FISEVIER

Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

On the extremal number of edges in hamiltonian connected graphs*

Tung-Yang Ho^{a,*}, Cheng-Kuan Lin^b, Jimmy J.M. Tan^b, D. Frank Hsu^c, Lih-Hsing Hsu^d

- ^a Department of Information Management, Ta Hwa Institute of Technology, Hsinchu, 30740, Taiwan, ROC
- ^b Department of Computer Science, National Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
- ^c Department of Computer and Information Science, Fordham University, New York, NY 10023, USA
- d Department of Computer Science and Information Engineering, Providence University, Taichung, 43301, Taiwan, ROC

ARTICLE INFO

Article history: Received 19 March 2009 Accepted 19 March 2009

Keywords:

Hamiltonian connected Edge-fault tolerant hamiltonian connected

ABSTRACT

Assume that n and δ are positive integers with $3 \leq \delta < n$. Let $hc(n, \delta)$ be the minimum number of edges required to guarantee an n-vertex graph G with minimum degree $\delta(G) \geq \delta$ to be hamiltonian connected. Any n-vertex graph G with $\delta(G) \geq \delta$ is hamiltonian connected if $|E(G)| \geq hc(n, \delta)$. We prove that $hc(n, \delta) = C(n - \delta + 1, 2) + \delta^2 - \delta + 1$ if $\delta \leq \lfloor \frac{n+3\times(n \bmod 2)}{6} \rfloor + 1, hc(n, \delta) = C(n-\lfloor \frac{n}{2} \rfloor + 1, 2) + \lfloor \frac{n}{2} \rfloor^2 - \lfloor \frac{n}{2} \rfloor + 1$ if $\lfloor \frac{n+3\times(n \bmod 2)}{6} \rfloor + 1 < \delta \leq \lfloor \frac{n}{2} \rfloor$, and $hc(n, \delta) = \lceil \frac{n\delta}{2} \rceil$ if $\delta > \lfloor \frac{n}{2} \rfloor$.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we use C(a,b) to denote the combination of "a" numbers taking "b" numbers at a time, where a,b are positive integers and $a \ge b$. For the graph definitions and notations, we follow [1]. Let G = (V, E) be a graph if V is a finite set and E is a subset of $\{(u,v) \mid (u,v) \text{ is an unordered pair of } V\}$. We say that V is the *vertex set* and E is the *edge set*. Two vertices U and U are adjacent if U, U, U, U, U, U, is the graph with U vertices such that any two distinct vertices are adjacent. The *degree* of a vertex U in U, denoted by U, is the number of vertices adjacent to U. We use U to denote minU degU to denote minU are adjacent for U and U is an ordered list of distinct vertices such that U is an ordered list of distinct vertices such that U is an advection of U is a path with at least three vertices such that the first vertex is the same as the last one. A hamiltonian cycle of U is a path of length U and U is a path of length U is a pa

It is proved by Moon [2] that the degree of any vertex in a hamiltonian connected graph with at least four vertices is at least 3. Therefore, it is natural to consider the n-vertex graph G with $n \ge 4$ and $\delta(G) \ge 3$. Assume that n and δ are positive integers with $0 \le \delta < n$. Let $hc(n, \delta)$ be the minimum number of edges required to guarantee an n-vertex graph with minimum degree $\delta(G) \ge \delta$ to be hamiltonian connected. Any n-vertex graph G with $\delta(G) \ge \delta$ is hamiltonian connected if $|E(G)| > hc(n, \delta)$. We will prove the following main theorem.

Theorem A. Assume that n and δ are positive integers with $3 \le \delta < n$. Then

$$hc(n,\delta) = \begin{cases} C(n-\delta+1,2) + \delta^2 - \delta + 1 & \text{if } \delta \leq \left\lfloor \frac{n+3 \times (n \text{ mod } 2)}{6} \right\rfloor + 1, \\ C\left(n - \left\lfloor \frac{n}{2} \right\rfloor + 1, 2\right) + \left\lfloor \frac{n}{2} \right\rfloor^2 - \left\lfloor \frac{n}{2} \right\rfloor + 1 & \text{if } \left\lfloor \frac{n+3 \times (n \text{ mod } 2)}{6} \right\rfloor + 1 < \delta \leq \left\lfloor \frac{n}{2} \right\rfloor, \\ \lceil n\delta/2 \rceil & \text{if } \delta > \left\lfloor \frac{n}{2} \right\rfloor. \end{cases}$$

[🌣] This work was supported in part by the National Science Council of the Republic of China under Contract NSC 98-2115-M-233-001.

