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Abstract: Let M = G/H be a semisimple symmetric space, r the corresponding involution and 

D = G/K the Riemannian symmetric space. Then we show that the following are equivalent: 

M is of Hermitian type; r induces a conjugation on D; there exists an open regular H-invariant 

cone R in q = h’ such that k n 0 # 0. We relate the spaces of Hermitian type to the regular 

and parahermitian symmetric spaces, analyze the fine structure of D under r and construct an 

equivariant Cayley transform. We collect also some results on the classification of invariant cones 

in q. Finally we point out some applications in representations theory. 
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Introduction 

Bounded symmetric domains and their unbounded counterparts, the Siegel domains, 

have long been an important part of different fields of mathematics, e.g., number theory, 
algebraic geometry, harmonic analysis and representations theory. So the holomorphic 

discrete series and other interesting representations of a group live in spaces of holo- 

morphic functions on such domains. In the last years some interplays with harmonic 
analysis on affine symmetric spaces have also become apparent, e.g., a construction 

of non-zero harmonic forms related to the discrete series of such spaces (see [44] and 

the literature there). Also in [31,32] and [ll] the notion of holomorphic discrete series 

and Hardy spaces was generalized to affine symmetric spaces of Hermitian type. The 

intertwining operators into spaces of holomorphic functions on the associated bounded 

symmetric domain were explicitly written down as well as it was proved, that the ana- 
lytic continuation of the corresponding functions on the symmetric space was given by 

an integral operator. But for further work it is necessary to analyze how the involution 
acts on the fine structure of the domain and describe the geometry of the symmet- 

ric spaces of Hermitian type. In particular this holds for a maximal set of strongly 
orthogonal roots as they contain so many geometrical information. 

In the first part of this paper we characterize those spaces in terms of an infinitesimal 

causal ordering [42,30], the operation of the involution as conjugation on the associated 
bounded domain and in terms of the c-dual respectively dual symmetric space. We 

describe how the involution acts on geometric datas as strongly orthogonal roots and 
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Cayley transforms and then we collect some results from [30] about the classification 
of H-invariant cones in the tangent space. 

Let A4 = G/H be a semisimple symmetric space, where G is a connected semisim- 

ple Lie group and H an open subgroup of the fixpoint group G’ of some non-trivial 
involution r of G. We assume that H contains no non-compact normal subgroup of G. 

For simplicity we also assume that there is no non-trivial connected compact normal 

subgroup in G. Let 0 be a Cartan involution commuting with 7. Denote by k the $1 

eigenspace of 6’ and q the -1 eigenspace of 7. That M is of Hermitian type was defined 

in [31] as k II q having non-trivial center c and zs(c) = q n k. It turns out that this 

definition is exactly the right one to provide the existence of Hardy spaces and holo- 

morphic discrete series associated to M [ll]. It also implies that G/K is a bounded 
symmetric domain and in the case G simple, the above means that the one dimensional 

center of k is contained in q. So r anticommutes with the complex structure on D, i.e., 

r defines a complex conjugation on D. It is shown that in general this is equivalent to 

&Y being of Hermitian type. Two consequences are: 

1. The points fixed under T may be characterized as the set of real points of D 

and if p is another involution of Hermitian type, then the corresponding fixpoint set 

Dv is diffeomorphic to D’ via a diffeomorphism explicitly constructed in terms of the 

complex structure and the exponential map. 

2. In the special case that D N Rn + iR is a tube domain the Cayley transform 
leads to an involution whose fixpoint set is exactly the cone R. Thus in case that D is 

a tube domain D’ is-(up to the above diffeomorphism)-always a self dual proper cone. 

This also leads to a classification of all symmetric spaces of Hermitian type using 

the work of H. Jaffee [13] and [14] where he classifies all non-conjugate complex con- 
jugations on D or equivalently the non-conjugate real forms of D and I’\o. In those 

papers all possible h’s can also be found. 

