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Abstract-An algorithm and the corresponding computer program for solution of the scattered data 
interpolation problem is described. Given points (xk, y,, fi). k = I,. , N a locally defined function F(x, y) 
which has the property F(x,, yk) = fk, k = 1,. . . , N is constructed. The algorithm is based on a weighted 
sum of locally defined thin plate splines, and yields an interpolation function which is differentiable. The 
program is available from the author. 

1. INTRODUCTION 

problem of constructing interpolation functions for sets of scattered data in two in- 
dependent variables has been treated in many papers. The survey paper on approximations to 
multivariate functions by Schumaker[l] contains extensive references. Other survey papers are 
by Barnhill[2] and Sabin[3]. The present author has surveyed and tested a number of 
algorithms for solution of the problem [4,51. Conceptually the problem is quite simple: Given 
Points (x/o Yk, fkh k = 1,. . . , N, with distinct (xk, yk), construct a function F(x, y) so that 
Fbk,yk)=fk, k= I,... , N. Generally one wants to have a smooth interpolant, F(x, Y)~ in the 
sense that low order partial derivatives are everywhere continuous. This is complicated for 
large sets of data by the fact that the interpolant (in a practical sense, to be computable) must 
be local, so that its value at some point (x, y) depends only on (xk, yk, fk) values for which (xk, yk) 
is “close” to (x, y). A general framework for a class of such methods is given in[6], and we will 
discuss it briefly in Section 2. 

While a large number of ideas have been proposed for solution of the problem, a much smaller 
number of working computer programs are readily available. These include: (1) a method based 
on finite element functions defined over triangles, due to Akima[7,8], a version of which is 
available in the IMSLt library under the name IQHSCV, (2) a program based on a similar idea, 
due to Lawson[9], (3) two programs based on weighted local approximations by quadratic 
functions, due to Franke and Nielson[ lo]. A program by Little [ 111, and another by Nielson[ 121, 
both based on finite element functions defined over triangles, will probably be available by 
press time. All of these programs have been tested by the author [4,5], and most perform 
adequately in a variety of cases; None of them seems to have a clear edge over all the others, 
or to be entirely satisfactory. For certain applications, each has its good points. The choice of a 
method for most users will be based on subjective criteria which vary from person to person 
and application to application. It is not surprising this is the case in two variables since it is also 
the case in one variable, although perhaps to a lesser extent. 

The purpose of this paper is to document an alternative scheme which performed compar- 
ably well in the previously mentioned tests. In this way the computer program will be brought 
to the attention of potential users, who may request it from the author. The method will 
supplement the currently available codes in that it is based on a different approach. It is 
anticipated that it will find application and approval in a variety of areas. 

The theoretical background for the method is discussed in Section 2, while details of the 
program are outlined in Section 3. Section 4 gives information concerning usage of the program. 
Several examples are given in Section 5, including perspective plots of some surfaces generated 
by the program. Included is an example of how the variation of a parameter in the method 
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affects the surface. General guidelines for choice of this parameter are given, even though the 
suggested value usually leads to satisfactory results. A general discussion of the features of the 
method is given, along with general guidance for use of the program. 

LTHEORETICALBACKGROLJND 

The general idea encompassing this scheme and many others is given in [6]. Consider that 
the points (Xk, yk,fk), k = 1,. . . , iV are given. Briefly, local approximations to the data are 
constructed, and these are then blended together by using weighting functions which form a 
partition of unity on R’. We pause to give the necessary notation and definitions. 

A set of functions, Wi(Xt y), i = 1,. . . , m is said to form a partition of unity if each 

Wi(X, y) 2 0 and 2 Wi(X, y) i 1. The Wi will be called weight functions. Let the support of Wi be 
i=l 

denoted by Si = closure {(x, y): Wi(X, y) # 0). Let 4 = {k:(xk, yk) E Interior (S,)}. Now suppose 
that the functions Qi(X, y), i = 1,. . . , m, are defined on Si and have the property that they 
interpolate the data whose (x, y) coordinates are in Interior (s), i.e. if k Eli, then Qi(xk, yk) = fk. 
These functions Qi will be called local approximations. We then consider the function 

F(x, y) = ? Wi(X, y)Qi(W, y). Its properties are summarized in the following. 
i=l 

Proposition. The function F(x, y) = z Wi(X, y)Qi(X, y) has the following properties: 
i=l 

(2) Smoothness; F(x, y) is at least as smooth as the Wi and Qi, e.g., if all of the functions Wi, 
Qi, i=l,..., m have continuous first derivatives, so does F(x, y). 