Corresponding author. E-mail address: hoho@thit.edu.tw (T.-Y. Ho).

We will defer the proof of Theorem A to Section 4. In Section 2, we describe an application of Theorem A, which is the original motivation of this paper. In particular, we establish the relationship between hc(n, g) and g-conditional edge-fault tolerant hamiltonian connectivity of the complete graph K_n . In Section 3, we present some preliminary results. Section 4 gives the proof of Theorem A.

2. An application

A hamiltonian graph G is k edge-fault tolerant hamiltonian if G-F remains hamiltonian for every $F \subset E(G)$ with $|F| \leq k$. The edge-fault tolerant hamiltonicity, $\mathcal{H}_e(G)$, is defined as the maximum integer k such that G is k edge-fault hamiltonian if G is hamiltonian and is undefined otherwise. It is proved by Ore [3] that any n-vertex graph with at least C(n,2)-(n-3) edges is hamiltonian. Moreover, there exists an n-vertex non-hamiltonian graph with C(n,2)-(n-2) edges. In other words, $\mathcal{H}_e(K_n)=n-3$ for $n\geq 3$. In Latifi et al. [4], it is proved that $\mathcal{H}_e(Q_n)=n-2$ for $n\geq 2$ where Q_n is the n-dimensional hypercube. In Li et al. [5], it is proved that $\mathcal{H}_e(S_n)=n-3$ for $n\geq 3$ where S_n is the n-dimensional star graph.

Chan and Lee [6] began the study of the existence of a hamiltonian cycle in a graph such that each vertex is incident with at least a number of nonfaulty edges. In particular, they have obtained results on hypercubes. A graph G is g-conditional k edge-fault tolerant hamiltonian if G-F is hamiltonian for every $F\subset E(G)$ with $|F|\leq k$ and $\delta(G-F)\geq g$. The g-conditional edge-fault tolerant hamiltonicity, $\mathcal{H}_e^g(G)$, is defined as the maximum integer k such that G is g-conditional k edge-fault tolerant hamiltonian if G is hamiltonian and is undefined otherwise. Chan and Lee [6] proved that $\mathcal{H}_e^g(Q_n) \leq 2^{g-1}(n-g)-1$ for $n>g\geq 2$ and the equality holds for g=2.

Recently, Fu [7] study the 2-conditional edge-fault tolerant hamiltonicity of the complete graph. In the paper by the authors, Ho et al. [8] extend Fu's result by studying the g-conditional edge-fault tolerant hamiltonicity of the complete graph for g > 2.

Several results (Lick [9], Moon [2], and Ore [10]) have studied hamiltonian connected graphs and some good sufficient conditions for a graph to be hamiltonian connected. Fault tolerant hamiltonian connectivity is another important parameter for graphs as indicated in [11]. A graph G is k edge-fault tolerant hamiltonian connected if G-F remains hamiltonian connected for any $F \subset E(G)$ with $|F| \leq k$. The edge-fault tolerant hamiltonian connectivity of a graph G, $\mathcal{HC}_{\mathcal{C}}(G)$, is defined as the maximum integer k such that G is K edge-fault tolerant hamiltonian connected if K is hamiltonian connected and is undefined otherwise. Again, Ore [10] proved that $\mathcal{HC}_{\mathcal{C}}(K_{\mathcal{D}}) = n-4$ for $n \geq 4$.

Similarly, a graph G is g-conditional k edge-fault tolerant hamiltonian connected if G-F is hamiltonian connected for every $F \subset E(G)$ with $|F| \leq k$ and $\delta(G-F) \geq g$. The g-conditional edge-fault tolerant hamiltonian connectivity, $\mathcal{HC}_g^g(G)$, is defined to be the maximum integer k such that G is g-conditional k edge-fault tolerant hamiltonian connected if G is hamiltonian connected and is undefined otherwise.

