ(L(k+1)L(k+1)T

)θ=θ1 when (3.15) holds. It is not difficult to

calculate the values Tr(L(k+1)L(k+1)T
). For the initial L(1)

= I , we have

Tr(L(k+1)L(k+1)T
) = θ

[
Tr(L(k)L(k)T

) +
r (k)T

r (k)

ω(k)T ŷ(k)

]

= θ

[
√

θTr(L(k)L(k)T
) + θ

3
2 µ‖r (k)

‖
2
2 +

r (k)T
r (k)

ω(k)T ŷ(k)

]
(3.17)

where r (k)
= L(k)ω(k).

4. Framework

It is obvious that the updating of L at every iteration could provide a series of positive bases as discussed in
Section 3 and this is just what we need. Consequently, we can certainly combine this process with grid-based pattern
search methods. The positive basis generated from unit matrix I by (1.8) could be regarded as the initial search
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direction set Φ. When a round of searchings finishes and not any successful step is taken, we will record the current
iterate and call it pattern search point in this paper. Directional derivatives of f (x) at current iterate in the search
direction set Φ can be calculated by finite difference method, and hence a quasi-Newton direction is obtained. Then
inexact line search along this quasi-Newton direction can be done to seek a new iterate and update L(k) to L(k+1) at
the same time. Last, we generate a new positive basis from L(k+1) by (1.8) again, which consists of the new search
direction set, and start a new pattern search process along directions in the new Φ. As the process repeats, a sequence
of pattern search points are obtained. These can converge to one or more stationary points of the objective function
f (x).

For convenience, we drop the subscript + to denote positive basis in this paper.

Algorithm SR1P (Symmetric Rank-One Update Pattern Search Method)

Initialize k = 1, m = 1, L(1)
= I . Let x (1) be the initial point and produce positive basis Ṽ (1)

+ from L(1) by (1.8).

Set V (1)
+ = Ṽ (1)

+ and F (m)
= ξ , where ξ is a positive constant.

While (Stopping condition does not hold [see Remark 4.2]) do

Step 1. Choose grid mesh size h(k). Set i = 1, num = 0. Let η(k)
= |V (k)

+ |, where |V (k)
+ | denotes the number of

columns in matrix V (k)
+ .

Let Σ (m) denote the grid generated by current iterate x (k), grid mesh size h(k) and positive basis V (k)
+ .

Step 2. While (num < η(k)) do
(a) Calculate the values of f (x) on a finite number of points on grid Σ (m) including {x (k)

+ h(k)υ
(k)
+i }, where

υ
(k)
+i denotes the i th column vector in V (k)

+ .
If there is any point xtempt which satisfies

f (xtempt) < f (x (k)) − (h(k))2,

let it be x (k+1). h(k+1)
= φh(k), where φ is a positive integer. If h(k+1) > F (m), let h(k+1)

= h(k). Set
V (k+1)

+ = V (k)
+ .

k = k + 1.
num = 0.
else,
num = num + 1.

(b) Set i = i + 1.
If i > η(k), set i = 1.
end

Step 3. Let x̃ (m)
= x (k) and h̃(m)

= h(k).
Step 4. Construct directional derivatives ĝ(m) at x̃ (m) in every directions in L(k) from (3.8) according to the property

of positive bases.
Step 5. d(m)

= −L(m)ĝ(m).
Step 6. Implement inexact line search to look for a descent point x (k+1) along direction d(m) such that criterion

(1.3a) is satisfied, which is

f (x (k+1)) ≤ f (̃x (m)) − σαĝ(m)T
ĝ(m),

where σ = 0.0001 is a typical value.
Step 7. Estimate the vector gtempt of directional derivatives at x (k+1) in every direction in L(m) from difference

formulae (3.8). Let ŷ(m)
= gtempt − ĝ(m). If ‖ŷ(m)

‖2 ≥ ε1, continue to step 8; Otherwise, terminate the
algorithm.