(3) Local dependence on the data; Let (x, y) be fixed, and let .& = {i: Wi(X, y) # 0}, then 
F(x, y) depends only on the (xk, yk,fk) points for which k E( U 4) U {i: some Qi, jE JX.Y 

i% 

depends on (Xi, yi, fi)}. In particular, we have F(x, y) = Jq, Wi(X, y)Qi(X, y). 

These properties are essentially observations, but form the basis for construction of 
appropriate weight functions which will allow easy determination of the set &. Our con- 
struction yields a set of at most four nonzero terms in the sum defining F(x, y). This provides a 
considerably faster process during the evaluation of the interpolant than was possible in the 
choices previously considered [6]. 

It has been implied, but is not necessary for the proposition to hold, that many of the weight 
functions, Wi, have finite support. In order for the local approximations Qi(Xv y) to actually be 
local, this will likely be the case. Therefore, we think of weight functions whose support, Sip 
Contains relatively few (xk, yk) points, and whose SUppOrt iS Often lOCal. In order for the 
interpolant to be defined on all of R*, some sets Si must not be finite, and typically would 
contain points (xk, yk) on or near the boundary of the convex hull of the set of points {(xk, ye)}. 
With this framework and ideas in mind, we are ready to discuss the specific details of the 
algorithm. 

3,DETAILSOFTHEALGORITHM 

3.1 Choice of weight functions 
While the choice of weight functions was allowed to determine the support regions in the 

discussion of the previous section, it is more convenient to proceed from support regions to 
weight functions in the actual application. The use of support regions which are rectangles have 
specific advantages in terms of controlling the number of support regions in which a particular 
point (x, y) lies, as well as simplifying determination of those regions. 

Let n, and nY be given positive integers, and let finite values of & < f, < Z2 < . . . < f, < 
inI+, and jJ, < J, < J2. . . . <jnn,<jnn,+, be given. For each i=1,2 ,..., n, and j=1,2 ,..., n, 
let ri,j = [Zi_lt ii+,] X [A_,, jj+,]. Let Hi = 1 - 3s2+ 2s3, the Hermite cubic satisfying H,(O) = 1, 
H,(l) = H;(O) = H;(l) = 0, as shown in the sketch. We then define piecewise cubits with 
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I+(S) 

continuous first derivatives, which are nonzero only on two adjacent intervals, and satisfy 

Oi(Xj) = Sib i,j= 1,2 ,...f n, 

uj(Yi) = aji i,j=1,2 ,..., n Y- 

In particular we take 

1 , 

x-f, 
u,(x) = Hx - 

( ) i*-n, ’ 

.O 9 

0 

1 - vi-I(X) 9 

Q(‘)= ’ H&) , 

0 9 

0 

v”x(x) = - 1 - Un,-I(X) , 

1 , 

The S(y) are dual. Then if we define 

x < i, 

x’, I x < i2 

x 2 x2 

X < f-1 

Xi_lSX<f 

fi'X<4+1 

X 5 &+I 

for i = 2,. . . , n, - 1 

wi.j(X, Y) = vi(X)S(Y)* i = 1 , . . . , n,, j=lr...,np 

it is easily observed that Wi,j has support rkj, except for when i = 1 or n,, or j = 1 or nY, when 
the support extends to 03 in one or both variables. We denote the support of W-j by R, Further, 
we note that the Wi,j form a partition of unity on R2. 

Since the fi and ji values give rise to a grid on the plane, we call them grid values. The 
choice of grid values fi and jj depend on the data. They may be specified by the user, but the 
default option is for them to be determined by the program. In the default mode the user 
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specifies a parameter, NPPR (for number of points per region), the suggested value being about 
10. The program will then determine the grid values so that the anticipated number of (x~, yk) 
points in each rectangle Ri,i will be approximately NPPR. For data which is not somewhat 
uniformly distributed the actual numbers may vary considerably. However, for most situations 
we have encountered, the process is quite adequate. 

An equal number of grid values is taken in each direction, i.e. n, = nr Because we want 
NPPR points per rectangle, each subrectangle (Xi, Xi+,) x (yj, yj+i) should have l/4 NPPR points. 
Since n, = ny, we want (n, + 1)*(1/4) NPPR = N, leading us to take n, to be the nearest integer 
to (4N/NPPR)“* - 1. 