With the inspiration of the work by Fu [7] in the study of 2-conditional edge-fault tolerant hamiltonicity of the complete graph, Ho et al. [12] begin the study on 3-conditional edge-fault tolerant hamiltonian connectivity of the complete graph. The following result was obtained in [12]:

Let $n \ge 4$ and $F \subset E(K_n)$ with $\delta(K_n - F) \ge 3$. Then $K_n - F$ is hamiltonian connected if $|F| \le 2n - 10$ for $n \ne \{4, 5, 8, 10\}$, |F| = 0 for n = 4, $|F| \le 2$ for n = 5, and $|F| \le 2n - 11$ for $n \in \{8, 10\}$.

We restate this result using our terminology.

Theorem 1. $\mathcal{HC}_e^3(K_n) = 2n - 10$ for $n \notin \{4, 5, 8, 10\}$ and $n \geq 5$, $\mathcal{HC}_e^3(K_4) = 0$, $\mathcal{HC}_e^3(K_5) = 2$, $\mathcal{HC}_e^3(K_8) = 5$, and $\mathcal{HC}_e^3(K_{10}) = 9$.

Now, we extend the result in [12] and use our main result Theorem A to compute $\mathcal{HC}_e^g(K_n)$ for $3 \le g < n$.

Theorem 2. $\mathcal{HC}_{\ell}^{g}(K_{n}) = C(n, 2) - hc(n, g)$ for 3 < g < n.

Proof. Let F be any faulty edge set of K_n with $|F| \le C(n,2) - hc(n,g)$ such that $\delta(K_n - F) \ge g$. Obviously, $|E(K_n - F)| \ge hc(n,g)$. By Theorem A, $K_n - F$ is hamiltonian connected. Thus, $\mathcal{H}C_e^g(K_n) \ge C(n,2) - hc(n,g)$.

Now, we prove that $\mathcal{HC}_e^g(K_n) \leq C(n,2) - hc(n,g)$. Assume that $\mathcal{HC}_e^g(K_n) \geq C(n,2) - hc(n,g) + 1$. Let G be any graph with hc(n,g) - 1 edges such that $\delta(G) \geq g$. Let $F = E(K_n) \setminus E(G)$. In other words, $G = K_n - F$. Obviously, |F| = C(n,2) - hc(n,g) + 1. Since $\mathcal{HC}_e^g(K_n) \geq C(n,2) - hc(n,g) + 1$, G is hamiltonian connected. This contradicts to the definition of hc(n,g). Thus, $\mathcal{HC}_e^g(K_n) \leq C(n,2) - hc(n,g)$.

Therefore, $\mathcal{HC}_e^g(K_n) = C(n, 2) - hc(n, g)$ for $3 \le g < n$.

3. Preliminary results

The following theorem is proved by Ore [10].

Theorem 3 ([10]). Let G be an n-vertex graph with $\delta(G) > \lfloor \frac{n}{2} \rfloor$. Then G is hamiltonian connected.

The following theorem is given by Lick [9].

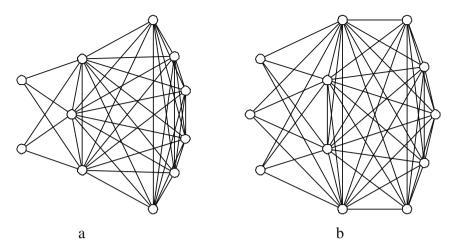


Fig. 1. The graphs (a) $H_{3,11}$ and (b) $H_{4,12}$.

Theorem 4 ([9]). Let G be an n-vertex graph. Assume that the degree d_i of G satisfy $d_1 \le d_2 \le ... \le d_n$. If $d_{j-1} \le j \le n/2 \Rightarrow d_{n-j} \ge n-j+1$, then G is hamiltonian connected.

To our knowledge, no one has ever discussed the sharpness of the above theorem. In the following, we give a logically equivalent theorem.