Step 8. If ĝ(m)T
ŷ(m) > −ε2‖ĝ(m)

‖2‖ŷ(m)
‖2,

set L(m+1)
= L(m), V (m+1)

+ = V (m)
+ and go to step 13.

Step 9. If −(αĝ(m)
+ ŷ(m))T ŷ(m) > ε2‖αĝ(m)

+ ŷ(m)
‖3‖ŷ(m)

‖2,
set θ = 1 and go to step 12. Otherwise, continue to step 10.
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Step 10. If ‖L(m)(ŷ(m)
+ αγ ĝ(m))‖2 ≤ ε3,

where a = ŷ(m)T
ŷ(m), b = −αĝ(m)T

ŷ(m) and γ =
a
b , set

L(m+1)
=

1
√

γ
L(m)

and go to step 13. Otherwise, calculate θ1 and θ2 by (1.6) and (1.7).
Step 11. Determine θ .
Step 12. Update L(m) to L(m+1) by (3.9)–(3.11).
Step 13. Produce Ṽ (m+1)

+ = [L(m+1), −L(m+1)e], let V (k+1)
+ = Ṽ (m+1)

+ and set
F (m+1)

= ζ F (m), where ζ ∈ (0, 1).
k = k + 1, m = m + 1.

End
This algorithm consists of two loops, i.e., inner loop and outer loop. The inner loop (step 2) searches the new

iterate along all the members of positive basis V (k)
+ in turn. In step 2(a) the finite number of points on grid could be

only x (k)
+ h(k)υ

(k)
+i or include some other points which are random. num is the number recording the times of failed

search. When num = η(k), it means that no improved point can be found around the current iterate. Hence, a pattern
search point, just the current iterate, is obtained. Then the inner loop finishes and the outer loop begins. It is noted that
because we use not simple decrease but sufficient decrease here, the current iterate may not be a pattern search point.
However it does not influence the convergence of the Algorithm SR1P and the use of sufficient decrease can reduce
the number of iteration. Consequently, such a point is still acceptable to us and we just call it acceptable pattern search
point. Compared with the inner loop, the outer loop is used to choose grid mesh size, generate quasi-Newton direction,
employ inexact line search, update L and produce positive basis. Besides, because Algorithm SR1P is a grid-based
algorithm, we just use the grid mesh size h(k) as the difference interval. In a word, these two loops work together to
look for acceptable pattern search points and positive bases.

Remark 4.1. It is well-known that when an acceptable pattern search point x̃ (m) is found, the objective function
has been evaluated at a finite number of points including {̃x (m)

+ h̃(m)υ̃
(m)
+i , i = 1, 2, . . . , η̃(m)

} and x̃ (m), where

η̃(m)
= |Ṽ (m)

+ |. Thus, if forward difference formula (3.8a) is used in Algorithm SR1P, no more function value is
needed. Even if central difference formula (3.8b) is chosen, only n function values must be calculated. Although
more function values are needed in central difference formula, this formula is more accurate than forward difference
formula. Consequently, the choice of these two alternative formulae is very important for us.

Consider the simplest positive basis

V+ = [V, −V e],

where V = [v1, v2, . . . , vn] is an arbitrary basis of Rn and e = [1, 1, . . . , 1]
T . Let

f0 = f (x),

fi = f (x + hυi ), i = 1, 2, . . . , n

fn+1 = f (x − hV e),

where h is set by the grid mesh size.
Then, we want to obtain ĝ by solving (n + 1) equations:

ĝi =
( fi − f0)

h
, i = 1, 2, . . . , n (4.1)

−(ĝ1 + ĝ2 + · · · + ĝn) =
fn+1 − f0

h
. (4.2)

Their solution is

ĝi =
fi − f

h
, (4.3)

where f =
f1+ f2+···+ fn+1

n+1 .
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Consequently, when we ignore the O(h) terms, the values obtained by forward difference formula is the same
as that of (4.3). However, we find that if x is sufficiently close to a strict local minimizer, these two values will be
different, the reason is that in this case

f0 < f j

then we have

(n + 1) f0 <

n+1∑
j=1

f j ,

f0 < f .