The grid values $9 are now chosen so that there are approximately equal numbers of points 
from the values g, k = 1,. . . , N in each interval (ii:i, ii+,). Specifically, let & denote the xk 

values arranged in nondecreasing order. Consider the points (0, ai), (1, i2), . . . , (N - 1, a,), and 
let g(t) be the piecewise linear interpolant for them. Divide the interval (0, N - 1) into n, + 1 
subintervals of length A = (N - l/n, + 1). The values of & are determined by taking them to be 
the values of g at the endpoints of the subintervals, i.e. 4 = g(i), i = 0, 1,2, . . . , n, + 1. The A 
are determined in dual fashion. This process results in the grid values and hence the rectangles, 
being symmetric if the (x~, yk) points are symmetric. In addition, the relative positions of grid 
values are unchanged by linear displacements and stretching in each variable. 

When chosen in the above fashion, the location of the lines is not a local process in the 
sense that insertion of an additional point will change the boundaries of all of the rectangles. 
While one could argue that the scheme is not local, we take the view that the idea of local 
determination of the interpolant is most important in the evaluation phase. The determination 
of parameters in the scheme (here, the 4 and A) may be a global process. Of course, if the user 
specifies the grid values, he will likely be using a global process to choose them. 

3.2 Choice of local approximations 
The only constraint on the local approximations is that they interpolate the appropriate 

points, and that they have continuous first derivatives (at least) to assure a smooth interpolant. 
In the previously mentioned tests conducted by the author, a number of global interpolation 
schemes for scattered data were considered. In principle, any of these might be used. The 
choice here was made for two reasons, (1) the method scored very well in the tests, and (2) the 
method has an elegant and well developed mathematical theory which also has direct ap- 
plication to some engineering problems. 

The local approximations used in this algorithm are the thin plate splines first mentioned by 
Harder and Desmairis[13], with theoretical developments by Duchon[lC17] and 
Meinguet[l& 191. It was first developed as the solution to the problem of a thin plate which is 
forced to pass through certain points (the interpolation points) by application of point loads. 
For our purposes it is sufficient to know that the approximation is of the form 

Q(x, y) = x Akd? log dk + a + bx + cy, 
kEI 

where I= {k: Q iS to take on the VdUe fk at (&, yk)}, and d,* = (X - xk)*+(y - yk)*. The 
coefficients Ak, and a, b, and c are determined by the linear system of equations 

gI Ad? log dk + a + bx + CY((, y)=(xbri) = fiy i E 1 

z,Ak=o 

2 &k = 0. 
kEI 
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The geometric effect of the last three equations is to suppress all terms in the approximation 
which grow faster than linear as distance from the interpolation points is increased. A linear 
system of order equal to the number of interpolation points plus three must be solved. To be 
nonsingular there must be at least three noncollinear points among the (xk, yk), k E I. The 
system is symmetric, but not positive definite. While an equation solver designed for such 
systems could be used, we have found a general purpose solver, the DECOMP/SOLVE 
subroutines of Forsythe, Malcolm and Moler[20] has given more reliable results. 

It is easily observed that the local interpolant has continuous derivatives of all orders except 
at the data points, (xt, yk), where a logarithmic singularity occurs in the second derivatives. The 
interpolant has linear precision, that is, if the (xk, Yk, fk) points ah he on a linear function, the 
interpolant will reproduce it. 

While the thin plate spline is invariant with respect to scaling, translation, and rotation (not 
all of this is obvious), the condition number of the coefficient matrix for the system of equations 
is dependent on scaling. To minimize difficulties with that, and to remove the effect of scaling 
the variables by different amounts, we transform each rectangle rij onto the unit square [0, I]*, 
before the local approximation Qtj is computed. 