The second point above relates now the holomorphic discrete series of M and its 

realization on D (see [31,32]) to the work of H. Rossi and M. Vergne [39,40] on the 

analytic continuation of the holomorphic discrete series of G realizing them as L2- 
spaces on the cone for regular parameters or its boundary in the singular cases. As it is 

possible to write down how T permutes the strongly orthogonal roots, we know how r 
acts on the different boundary components and the associated partial Cayley transforms 

[19,20], this observation leads to the conclusion that the holomorphic discrete series of 
M may be realized in general in some L2-spaces on H-orbits on D or its boundaries, 

giving some hope for an ‘orbit-picture’ for this representations [33] but it should be 

underlined, that this is not geometric at all, except for some special cases. 

Cones and semigroups have turned up in different fields and problems in harmonic 

analysis and physics [3,6,10,11,31,35,36,42,43,46] where they are e.g., used for con- 
structing Hardy spaces and defining orderings in symmetric spaces and groups as well 

as for generalizing the notions of Laplace transformation, Volterra algebra and some 
special functions to infinitesimal causal spaces. To all the spaces of Hermitian type 
there is associated a proper H-invariant cone through the element in the center of k 

defining the complex structure of D. But there are also other classes of spaces contain- 
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ing proper H-invariant cones but not of Hermitian type, the simplest example being 
the complexified group G, with the complex conjugation as an involution. If G/lr’ is 

Hermitian, then ig always contains G-invariant cones, but G,/G is never of Hermitian 

type. The characterization of spaces of Hermitian type is now, that they are exactly 

those spaces having proper H-invariant open cones in q with 

Rnk#0. 

The center of k n q is then the vector space generated by fiHnK. 
Now if fl is an open proper H-invariant cone in q then it may be shown that either 

0 n k # 0 or fl n p # 0. The later case corresponds to the regular symmetric spaces 

first introduced by Ol’shanskii in [35] and [36]. We also show that those two types of 

spaces are c-dual to each other in the following sense 

g - g” := g,“, h+q- h+iq 

where ?I : g, -+ g, is the conjugate linear extension of T to g, = g @B @. Now the 

regular symmetric space MC = G”/H is an ordered space by 

{X E M”]z 2 X,} = I?“(C) *cc,, 

where C is a closed proper cone in q such that C” n k # 0, x, = l/H, and I’“(C) is 

the closed semigroup I’“(C) := exp(iC)H. 
The functions in the holomorphic discrete series of A4 extend to analytic functions 

on the causal interval I’“(C)” for ‘positive’ cones and furthermore I’c(C)-1 is contained 

in a minimal parabolic subgroup of G” that is also minimal in the sense of [28]. The 

corresponding H-invariant Poisson kernel [28] ’ g IS iven by x H @(x-l), where + is the 

analytic continuation of the Flensted-Jensen function. This now relates the results of 

[31, 32 and 1 l] to spherical functions and harmonic analysis on the ordered space MC. 

This may be particularly interesting for finding the reproducing H-invariant distribu- 

tion corresponding to the holomorphic discrete series. 

One of the possibilities to generalize the algebra of complex numbers and complex 

‘2 spaces is to introduce the unit j such that 3 = 1 instead of -1. This leads to the 

paracomplex numbers and to paracomplex spaces analyzed by Libermann and Frechet 

in couple of papers around 1951/1952 [21,22], and 1954 [5], respectively, and to the 

affine analogue of a Hermitian symmetric space of non-compact type, the paruhermi- 

tian symmetric spaces and algebras classfied by S. Kaneyuki [15] by reducing it to 

the classification of graded Lie algebras of the first kind done by S. Kobayashi and 

T. Nagano in [18]. Those spaces have been the object of growing interest in the last 

years [15,16], and in particular they are shown to have a nice compactification as 

being the unique open dense orbit of the diagonal action of G on the compact space 
li/li n H x K/K n H (assuming that G is contained in a simply connected complex 
Lie group), [16]. Furthermore they are symplectic manifolds and may be realized as 
the cotangent bundle T*(lr’/K n H) opening the way for constructing representations 

via polarisation, [25]. 
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Those parahermitian spaces are related to the bounded symmetric domains and the 

spaces of Hermitian type by the following dual (Riemannian) construction [4] that is 

fundamental in the construction of the discrete series of M: 