So the value of (4.1) and (4.3) will not be the same.
According to this result, a switch can be set in the process of difference. If the value of both (4.1) and (4.3) are

within a relative tolerance, such as 5% or 10%, either of them could be accepted. Otherwise, we will give up forward
difference formula and utilize central difference formula. This switch can help us to judge when to use forward
difference formula and when to use central difference formula by only requiring an extra function value.

Remark 4.2. In general pattern search methods, the process of adjusting the grid mesh size is a little complex. In
Algorithm SR1P, we use a simple self-adjusting method to adjust h. When a new iterate is found, we will augment
h by scale and when an acceptable pattern point is obtained, h will be reduced by scale too. This behavior can avoid
making h too large or too small, which will decrease the efficiency of algorithms.

Furthermore, h is also used to set stopping condition in Algorithm SR1P as in a lot of pattern search methods.
When the mesh size h < ε, the algorithm will terminate. This criterion is simple and widely used in the literature.

Moreover, there is another stopping condition in step 7 in Algorithm SR1P which is concerned with ‖ŷ(m)
‖2. If

‖ŷ(m)
‖2 ≥ ε1, continue to step 8. Otherwise, terminate the algorithm.

Consequently, it is noted that the participation of the implementation of OCSSR1 algorithm can accelerate the
convergence of pattern search methods. For example, even if the initial iterate x (1) is the global minimizer of the
objective function, the pattern search algorithm cannot terminate, it will go on running until the grid mesh size is
small enough. However, when such a problem occurs in Algorithm SR1P, the stopping condition in step 7 will be
satisfied and the algorithm will terminate after a turn of one pattern search.

5. Convergence analysis

It is noted that Algorithm SR1P generates not a sequence of pattern search points but a sequence of acceptable
pattern search points. However, it does not influence the convergence of the algorithm, because the grid mesh size h(k)

will tend to zero when k goes to +∞. As such, the convergence of the Algorithm SR1P can be guaranteed according
to Theorem 4.1 in [8]. For completeness, the whole proof is given as follows.

Theorem 5.1 (Convergence of Algorithm SR1P). Consider problem (1.1), assume that:

(1◦) f (x) is continuously differentiable;
(2◦) The sequence of iterates {x (k)

} generated from Algorithm SR1P is bounded;
(3◦) ‖H (m)

‖2 ≤ K , where K is positive constants independent of m;
(4◦) limm→∞ h(m)

= 0,

then each cluster point of the sequence of acceptable pattern search points is a stationary point of f (x).

Proof. Firstly, we will prove that the sequence of acceptable pattern search points generated in Algorithm SR1P is
infinite.

In Algorithm SR1P we use {̃x (m)
} to denote the sequence of acceptable pattern search points, which is the

subsequence of {x (k)
}.

We can know from (2◦) that there exists a compact set Γ which satisfies {x (k)
} ⊂ Γ . So the set Γ ∩ Σ (m) is

finite, where Σ (m) denotes the grid on iteration m. Furthermore, because each iterate selected by sufficient decrease
is distinctly different from all others, only a finite number of iterates is generated using Σ (m). Then it follows from
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the finiteness of step 2(a) in the inner loop of Algorithm SR1P that this algorithm generates only a finite number of
iterates using each grid. The only way the algorithm can change from the grid Σ (m) is, if the last iterate generated
using the grid Σ (m) is an acceptable pattern search point.

Consequently, the sequence of acceptable pattern search points is infinite.
We can know from condition (3◦) that for all m,

‖H (m)
‖2 = ‖B(m)−1

‖2 = ‖L(m)L(m)T
‖2 = ‖L(m)T

‖
2
2 ≤ K .