Theorem 5. Let G be an n-vertex graph. Assume that the degree d_i of G satisfy $d_1 \le d_2 \le \ldots \le d_n$. If G is non-hamiltonian connected, then there exist at least one integer $2 \le m \le n/2$ such that $d_{m-1} \le m \le n/2$ and $d_{n-m} \le n-m$.

To discuss the sharpness of Theorem 5, we introduce the following family of graphs. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. The *union* of G_1 and G_2 , written $G_1 + G_2$, has edge set $E_1 \cup E_2$ and vertex set $V_1 \cup V_2$ with $V_1 \cap V_2 = \emptyset$. The *join* of G_1 and G_2 , written $G_1 \vee G_2$, obtained from $G_1 + G_2$ by joining each vertex of G_1 to each vertex of G_2 .

The degree sequence of an n-vertex graph is the list of vertices degree, in nondecreasing order, as $d_1 \le d_2 \le ... \le d_n$. For $2 \le m \le n/2$, let $H_{m,n}$ denote the graph $(\bar{K}_{m-1} + K_{n-2m+1}) \lor K_m$. The graphs $H_{3,11}$ and $H_{4,12}$ are shown in Fig. 1. Obviously, the degree sequence of $H_{m,n}$ is

$$(\underbrace{m,m,\ldots,m}_{m-1},\underbrace{n-m,n-m,\ldots,n-m}_{n-2m+1},\underbrace{n-1,n-1,\ldots,n-1}_{m})$$

A sequence of real numbers (p_1, p_2, \ldots, p_n) is said to be *majorised* by another sequence (q_1, q_2, \ldots, q_n) if $p_i \leq q_i$ for $1 \leq i \leq n$. A graph G is *degree-majorised* by a graph G if G is majorised by that of G is majorised by G is majoris

Lemma 1. Let G = (V, E) be a graph, X be a subset of V, and u, v be any two distinct vertices in X. Suppose that there exists a hamiltonian path between u and v. Then there are at most |X| - 1 connected components of G - X.

Let S be the subset of $V(H_{m,n})$ corresponding to the vertex of K_m . Since $2 \le m \le n/2$, $|S| \ge 2$. Let u and v be any two distinct vertices in S. Obviously, there are m connected components of $H_{m,n} - S$. By Lemma 1, $H_{m,n}$ does not have a hamiltonian path between u and v. Thus, $H_{m,n}$ is not hamiltonian connected. In other words, the result in Theorem 5 is sharp.

So we have the following corollary.

Corollary 1. The graph $H_{m,n}$ is not hamiltonian connected where n and m are integers with $2 \le m \le n/2$.

Thus, the following theorem is equivalent to Theorem 5.

Theorem 6. If G is an n-vertex non-hamiltonian connected graph, then G is degree-majorised by some $H_{m,n}$ with $2 \le m \le n/2$.

Corollary 2. Let $n \geq 6$. Assume that G is an n-vertex non-hamiltonian connected graph. Then $\delta(G) \leq \lfloor \frac{n}{2} \rfloor$ and $|E(G)| \leq \max\{|E(H_{\delta(G),n})|, |E(H_{\lfloor \frac{n}{2} \rfloor,n})|\}$.

Proof. Let G be any n-vertex non-hamiltonian connected graph. With Theorem 3, $\delta(G) \leq \lfloor \frac{n}{2} \rfloor$. By Theorem 6, G is degree-majorised by some $H_{m,n}$. Since $\delta(H_{m,n}) = m$, $\delta(G) \leq m \leq \lfloor \frac{n}{2} \rfloor$. Therefore $|E(G)| \leq \max\{|E(H_{m,n})| \mid \delta(G) \leq m \leq \lfloor \frac{n}{2} \rfloor\}$. Since $|E(H_{m,n})| = \frac{1}{2}(m(m-1)+(n-2m+1)(n-m)+m(n-1))$ is a quadratics function with respect to m and the maximum value of it occurs at the boundary $m = \delta(G)$ or $m = \lfloor \frac{n}{2} \rfloor$, $|E(G)| \leq \max\{|E(H_{\delta(G),n})|, |E(H_{\lfloor \frac{n}{2} \rfloor,n})|\}$. \square

By Corollary 2, we have the following corollary.