‘Is .!4ws’:=gc 7 

hnk@hnp@qnk@qnp ++hnk@ihnp@iqnk$qnp, 

where the superscript ’ stands for “Riemannian” and p is the -1 eigenspace of 0. We 
show that (g,r) is of Hermitian type if and only if (g’,B) is parahermitian. As it is 

always possible to find to a given parahermitian symmetric algebra a dual Hermitian 
algebra such that h goes into the maximal compactly imbedded subalgebra, much of 

the structure theory of parahermitian spaces is contained in the classical theory of 

bounded symmetric domains. This also gives a third way of classifying the symmetric 

spaces of Hermitian type by using the classification in [18]. 
At this point we know that the following are equivalent: 

1. (g, r) is of Hermitian type, 
2. (g”, r) is regular, 

3. (g’, 0) is parahermitian, 

4. There exists an open proper H-invariant cone R in q such that Q n k # 0, 

5. r defines a conjugation on D. 
By this it becomes clear that there is an interesting subclass of spaces consisting of all 

those spaces of Hermitian type that are also regular or parahermitian. It is shown that 

then the space is also parahermitian resp. regular and that the spaces l.-3. are in fact 

all isomorphic via a natural Cayley transform that we construct. We show that those 

are exactly the spaces, where D is a tube domain and r a square of a classical Cayley 

transform or equivalently that G/G’ is an orbit through an hyperbolic element X, in 

the Lie algebra such that ad X, has only the eigenvalues 0, +l, -1. For those spaces 

we state now the following problems and facts: 

I) By [27] and [17] the manifold is given (up to a covering) as T*(K/K n H) N 

Ii xHnK q II k. 

II) By Lemma 5.4 there exists a group isomorphism $ : G -+ G’ such that $(K) = 

H’ thus inducing a diffeomorphism $ : G/I i --f G'/ H'. This and the construction of 

Flensted-Jensen [4] gives an intertwining operator from the principal series of G into 

L2(M) in the following way. First the discrete series of n/r is constructed via Poisson 

transformation and analytic continuation from the principal series representation of 

G’ (see [4]). Using the homomorphism $ to hdentify the principal series of G’ and 
G, an intertwining operator is produced. Via the Flensted-Jensen isomorphism and 
boundary-value maps it is also possible to go another way round. By [28] we also have 

an intertwining operator constructed via Poisson integrals and its analytic continuation 
in the v-parameter, which may be zero or having singularities at the points at interest. 

The problem is then to relate this different operators by some ‘regularization’. 
III) By Theorem 6.1 and Theorem 5.6 we can find a closed cone C in q such that 

Co n k = 0. We may then define a semigroup I(C) := exp(C)H and an ordering in 
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M by 2 > x0 * 39 E I’(C) : x = 9x0 as before (see [3,30,35,36]) such that all finite 

causal intervals are compact [30], and in fact M is hyperbolic. Thus we can define 
Volterra kernels, spherical functions and spherical Laplace transform (with respect to 

the above semigroup) as in [3]. Thus there is a natural problem to classify/construct 

the spherical functions and invert the Laplace transform. 

IV) For general M we determine in [ll] the Hardy spaces of M and show that 
the functions in the holomorphic discrete series extend as holomorphic functions to a 

complex domain Z(C,) := Gexp(iC,)/H, N G x H iC, II q, where C, is a G-invariant 
cone in g. Now the regular H-invariant cones in q were classified in [30], where it was 

also proved that every such cone with C” n k extends to a G-invariant cone in g. In the 

above special case, the cone C is unique up to a sign and the domain E(C,) may also 

be viewed (up to a singular set) as G’/H’ x G’/H’ which, via a Cayley transform, 
lives in q. This relates harmonic analysis on M to that on K/K n H x K/K II H and 

tube domains over q. Notice that in this case the compactification of M is actually the 

Shylov boundary of G’/H’ x G’/H’ and in fact the ‘classic’ Hardy spaces on this tube 

domain can be shown to be naturally isomorphic to the Hardy space on M, [34]. 

V) Those are the spaces where the H-orbit in D through 0 is the cone C turning up 
in the realization of D as a tube. Hence we have by [39] and [40] a geometric realization 

of the holomorphic discrete series via Fourier-Laplace transform on H/H n H N II’. 