Then

‖L(m)T
‖2 ≤

√
K .

From the compatibility of matrix norm, there exists a positive constant β which satisfies

β‖L(m)T
‖∞ ≤ ‖L(m)T

‖2,

and it follows that

‖L(m)
‖1 = ‖L(m)T

‖∞ ≤
1
β

‖L(m)T
‖2 ≤

√
K

β
.

‖l(m)
i ‖1 ≤

√
K

β
, i = 1, 2, . . . , n.

Because positive bases {V (m)
+ } are generated from {L(m)

} by (1.8), there exists a positive constant K ′ such that for
all m

‖υ
(m)
+i ‖1 ≤ K ′, i = 1, 2, . . . , η

where η = η(m), η(m)
= |V (m)

+ |.

Then we choose a specific cluster point x̃ (∞) of {̃x (m)
}. Because ‖υ

(m)
+i ‖1 ≤ K ′ for all m and i = 1, 2, . . . , n, there

is a subsequence {x (m)
} of {̃x (m)

} which has a unique limit x̃ (∞), and corresponding subsequences {υ
(m)
+i } of {υ

(m)
+i }

which has a unique limit {υ
(∞)
+i } for i = 1, 2, . . . , n.

All the positive bases {V (m)
+ } in Algorithm SR1P are generated from {L(m)

} by (1.8). Accordingly, they have the
same structure and

lim
m→∞

υ
(m)
+i = υ

(∞)
+i , ∀i = 1, 2, . . . , η,

‖υ
(∞)
+i ‖1 ≤ K ′, ∀i = 1, 2, . . . , η.

Furthermore, the fact that the sequence of B(k) could converge to the actual Hessian matrix at the solution indicates
that {υ

(∞)
+1 , υ

(∞)
+2 , . . . , υ

(∞)
+n } is a basis of Rn . Hence, {υ

(∞)
+1 , υ

(∞)
+2 , . . . , υ

(∞)
+η } is also a positive basis possessing the

same structure with all {Ṽ (m)
+ }.

Now, for all i ∈ 1, 2, . . . , η,

f (x (m)
+ h

(m)
υ

(m)
+i ) ≥ f (x (m)) − (h

(m)
)2. (5.1)

Furthermore,

f (x (m)
+ h

(m)
υ

(m)
+i ) = f (x (m)) +

∫ h
(m)

t=0
[g(x (m)

+ tυ(m)
+i ) − g(m)

+ g(m)
]
T υ

(m)
+i dt

= f (x (m)) + h
(m)

(g(m))T υ
(m)
+i + E (m)

i (5.2)

where g(x) ≡ ∇ f (x), g(m)
≡ g(x (m)) and

E (m)
i =

∫ h
(m)

t=0
[g(x (m)

+ tυ(m)
+i ) − g(m)

]
T υ

(m)
+i dt.
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Then

|E (m)
i | ≤

∫ h
(m)

t=0
K ′M (m)

i dt = h
(m)

K ′M (m)
i ,

where M (m)
i = max{‖g(x (m)

+ tυ(m)
+i ) − g(m)

‖1 : t ∈ [0, h
(m)

]}.
From the continuity of g and the compactness of Γ we can know that g is uniformly continuous on Γ . The bound

on ‖υ
(m)
+i ‖1 and condition (4◦) ensure that

lim
m→∞

M (m)
i = 0.

We can know from (5.1) and (5.2) that for all i = 1, 2, . . . , η,

h
(m)

(g(m))T υ
(m)
+i + h

(m)
K ′M (m)

i ≥ −(h
(m)

)2. (5.3)

Hence, condition (4◦) implies that when m → +∞, we have

(g̃(∞))T υ
(∞)
+i ≥ 0 ∀ i = 1, 2, . . . , η,

where g̃(∞)
≡ g(̃x (∞)).

