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1. I N T R O D U C T I O N  

The scattering of acoustic waves at low frequencies has been the subject of considerable study. In 
the case of a bounded domain, it is just an exercise to construct complete asymptotic expansions 
with respect to the frequency of solutions to the reduced wave equation. The case of an unbounded 
domain presents some specific difficulties related to the radiation condition. We refer to the papers 
by Werner [1], Weck and Witsch [2,3], and Kleinman and Vainberg [4] and the references cited 
therein, which are representative of the work conducted in this area. These investigations were 
motivated not only by the problem in its own right, but also by its application to the large time 
behavior of solutions to initial boundary value problems for the wave equation [5] and to the 
existence proofs for nonlinear wave equation. 

In the case of Maxwell's equations, the present authors investigated in [6] a new and simple 
way to attack this problem, and thereby obtained the complete asymptotic expansions of the 
electric and magnetic fields, as well as a complete characterization of their dependence on the 
topological properties of the domains under consideration [7]. 

In the present paper, we apply this new approach to the study of the reduced wave equation in 
exterior domains at low frequencies which allows us to treat  in a simple way nonsmooth variable 

coefficients and nonsmooth boundaries. 
The main steps of our method are as follows. We first consider the scattering for a TM 

plane wave (i.e., the Dirichlet problem) impinging on dielectric material containing a conducting 
body. We formulate this problem equivalently on a bounded domain by introducing an adequate 
Dirichlet-Neumann operator. The expression of the Dirichlet-Neumann operator is derived from 
our knowledge of the explicit form of the outgoing solution of the Helmholtz equation outside a 
ball. The total field, as well as the Dirichlet-Neumann operator, is expanded with respect to the 
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frequency. The full asymptotic expansions of solutions are established and error estimates are 
proved by combining a stability result for the Dirichlet-Neumann operator with respect to the 
frequency with a variational method. Similar techniques also work in the case of TE incident plane 
wave (i.e., the Neumann problem), but have to be refined due to the fact that  the corresponding 
static problem has in two dimensions an "eigensolution". The generalization of this approach to 
the acoustic scattering problem from periodic structures, as well as the exterior Robin problem 
for the reduced wave equation with variable, possibly nonsmooth coefficients is immediate. 

2. A S Y M P T O T I C S  

Let tic be a bounded domain in R N (N = 2 or 3), and let fie be the complement of 
in R N. The boundary Fc of the conducting body f~c is assumed to be of class C 1. By n, we 
denote the unit normal to Fc directed into f~e. The conductor f~c is surrounded by a bounded 
dielectric material denoted by fld. We finally set the truncated domain nR = 12e A BR, where 
BR is a ball of radius R containing f~d (A f~c and introduce the functional spaces VTE = HI(12R), 
])TM = {U E HI(f~R),u = 0 on Fc), and Hs(SR) is the Sobolev space of order s E R on 

SR = ( r  = Ix I = R}. Let an incident plane wave u ~  ) impinge on the dielectric material ~d. The 
total wave u(",) is the solution of the Helmholtz equation 

d i v l g r a d  u (",) + w2eu (",) = 0, in ~qe, 
# 

u (°') = 0 or cO,u (') = 0, on Fc, 

u (~) - u ~  ) satisfies the classical radiation condition, 

where the electric permittivity e and the magnetic permeability/z are assumed to be bounded 
functions in the dielectric material ~d and constant in the exterior domain ~e \ f~d t3 flc. This 
paper is devoted to the study of the asymptotic behavior of the wave u(",) as the frequency w 
goes to zero. 

It is now well known that  we can reduce the exterior Helmholtz equation to a boundary value 
problem set in the truncated domain CtR for R large enough by making use of the Dirichlet- 
Neumann operator T (°') on SR defined by 

T ~",j ¢p = ~-, ra 
~omY/n, zm(w,R) Z ' '!°raY~' 

ra=O l = - r a  ratiO l=--ra 

where 

{ - - ~ R - ~  i f N  = 2, 

zra(~, R) = 

, if N = 3 .  

Here, 0 is the angular variable, (Ytm)ra is an orthonormal sequence of spherical harmonics of 

order m on the unit sphere, and H ~  ) (respectively, h~ )) the Hankel function of integer order 
(respectively, half-integer order). The asymptotic behavior of u (°;) when w goes to zero will 
be deduced from the asymptotic of the pseudo-differential operator T (",). We first recall that  
the inequality [zra(w,R)[ <_ C[m[ for {m[ large enough holds uniformly in a neighborhood of 
w = 0 (see, for instance, [6] for a proof). Using the fact that  in 3D (respectively, 2D), the map 
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co ~-* zm(co, R) is analytic with respect to the variable co in a neighborhood of zero for m • Z 
(respectively, m • Z \ {0}) together with the well-known asymptotic expansions 

and 

2, ~-~, ( 1 m co2mR2m 
H(ol)(COR) = ~- - ) 22ra(m!) 2 ln(co~f) + in R - , 

---- j----1 

ico (H(1))/(coR) = -1 +~ co2m'R2m-1 ( 1 L ~ )  1 _  4- 
2 7r m = l ( - - 1 ) m 2 2 r n ~ - - - -  1)! ln(w~f) 4- l nR  + ~ j = l  7vR' 

where 2~f = e #-i=/2 and ~ is Euler's constant, allows us to prove the following key lemma. 

LEMMA 2.1. The Dirichlet-Neumann operator T (~) on SR admits the [ollowing asymptotic ex- 
pansions with respect to the frequency co: 

1 T(0) 4- wT(1 ) 4- co2T(2 ) 
T(~) = T(°) 4- In(co'y) 4- In R 1 

O22 
+ ln(co'r) + l n R  Tx(2) + 7~(3~)' i f g  = 2, 

T(W) : T(O) + wT(1) 4- w2T(2) + co3T(3 ) 4-/~(w), if N = 3, 

where the operators T(J),T/(j) : H1/2(SR) ~-* H-1/2(SR) are continuous and 

{( ) 7¢(w) o ln(co3,) + In R ' 
i f N  = 2, 

if N =  3. 