Corollary 3. Let G be an n-vertex graph with $n \geq 6$. If $|E(G)| \geq \max\{|E(H_{\delta(G),n})|, |E(H_{\lfloor \frac{n}{2}\rfloor,n})|\} + 1$, then G is hamiltonian connected

Lemma 2. Let n and k be integers with $n \geq 6$ and $3 \leq k \leq \lfloor \frac{n}{2} \rfloor$. Then $|E(H_{k,n})| \geq |E(H_{\lfloor \frac{n}{2} \rfloor,n})|$ if and only if $3 \leq k \leq \lfloor \frac{n+3\times(n \bmod 2)}{6} \rfloor + 1$ or $k = \lfloor \frac{n}{2} \rfloor$.

Proof. We first prove the case that n is even. We claim that $|E(H_{k,n})| \ge |E(H_{\frac{n}{2},n})|$ if and only if $3 \le k \le \lfloor \frac{n}{6} \rfloor + 1$ or $k = \frac{n}{2}$. Suppose that $|E(H_{k,n})| < |E(H_{\frac{n}{2},n})|$. Then $|E(H_{k,n})| = \frac{1}{2}(k(k-1) + (n-2k+1)(n-k) + k(n-1)) < |E(H_{\frac{n}{2},n})| = \frac{1}{2}((\frac{n}{2}-1)(\frac{n}{2})) + (\frac{n}{2})(n-1) + (\frac{n}{2})$. This implies $3k^2 - (2n+3)k + (\frac{1}{4}n^2 + \frac{3}{2}n) < 0$, which means $(k-\frac{n}{2})(3k-\frac{n}{2}-3) < 0$. Thus $|E(H_{k,n})| < |E(H_{\frac{n}{2},n})|$ if and only if $\frac{n}{6}+1 < k < \frac{n}{2}$. Note that n and k are integers with n is even, $n \ge 6$, and $1 \le k \le \frac{n}{2}$. Therefore, $|E(H_{\frac{n}{2},n})|$ if and only if $1 \le k \le \frac{n}{2}$.

For odd integer n, using the same method, we can prove that $|E(H_{k,n})| < |E(H_{\frac{n-1}{2},n})|$ if and only if $\frac{n+3}{6} + 1 < k < \frac{n-1}{2}$. Given that $n \ge 7$, and $3 \le k \le \frac{n-1}{2}$, then $|E(H_{k,n})| \ge |E(H_{\frac{n-1}{2},n})|$ if and only if $3 \le k \le \lfloor \frac{n+3}{6} \rfloor + 1$ or $k = \frac{n-1}{2}$. Therefore, the result follows. \square

4. Proof of Theorem A

References

By brute force, we can check that hc(4, 3) = 6, hc(5, 3) = 8, and hc(5, 4) = 10. Therefore, the theorem holds for n = 4, 5. Next, we consider the cases that $3 \le \delta \le \lfloor \frac{n}{2} \rfloor$ and $n \ge 6$.