It follows from Theorem 2.1 in [8] that g̃(∞)
= ∇ f (̃x (∞)) = 0.

Because the choice of the cluster point is arbitrary, every cluster point of the sequence of acceptable pattern search
points is a stationary point of the objective function.

The proof is completed. �

Remark 5.1. Theorem 5.1 gives the convergence of Algorithm SR1P without the stopping condition in step 7. Even
when this stopping condition is considered, the convergence of Algorithm SR1P can still be guaranteed by the property
of line search which accelerates the convergence of Algorithm SR1P at the same time.

Remark 5.2. In Algorithm SR1P, the reasons that all the positive bases are generated from (1.8) are that it is the
simplest form of positive basis possessing the minimal cardinality and for convenience of proving. However, this is
not the only choice and the use of (1.8) may not always be more efficient. More positive bases with other generating
methods can also be used and the convergence theorem will still hold with a little modification.

6. Numerical results

Numerical experiments on some famous optimization test problems are implemented to test the efficiency of the
proposed algorithm. All tests are implemented on a PC with 2.66 GHz Pentium 4 and 256 MB SDRAM using Matlab
6.5.

In our algorithm, we let ε1 = 10−8, ε2 = ε3 = ε = 10−5 and restrict the number of iterations within 10 000.
The test functions are outlined as follows:

TF. 1 Beale x (1)
= (1, 1),

TF. 2 Rosenbrock x (1)
= (−1.2, 1),

TF. 3 Extended Powell x (1)
= (3, −1, 0, 1, . . . , 3, −1, 0, 1),

TF. 4 Dixon x (1)
= (−2, −2, −2, −2, −2, −2, −2, −2, −2, −2),

TF. 5 Hilbert x (1)
= (−4, −2, −1.333, −1),

TF. 6 Power x (1)
= (1, 1, . . . , 1),

TF. 7 Trigonometric x (1)
= (1/n, 1/n, . . . , 1/n),

TF. 8 Brown Badly Scaled x (1)
= (1, 1),

TF. 9 Modified Cragg x (1)
= (1, 2, 2, 2),

TF. 10 Broyden Tridiagonal x (1)
= (−1, −1, . . . ,−1),

TF. 11 Brown and Dennis x (1)
= (25, 5, −5, −1),

TF. 12 Wood x (1)
= (−3, −1, −3, −1),

TF. 13 Penalty x (1)
= (1, 2, . . . , n),

TF. 14 Tridia x (1)
= (1, 1, . . . , 1),
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Table 6.1
Numerical results for Algorithm SR1P

Function Dimension Nt N f ft f ∗

TF. 1 N = 2 29 85 0 0
TF. 2 N = 2 29 89 0.368 × 10−20 0
TF. 3 N = 4 59 260 0.678 × 10−10 0
TF. 4 N = 10 20 180 0.740 × 10−31 0
TF. 5 N = 4 23 106 0.196 × 10−37 0
TF. 6 N = 20 2 51 0 0

N = 50 2 111 0 0

TF. 7 N = 5 59 315 0.585 × 10−16 0
TF. 8 N = 2 149 427 0 0
TF. 9 N = 4 37 161 0.175 × 10−8 0
TF. 10 N = 10 14 149 0.136 × 10−8 0
TF. 11 N = 4 257 1144 0.858222 × 105 85822.2
TF. 12 N = 4 123 516 0.239 × 10−19 0
TF. 13 N = 4 70 411 0.225 × 10−4 0.225 × 10−4

TF. 14 N = 10 21 196 0.829 × 10−33 0
N = 50 75 3034 0.703 × 10−15 0

where TF. 1, TF. 2, TF. 3, TF. 4, TF. 7, TF. 8, TF. 10, TF. 11 and TF. 12 appear in More et al. [16]; TF. 4 appears in
Wolfe and Viazminsky [17]; TF. 5 appears in Schittkowski [18]; TF. 6 appears in Spedicato [19]; TF. 9 appears in Gill
and Murray [20]; TF. 13 and TF. 14 appear in Shanno [21].