It reIIKiinS t0 Specify the process for determining the pOhtS (&, yk, jk) t0 be interpolated by 
the thin plate spline local approximation. Experience has shown that it is advantageous to 
include more points than is necessary, i.e. (xk, yk) which are outside of R,b This tends to yield a 
better transition between local approximations than when only necessary points are included. 
Therefore, the set of (xk, yk) points transformed into the rectangle R = [ - 0.1125, 1.11251 by the 
transformation taking r,j onto [0, l]* are included. This results in using interpolation points from a 
rectangle with about 150% of the area of rig Let 

_“k+;-l yk-ji-1 
Xi+1 - Xi-l' jj+l - Yj-I 

This gives the basic set of interpolation points for the local approximation Qii associated with 
the rectangle R, Under certain conditions there may be fewer than the necessary three indices 
in ILj When this happens, the set Iii is augmented by including as interpolation points the 
necessary number of closest points to the rectangle R,j (in the 1, norm), after the points (&., yk) 
have undergone the transformation to the unit square. The minimum number of points per 
rectangle is a variable, MINPTS. This has been set to 3, but may be increased if it seems 
desirable. 

After the interpolation points for each local approximation have been determined, the local 
thin plate splines, Qij, can be determined by calculating the coefficients. This yields 

&(X, J’) = 2 Aij+kdL* IOg d; + 0i.j + b$C’ + CijY’ 

where the primes denote coordinates and distance after the transformation of ri,j to the unit 
square. 

3.3 Properties of the interpolant 
The overall interpolant is of the form 

F(X, y) = 2 2 Wij(Xt Y)Qi,j(x* Y)> 
;=I j=l 

and as noted previously, there are at most four nonzero terms in the sum. Which terms are 
nonzero is easily determined. If x 2 f,,, set i’ = n,; Otherwise let i’ be the smallest index so that 
xc+1 > x. Determine j’ in dual fashion from y and the fj’s. Then, the four nonzero terms have 
indices (i’, j’), (i’+ 1, j’), (i’, j’+ l), and (i’+ 1, j’ + 1). If i’ = 0 or i’ = n,, the terms involving i’ or 
i’ + 1, respectively, do not appear, and similarly if j’ = 0 or j’ = n,, the terms involving j’ or j’ + 1, 
respectively, do not appear. 

In addition to the properties outlined in Section 2, certain other properties hold. The 



278 RICHARD FRANKE 

approximation is invariant under translation and stretching (independently in each variable). It 
has symmetry with respect to planes parallel to coordinate planes whenever the data has that 
symmetry. The approximation is, in general, not invariant under rotations, however, since the 
rectangles depend on the individual coordinates of the data points. The exception is when only 
one grid line in each direction occurs, resulting in the approximation reducing to the global thin 
plate spline. 

The approximation has continuous first derivatives, and jump discontinuities in the second 
derivatives across grid lines, as well as logarithmic singularities in the second derivatives at the 
data points. Plots of the surfaces generally appear to be quite smooth, however, Since the local 
approximations have linear precision, the overall approximation also has linear precision, i.e. if 
the data lies on a linear function, the interpolant is a linear function. 

4. THECOMPUTERPROGRAM 

The Calling program must supply the (&, yk, fk) points, plus two arrays of points XOi, and yOi 
for the grid of points (XOi, yOi) at which the interpolant is to be evaluated. In addition, the user 
must supply two workspace arrays, IWK and WK in which information calculated during 
preprocessing (e.g. Iii, ii, j$ and coefficients for the local approximations), is stored, and an 
array FO for the returned interpolant values. 

The amount of storage required for the arrays IWK and WK is not known a priori. The 
estimated space required is about 6N for IWK and about 7N for WK. Table 2 gives exact 
results for several different sized problems based on random (x, y) points. Oddly distributed 
point sets may result in somewhat more storage being required, although it is unlikely that 
storage will exceed 10N for either array. In any case, the precise number of locations required 
is returned to the calling program from Subroutine LOTPS, the only routine referenced by the 
user. If an insufficient number are allowed, an error return occurs. Subroutine LOTPS provides 
the interface between the user’s program and the set of routines implementing the method. 
Generally, LOTPS sets up storage areas in the arrays IWK and WK, determines parameters 
required by other subroutines, and calls other subroutines to (1) generate the grid, if necessary, 
(2) determine the interpolation points for the local approximations, (3) compute coefficients for 
local approximations, (4) evaluate the interpolant at a grid of points. 

Under the usual option, the user specifies NPPR>O, the suggested value being 10. If the 
user wishes to specify the grid lines, he may do so by setting a parameter, NPPR = 0, and then 
giving grid line information in the arrays IWK and WK, as explained in the argument 
description for Subroutine LOTPS. Typically one should take & = min xk, in,+, = m;x xk, and 

k 

the dual in y. This is not necessary, although all points to be interpolated should lie in 
[Z,,, ,f,,,][jO, jnn,+,]. To prevent different scaling (internally) in the two variables, a square grid 
covering the (xk, yk) points could be specified. 