As those spaces have so many nice properties they are a natural object for further 

investigations. Because of their relations to Cayley transforms we call them symmetric 

spaces of Cayley type. They will be introduced and classified in Section 5 where we 

also give some further examples of special involutions. 

One of the main tools in the geometry of D and its boundary components as well as 

in the theory of holomorphic functions on D, the compactification of I’\D and in the 

classification of invariant cones in g, is the maximal set of strongly orthogonal roots, the 

dual vectors in the Cartan subalgebra and root vectors. Those objects are e.g., used 

to construct Cayley transforms, to analyze boundary components and to construct 

maximal abelian subalgebras of p. They are also used for constructing imbeddings 

of slz into g and for writing down concrete coordinates to estimate the behaviour of 

functions at infinity and so proving L2-estimates, [19, 20, 31, 32, 401. 

As it is also possible - and in fact natural - to replace the usual constructions using 

Cartan subalgebra in the group case by constructions build up from a compact Cartan 

subspace in q n k in the case of symmetric spaces [31], it is necessary to know how 
T and the antiholomorphic extension 7 operate on all of the above mentioned objects 

and do all the relevant constructions in a v-equivariant fashion to have an overview of 

the projections onto h and q and for describing the H-orbits in different realizations. 

How the involution acts on root and roots vectors is also important for describing the 

set of invariant cones and how they extend to cones in g. 
In Theorem 3.4 we prove that there exist two disjoint sets M and N in (1,. . . , T}, 

where r is the rank of D, such that r permutes the set of strongly orthogonal roots 

h,...,YrL enumerated in the usual way, by: 
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1. If j E M then -~yj = yj, 
2. if j E N then -r+yj = ^ij-1 

and furthermore { 1, . . . , r} = M lj {j, j-l 1 j E N}. By this it follows that the maximal 

set of strongly orthogonal roots relative to a Cartan subspace is given by 

that the co-roots and root vectors are related by &j = HYj, fief = HYj - rH_,, and 

&j = ETj, ,!& = Ey, f rE_, for j E M resp. hf. 

We apply this to construct a rpequivariant Cayley transform allowing us to describe 

the H-orbit in the unbounded picture as the set of real points in D(SZ,Q) indepen- 

dently of 7 via an explicit diffeomorphism. As mentioned before this is useful for the 

representation theory of M and also for generalizing classical theorems such as that of 

Moore [26] to the context of symmetric spaces of Hermitian type [ll]. 

In the last part, we recall some results from [30] about the classification of invari- 

ant cones in q. First of all the invariant cones are determined by their projection 

onto/intersection with a Cartan subspace a of q, C = Ad(H)(C II a). Furthermore 

C fl a = pr(C) and C* n a = (C II a)*, where pr : q + a is the orthogonal projection. 

The main tool in the proof is the generalization of the convexity theorem of Paneitz: 

v@W)X) E con(WH * X) + cm;, 

for all X E c,,,, to semisimple symmetric pairs. Here WH is the Weyl group of a in 

H, cm;, is a minimal WH- (and pr(Ad(H))) invariant cone in a and c,,, its dual cone. 

Finally; we also have, that every cone with C” n k # 0 can be extended to a G-invariant 

cone in g. 

The author would like to thank the Mathematical Department of the University of 

Odense for support and hospitality during his stay in Odense February/March 1988 

and 1989 where a part of the work was done. I would also like to thank B. Brsted 

for many useful1 discussions about the subject, J. Faraut for pointing out to me the 

fundamental papers of Ol’shanskii and Vinberg and J. Hilgert for discussion about 

invariant cones. 