Let us note that  the operator T (°) is the Dirichlet-Neumann operator associated with the 
Laplace equation outside the ball Bn and T (°) (constant) = T (1) (constant)= 0 in two dimensions. 
It is also well known that  the Dirichlet (respectively, Neumann) boundary value problem for the 
Helmholtz equation is equivalent to the variational equation: 

a ( ~ ) ( u , v ) = / n  g radu ,  g r a d v - w 2 f n  u , v - ( T ( " 4 ( u ) , v ) ,  
R R 

vv  • VT , (respectively, vT /, 

where the bracket (,) denotes the duality between H-W2(SR) and HW2(SR) and Yi~̂ (~) = T(~} 

- oruin . Lemma 2.1 shows immediately that  

1 
a ¢~)(u, , )  = a ¢°)(u, v) + ln(co~) + In ~/a~°) (~' v) + coa ¢1)(u, v) 

+ co2a(2)(u, v) + A (w) (u, v), if N = 2, 

a(W)(u, v) = a(O)(u, v) + coa(1)(u, v) 4- co2a(2)(u, v) 

+ .4(2 ~) (u, v), if N = 3, 

where the sesquilinear forms a (i) and a~ i) are continuous on HI(DR) x H t ( ~ R )  and 

A(2W)(u,v)l= 0 ln(co~f)+lnR IIUlIHI(aR)I[VI[HX(gla), if N = 2 ,  

0 (coa) [[UHHI(nR)[Iv]]HX(,a), if Y = 3. 
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Since the incident wave u ~  ) is a plane wave, the function g~)  admits in two dimensions the 
following asymptotic expansion with respect to w: 

1 g(O) -b wg (1) q- w ,,(1) q_ w2g(2) 
g}:) = g(O) + ln(wv) + lnR 1 ln(w~/) + lnR ul 

O J2 .(2) .jr_ O ( 5d2 ) 
+ l n ( ~ )  + l n a  ~1 l n ( ~ - l n a  ' 

where (g(O), 1) = (g(1), 1) = 0. Now, if we assume that  the wave u (~) admits in the truncated 
domain ~ n  the following asymptotic expansion in two dimensions: 

1 .u(0 ) + ~dU(1) -{- 0) U~I) 
u(~) = u(°) + ln(w~/) + In R 1 ln(w~/) + In R 

+ w 2 ( l n ( w n )  + In R)u(2~ + w2u(2) + . . . ,  

we obtain 

a(° ) (u(° ) , v )= 

a (°) (u~°),v) = 

a(°) (u(1) ,v)= 

a(°) (u~l),v) = 

o ( o ,  _ 

o(o, = 

where the sesquilinear 

I g(°), v I , 
(g~O) + T(O)(u(O)),v) , 

0, 

- R ~, - 1 ] ,  , 

form a (°) is defined by 

a(°)(u,v) = ~ grad u. grad v - (T(°)(u), v ) .  
R 

It is then immediately obvious from Lemma 2.1 that  in the TM case, the terms u (°), u~ °), u 0), 
u~ 1), u(_2~, u (2) are well defined by the above variational equations. In the TE case, it is easy to 
see from the explicit expression of the operator T (°) that  the constants are solutions in ])TE of 
the variational equation a(°)(u, v) = O, Vv E "I)TE in two dimensions. If we wish to solve these 
equations in this case, we have to impose that  the terms u (°), u~°),... , u (2) satisfy the additional 
conditions: 

(..q~O) -t- T~ O) (u (0)) ,1 / :0, (T~ O) (u~ 0)) ,1):0, (g~l) -I.- T~ O) (u (1)) ,1 / :0, 
( T  (°) (u~ 1)) , 1 ) = 0 ,  (g(2)+  T~O)(u(_2~),1)= ~ a e u  (°,, 

+ ( v9 + u2,  (0(0,) + uo,  1) _- 0 

The terms u (°), u~ °), . . . .  u (2) satisfying these additional conditions in the TE case are then well 
defined by the above variational equations. The additional condition (for instance) on u (°) which 
gives the unique solvability of a (°) (u (°), v) = (g(O), v) is the compatibility relation needed to solve 
a(O)(u~O),v) = (g~O) + T(O)(u(O)),v). Let us also observe that  a(°)ru (2)~ -1, v~j = 0 implies that  u(_2~ - 
constant (but depends on the radius R) determined by the additional condition 

(g(2) +T~o)[u(2)~ 1/= ~ eu(O) 

\ - U '  R " 
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We are now ready for the formulation of our main result. Let r (~) be defined by 

1 'it(0) -[- ~jU(1) / 
- (u(°)  + ln(w'r) + In R 1 

u (w) 

r(~) = ~ ln(w'r)w+ In a u~l) + w2(ln(w'r) + In R)u(2~ + w2u (2) 

u(~) _ (u(O) + wu (1) + w2u(2)),  

if N = 2, 

if N =  3. 

The stabili ty result for the operator  T (~) formulated in Lemma 2.1, together with the coerciveness 
properties of the sesquilinear form a (°) allows us to prove the following theorem. 

THEOREM 2.1. There exist  wo > 0 and C > 0 such that  the following inequality: 

w2 
C ~  if N = 2, 

r (~) < [ lnw[ '  

gl(f~R) Cw 3, i f  N = 3 

holds for any w E ]0,w0[. 

The dependence of the constant C on the radius R can be explicitly characterized. 
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