5. EXAMPLES AND OBSERVATIONS 

Example 1. This example shows a local approximation function and is for the data in Table 
1. This function is a “cardinal” function for the first point, and as such shows the effect of a 
nonzero value at a single point on the interpolant. The plotted surface, shown in Fig. 1, is over 

[O, II*. 
Example 2. This example is given to show a surface generated from 100 randomly 

generated points with the function value being obtained from an explicitly given function. The 
surface was generated using NPPR = 10, has rms error of about 0.3%, and is virtually 
indistinguishable from a plot of the parent surface. It is shown in Fig. 2. 

Examples 3-5. These examples use the same set of 60 points lying in the square 
( -l/18,19/18)*, and chosen by a pseudorandom number generator. The function is explicitly 
given by 

f(x, y) = 0.1 + sF2;;++y;)’ 
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and is shown in Fig. 3. Figures 4-6 show the interpolant over the square [0, II2 for NPPR values 
of 6, 10 and 15. 

From these examples we see that NPPR = 10 works well, not too much difference is 
observed when NPPR is increased, but NPPR = 6 gives a less smooth appearing surface. The 
smaller NPPR is, the more localized the surface becomes (although NPPR = 4 will probably be 
the least value practicable, and some local interpolants will likely become planes due to the 
minimum of three interpolation points being reached). In line with this comment, very smooth 
surfaces with small gradients will probably be amenable to larger NPPR, while surfaces with 
large gradients may be best approximated by taking NPPR smaller, thus localizing the behavior. 

Table 2 gives the results of a series of problems with various numbers of points and values 

Table 1. Data for “Cardinal” function 

x Y f 

0.35 0.35 0.5 
-0.05 0.25 0.0 
0.10 -0.05 0.0 
0.50 0.05 0.0 
0.00 0.90 0.0 
0.30 0.70 0.0 
0.60 0.50 0.0 
0.90 0.00 0.0 
0.40 1.05 0.0 
0.85 0.80 0.0 
1.05 0.20 0.0 
1.10 1.10 0.0 

Fig. I. Cardinal function. Fig. 2. Saddle function. 

Fig 3. Parent function. Fig. 4. NPPR = 6. 
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Fig. 5. NPPR = IO. Fig. 6. NPPR = 15. 

Table 2. Storage/times for various size problems 

Size of Sizr of 
No. of No. c3.f No. uf WK IWK 

pointslr~~t. pts. grid lines array array Time (sec..P400) Time (sec.,P400) 
WPR) WJ) (ix = ny) (Preprocessing) (Evaluation) 

6 60 5 334 273 4.2 14.3 
6 100 7 619 506 7.5 17.6 
6 500 18 3596 2893 70.5 21.2 
6 1000 25 7441 6140 201.5 21.3 

10 60 4 204 243 5.3 18.0 
10 100 5 488 427 9.9 26.4 
10 500 13 3014 2649 73.3 29.8 
10 1000 19 6565 5804 202.6 31.7 

15 60 3 224 199 6.8 23.0 
15 LOO 4 414 373 12.4 32.8 
15 500 11 2856 2591 91.6 39.3 
15 1000 15 5920 5439 258.5 40.6 

of NPPR. The data points were chosen by a pseudorandom number generator in the square 
[ - l/18, 19/18]*, and the approximation was evaluated on a 33 x 33 grid (of 1089 points total) on 
[0, l]*. We observe that increasing NPPR increases execution time while decreasing the amount 
of storage needed. Preprocessing time should be about proportional to N*, but apparently there 
is a strong linear component for small N. Preprocessing time should also be about proportional 
to NPPR, although this is not readily apparent. Evaluation time should be nearly independent 
of N for large N, and proportional to NPPR, which is approximately shown. 

The automatic grid selection process works well when the data is fairly uniform in (x, y) and 
lies nearly in a square region. If the data is very irregular, or lies in an oblong rectangular area, 
it will probably be useful to explore results with a user specified grid to obtain better coverage 
by rectangles which are not too oblong. Limited experience has been accumulated in these 
situations. 

6. HOW TO OBTAIN THIS PROGRAM 

A copy of this program, written in Fortran, and including a sample driver program, can be 
obtained from the author. To do so, send a (short) l/2 inch tape to the author indicating the 
format desired. 
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