1. Symmetric spaces of Hermitian type 

In this section we shall introduce some notations that we will use throughout the 

paper. Then we recall the definition of a symmetric space A4 to be of Hermitian type 

and collect some results from [31] and [32]. We then give a characterization of h4 to be of 

Hermitian type in terms of the corresponding involution on the associated Riemannian 
symmetric space D. We show that up to diffeomorphisms the set of fixpoints on D of 
r is independent of 7. If not, otherwise stated G will denote a connected semisimple 

Lie group although most of the results also hold for reductive groups in the Harish- 

Chandra class. The Lie algebra of G will be denoted by g and its complexification 
by g,. As we are mostly interested in the pair (g,T) we will for simplicity assume 

if nothing else is said, that G is contained in the simply connected Lie group G, 
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with the Lie algebra g,. Analogous notation will be used for other Lie groups and 

for vector spaces. In particular, if q is a subspace of g we will usually identify q, 

with the complex subspace of g, generated by q. Let r be a non-trivial involution of 

G commuting with the Cartan involution 0. We denote also by r respectively 19 the 

corresponding involution on g, gc, g*, gz, where the superscript * denotes the dual 

space. Let Ir’ = G* be the fixpoint group of 0 in G and let H be an open subgroup 
of G’. Then we have an orthogonal, with respect to the inner product X,Y I-+ (X ( 

Y)e := - Tr(ad(X) ad(BY)), direct sum decomposition 

g=h$q=k$p=hl,$h,$q,,$q, 

where h = gT is the Lie algebra of H, k = ge is the Lie algebra of I(, q := h’ = 

{X E g ] r(X) = -X}, p := k* = {X E g ] 0(X) = -X} and the subscript k resp. p 
denotes the intersection with k, resp. pc . Let D := G/K and M := G/H. Then D is 

a Riemannian symmetric space and M is a pseudo Riemannian symmetric space. Let 

c be the center ofq, i.e., 

c = {X E q/$ ] VY E qk : [X,Y] = O}. 

Definition 1.1. The pair (g, r) is called of Hermitian type if eg(c) = qk and there is 

no non-trivial, non-compact ideal of g contained in h. We call M and 7 of Hermitian 
type if (g, h) is of Hermitian type. 

From now on we will always assume, that M is of Hermitian type. For an abelian 
Lie algebra b and a finite dimensional semisimple b-module V we use the following 

notation: 

V, := {w E V ] VX E b : Xv = o(X)w}, Q E b*, 

A(V,b):={acb*Icr#O, V,#O}, 

p(I) := f z(dimV,)cr, V(I) := $V,, 

aa- aa- 
0 # r c A(V,b). 

Lemma 1.2. Let X E c then [X, k] = 0, i.e., c C Ck = the center of k. 

Proof. As k = hk $ qk we only have to show that [X, hk] = 0. Let Y E hk. Then 

([X,Y]][X,Y])s = -(Y([X,[X,Y]])e = 0 as [X,Y] E qk. Thus [X,Y] = 0 and the 
claim follows. 0 

In particular it follows that zgc(cc) = k,. Let a be a maximal abelian subalgebra of 

q containing c. Then it now follows easily (see also [31]): 

(i) a C qk7 & = Zec(ac> Cd $aEA&a, A := %,,a,). 

(ii) Let (Y E A then go n k, # 0 if and only if go c k, and this is equivalent to 
a ] c, = 0. Hence zgc(a,) c k,. 

(iii) Let Ak := {(u E A I g,, C k,} and A, := {o E A 1 g,, c pc}. Then A is the 
disjoint union of A, and AP, k, = zgc(a,) $ gc(Ak), and pc = gJA,>. 
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From now on we keep a c qk fixed and use the notations above. We choose the 

ordering in ia’ such that ic* comes first. Denote by the superscript + the corresponding 

positive system. Let p,+ := pc(AP+) and p; := p,(A;), where At := AP f~ A+ and 
A; = -At. As ~1~ = -1 it f 11 o ows that r(A+) = A- and r(pt) = p;. p$ and p; 

are abelian subalgebras of pc and pc = p: $ p,. 