Suppose that $3 \leq \delta \leq \lfloor \frac{n+3\times(n \bmod 2)}{6} \rfloor + 1$ or $\delta = \lfloor \frac{n}{2} \rfloor$. By Lemma 2, $|E(H_{\delta,n})| \geq |E(H_{\lfloor \frac{n}{2} \rfloor,n})|$. Let G be any n-vertex graph with $\delta(G) \geq \delta$ and $|E(G)| \geq |E(H_{\delta,n})| + 1$. By Corollary 3, G is hamiltonian connected. We note that $|E(H_{\delta,n})| + 1 = C(n-\delta+1,2) + \delta^2 - \delta + 1$. Therefore, $hc(n,\delta) \leq C(n-\delta+1,2) + \delta^2 - \delta + 1$. By Corollary 1, $H_{\delta,n}$ is not hamiltonian connected. Thus, $hc(n,\delta) > |E(H_{\delta,n})| = C(n-\delta+1,2) + \delta^2 - \delta$. Hence, $hc(n,\delta) = C(n-\delta+1,2) + \delta^2 - \delta + 1$. Suppose that $\lfloor \frac{n+3\times(n \bmod 2)}{6} \rfloor + 1 < \delta < \lfloor \frac{n}{2} \rfloor$. By Lemma 2, $|E(H_{\delta,n})| < |E(H_{\lfloor \frac{n}{2} \rfloor,n})|$. Let G be any n-vertex graph with $\delta(G) \geq \delta$ and $|E(G)| \geq |E(H_{\lfloor \frac{n}{2} \rfloor,n})| + 1$. By Corollary 3, G is hamiltonian connected. We note that $|E(H_{\lfloor \frac{n}{2} \rfloor,n})| + 1 = C(n-\lfloor \frac{n}{2} \rfloor + 1,2) + \lfloor \frac{n}{2} \rfloor^2 - \lfloor \frac{n}{2} \rfloor + 1$. By Corollary 1, $H_{\lfloor \frac{n}{2} \rfloor,n}$ is not hamiltonian connected. Thus, $hc(n,\delta) > |E(H_{\lfloor \frac{n}{2} \rfloor,n})| = C(n-\lfloor \frac{n}{2} \rfloor + 1,2) + \lfloor \frac{n}{2} \rfloor^2 - \lfloor \frac{n}{2} \rfloor + 1$. By Corollary 1, $H_{\lfloor \frac{n}{2} \rfloor,n}$ is not hamiltonian connected. Thus, $hc(n,\delta) > |E(H_{\lfloor \frac{n}{2} \rfloor,n})| = C(n-\lfloor \frac{n}{2} \rfloor + 1,2) + \lfloor \frac{n}{2} \rfloor^2 - \lfloor \frac{n}{2} \rfloor$. Hence, $hc(n,\delta) = C(n-\lfloor \frac{n}{2} \rfloor + 1,2) + \lfloor \frac{n}{2} \rfloor^2 - \lfloor \frac{n}{2} \rfloor$. By Theorem 3, G is hamiltonian connected. Obviously, $|E(G)| \geq \lceil \frac{n\delta}{2} \rceil$. Thus, $hc(n,\delta) = \lceil \frac{n\delta}{2} \rceil$.

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1980.
- [2] J.W. Moon, On a problem of Ore, Mathematical Gazette 49 (1965) 40–41.

The proof of our main result, Theorem A, is complete.

- [3] O. Ore, Note on Hamilton circuits, The American Mathematical Monthly 67 (1960) 55.
- [4] S. Latifi, S.Q. Zheng, N. Bagherzadeh, Optimal ring embedding in hypercubes with faulty links, in: Proceedings of the IEEE Symposium on Fault-Tolerant Computing, 1992, pp. 178–184.
- [5] T.K. Li, J.J.M. Tan, L.H. Hsu, Hyper hamiltonian laceability on the edge fault star graph, Information Sciences 165 (2004) 59–71.
- [6] M.Y. Chan, S.J. Lee, On the existence of Hamiltonian circuits in faulty hypercubes, SIAM Journal on Discrete Mathematics 4 (1991) 511–527.
- [7] J.S. Fu, Conditional fault hamiltonicity of the complete graph, Information Processing Letters 107 (2008) 110-113.
- [8] T.Y. Ho, C.K. Lin, J.J.M. Tan, D.F. Hsu, L.H. Hsu, On the extremal number of edges in hamiltonian graphs, Journal of Information Science and Engineering (2009) (submitted for publication).
- [9] D.R. Lick, A sufficient condition for hamiltonian connectedness, Journal of Combinatorial Theory 8 (1970) 444-445.
- [10] O. Ore, Hamilton connected graphs, Journal of Mathematic Pures Application 42 (1963) 21–27.
- [11] W.T. Huang, J.J.M. Tan, C.N. Hung, L.H. Hsu, Fault-tolerant hamiltonicity of twisted cubes, Journal of Parallel and Distributed Computing 62 (2002) 591–604.
- [12] T.Y. Ho, Y.K. Shih, J.J.M. Tan, L.H. Hsu, Conditional fault hamiltonian connecticity of the complete graph, Information Processing Letters 109 (2009) 585–588.