For each test function, Table 6.1 reports the numerical results of Algorithm SR1P, including the dimension of the
objective function argument (N ), the number of iterations (Nt ), the number of function evaluations (N f ), the value of
the objective function at the termination point xt ( ft ) and the value of the objective function at the minimum x∗ ( f ∗).

Table 6.2 presents the experiment results on the examples adopted in Algorithm NGOCSSR1 [3]. For the purpose
of comparison, the number of function evaluations (N f ) and the value of the objective function at the termination
point xt ( ft ) are given.

Table 6.2
Comparison of SR1P with NGOCSSR1

Function Dimension Algorithm N f ft

TF. 1 N = 2 SR1P 85 0
NGOCSSR1 81 0.339 × 10−10

TF. 2 N = 2 SR1P 89 0.368 × 10−20

NGOCSSR1 124 0.148 × 10−10

TF. 3 N = 4 SR1P 260 0.678 × 10−10

NGOCSSR1 387 0.543 × 10−10

TF. 4 N = 10 SR1P 180 0.740 × 10−31

NGOCSSR1 971 0.353 × 10−10

TF. 5 N = 4 SR1P 106 0.196 × 10−37

NGOCSSR1 47 0.598 × 10−11

TF. 6 N = 20 SR1P 51 0
NGOCSSR1 1480 0.699 × 10−10

N = 50 SR1P 111 0
NGOCSSR1 819 0.183 × 10−13

TF. 7 N = 5 SR1P 315 0.585 × 10−16

NGOCSSR1 355 0.845 × 10−11
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Table 6.2 (continued)

Function Dimension Algorithm N f ft

TF. 8 N = 2 SR1P 427 0
NGOCSSR1 58 0.575 × 10−14

TF. 9 N = 4 SR1P 161 0.175 × 10−8

NGOCSSR1 455 0.726 × 10−10

TF. 10 N = 10 SR1P 149 0.136 × 10−8

NGOCSSR1 845 0.158 × 10−11

TF. 11 N = 4 SR1P 1144 0.858222 × 105

NGOCSSR1 209 0.858222 × 105

TF. 12 N = 4 SR1P 516 0.239 × 10−19

NGOCSSR1 354 0.266 × 10−11

TF. 13 N = 4 SR1P 411 0.225 × 10−4

NGOCSSR1 653 0.225 × 10−4

TF. 14 N = 10 SR1P 196 0.829 × 10−33

NGOCSSR1 255 0.188 × 10−11

N = 50 SR1P 3034 0.703 × 10−15

NGOCSSR1 5053 0.647 × 10−18

It can be seen from Table 6.1 that Algorithm SR1P is practical and efficient. Furthermore, Table 6.2 shows that this
algorithm is competitive when compared with some other derivative-free algorithms, such as [3]. Even when facing
some functions with higher dimension, such as TF. 4, TF. 6, TF. 10 and TF. 14, it can still perform well with a small
number of function evaluations.

7. Conclusions

This paper proposes a new pattern search algorithm based on an implementation of OCSSR1 algorithm for
unconstrained optimization. Incorporating such symmetric rank-one update algorithm (i.e. OCSSR1) into the
framework of the conventional pattern search algorithm, a series of different positive bases can be obtained. Apart
from this, the participation of the implementation of OCSSR1 algorithm can help in accelerating the convergence of
pattern search methods and save the function evaluation number. In addition, a switch of Coope and Price [14] based
on positive bases is utilized here to determine how to choose the difference formula in the process of differences. The
results from numerical experiments show that the new algorithm is practical, efficient and performs better than some
other derivative-free algorithms.

Anyway, the pattern search methods are a kind of classic, simple and efficient method for unconstrained
optimization. More modifications could be made by incorporating some new elements into pattern search methods
to develop and perfect them!
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