We recall now Harish-Chandra’s realization of D as a bounded symmetric domain 

in pz. Let Ii,, H,, P+ and P- be the analytic subgroups of G, corresponding to 

k,, h,, pt and p;, respectively. Let c be the conjugation of g, relative to g. As G, is 
simply connected the involutions r, 8, and g are defined on G, and will be denoted by 

the same letters. Then r and 8 are holomorphic, Gz = K,, GT = H, and Gz = G. P+ 

and P- are simply connected and exp : pt + P+ is a holomorphic diffeomorphism. 
The set P+K,P- is open (and dense) in G, and G C P+K,P-. For 2 E G there are 

unique p+(x) E P +, kc(z) E KC and p-(x) E P- such that 

This decomposition induces a bi-holomorphic map 

D + D,, xcK H z(zK) := (exp Ip~)-l(p+(x)) 

of D into a bounded, open and symmetric domain D, in p$. This is Harish-Chandra’s 

bounded realization of D. Let Ck, be the center of k,. As our subalgebras p: are the 

same as those of Harish-Chandra it is well known (see [7, p. 3931) that there exists a 

Zu E Ck, n k such that for J := ad Znlp,: 

p; = (2 E pc 1 JZ = SZ}, 

and J restricted to p gives the almost complex structure on p (Z TdOD, do = 1K E D), 

given by the multiplication on D by i. Furthermore, J commutes with Ad(lr’) and 

induces a complex structure on D. Notice that 

9 = Ad kz and J = Ad(k, 

with k, := exp $nZu E K, see [7, Chapter 8] for details and further references. 

Definition 1.3. Let v be an involution on p and let J be an almost complex struc- 

ture on p commuting with Ad(K). Then J is called p-compatible (and cp is called 

J-compatible) if J o q~ = -y o J. 

The set H,K,P- is also open (and dense) in G, and by [31, Theorem 2.41, G c 

H,K,P-. This inclusion gives a bi-holomorphic map 

D + D/t, ZK H h,(~)li, n H,, 

where Dh is an open simply connected symmetric subset of H,/K, fl H, and h,(z) is 

determined by z E h,(z)K,P +. Define a conjugate linear involution q on g, (and on 
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G, as antiholomorphic involution) by 7 := T o u = u o r. Then Q leaves the subgroups 
Jr’,, H,, P+, and P- stable (this follows from the fact, that 0 and r commutes with 77 
and ~1;~ = 1) and 7716 = r. Via the above identifications T induces an involution rP on 

D, and rh on Db. As 7 leaves P- and IC, invariant the first part of the next lemma 

follows. 

Lemma 1.4. Let the notation be as above. Then the following holds: 

(1) rr = 710, and G = n]o,, = a]~,. Thus r defines a conjugation on D. 

(2) Let 2, and J be as above. Then Za E c and J is a r-compatible almost com- 

plex structure on p. Also J(h,) c g, and J]hp : h, + q, is an I!%-linear isometric 

isomorphism. In particular 

dimB h, = dim= q, = f dimB p. 

(3) Let 9 : D + D be an antiholomorphic involution with v(d,) = d,. Then there 

exists an involution r on g commuting with B and of Hermitian type, such that the 

induced involution on D coincides with v. 

Proof. (2) As r(pz) = p; we have for all 2 E p:: 

[-rZo, Z] = --T[ZO,TZ] = -r(--irZ) = iZ = [Zu, 21. 

In the same way it follows that ad(--rZu)]p; = ad(Zn) As r(ck,) = ck, we get 

ad(-rZu) = ad Zu and thus -rZu = 20. Hence Zn E Ck, II q,k = c,. Now r 0 J = 

road Zu = ad(rZn) o r = - ad Zn o T = -J o T. Thus J(h,) c q, and J(qP) c h,. As 

J2 = -1 the lemma follows. 
For the last part we let 1 be the maximal compact ideal in g and define gr to 

be the orthogonal complement of 1. Then gr is a semisimple ideal. Let Gr be the 

analytic subgroup of G and Ir’r = Gr n K. Then Gr/Kr N G/K and thus 9 defines an 

antiholomorphic involution on Gr/li 1. If we can prove the claim for gr then the lemma 
follows by extending the corresponding involution to be the identity on 1. Thus we 

may assume that g is without compact ideals. Let H(D) be the group of holomorphic 

diffeomorphisms of D. Then by [7, p. 3741, H(D)O is locally isomorphic to G. In 

particular the Lie algebra of H( D)O is g. Hence we only have to define T on H(D),, 

and this can be done by 

r(f) := Y 0 f 0 Y = InW(f ). 

Let d E D and choose f E H(D), such that f(d,) = d. Then v(d) = p(f (d,)) = 
[r(f)](d,) as q(d,) = d,. Thus r induces +P on D. Cl 

The simplest way to see the conjugation is to use the realization of D as Db. For D, 

we notice, that 7 is an involution of pz. Let pC + = pz(+)@p$(-) be the decomposition 
of p,+ into fl-eigenspaces of 7. As 7 is conjugate linear, multiplication by i is an R-linear 

isomorphism of p:(+) onto p:(-). Thus an R-basis El,. . . , E,, n := dimR pz(+), of 
p$( +) is also a C -basis of p z. In the corresponding coordinates Cn 3 (zr , . . . , zn) I-+ 

Cjn=~ z_iE_i E P,+ on p$ 77 is given by ~(2) = 2, z E C”. 
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Definition 1.5. The pair (g, 7) is irreducible if g does not contain any r-stable ideal. 

A list of all possible types of irreducible pairs can be found in e.g., [4, p. 41 or [7, 

p. 3791. In the case of (g, T) of Hermitian type there are only the possibilities g simple 
and Hermitian, e.g., g is one of the spaces 

SU(PY 4), SP(T q, s”*(2n)? s”(2Tn)? e6(-14) Or e7(-25) 

and T an involution that is -1 on the one-dimensional center of k or g = gl x gl where 

gl is one of the Lie algebras above and 7(X,Y) = (Y, X). For examples see [29,30,31]. 

If we assume g simple, then c = Ck = IR& and part (2) is just a reformulation 

of TIC = -1. For g = gl x gl, T(X,Y) = (Y,X), we have pz = pzl x pil, [32, 
Chapter 61, J = (Jt, -JI) and 2, = (&,o, -Z~,O). 

Define a diffeomorphism @ = @T : p + D (see [23, p. 1611) by 

(X, Y) ++ exp(X) exp(Y)do, X E q,, Y E h,. 

(It was pointed out to me by M. Flensted-Jensen, that it was first proved by C.C. 

Moore, that the above map is a diffeomorphism.) Let p be another involution of Her- 

mitian type commuting with 8. Let fi, := gp, 4 = (-1)-eigenspace of cp, and let Jq be 

a p-compatible almost complex structure on p contained in Ck. By Lemma 1.4 there 
exists an isometry T : h, --f hp. Define !P* : p + p by 

*I*( JX + Y) := J,(TX) + TY, X,Y E h,. 

Then $ := @+,o!P*o@;~ : D + D is a diffeomorphism, @or = vo!P and q(P) = P. 

If T and (o commute then p = p-‘9 $ p79, where pm79 = {Xp 1 rqX = -X}. If J 

can be chosen T- and q-compatible then q* may be taken as 

'@*(X t Y) = JX + Y, X E p-79, Y E p7+‘. 

We notice that this is always the case if g is simple. 

Theorem 1.6. Let r and p be two commuting involutions of Hermitian type commut- 

ing with the Cartan involution 8. 

(1) The map 

@ 7,9 : g, n qp @J g, n Lp $ h, n Qp CB h, n Gp + D 

(X,,-7 X& X/L@, X,,) H exp X,g exp Xq~ exp Xhq_ exp Xh~ . do 

is a difleomorphism. 

(2) Define !4 := @9,7 0 !I!* 0 a;,‘,. Then !Q is a difleomorphism, q o T = 9 o 54 and 

Q(D’) = P. 

Proof. (2) f ll o ows easily from (1). Let d E D. According to [23, p. 1611 there are 

unique X E q,, Y E h, such that d = exp X exp Y . do. By the same fact applied 
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to the triple_ (GOT, ~IQ~, 01~~) instead of (G, ~,t9) there are unique X,,- E q, n $,, 

Xqi;. E q, n h, and k E K’ such that exp X = exp X,, exp Xqgk. As k E Ir” it follows, 

that Ad(k)Y E h, and thus, _again by [23] now used for (H, ~IH, 0l~), there are unique 

Xhi E h, II &,, X,i E h, fl h, and h E li n H with exp Ad(k)Y = exp Xh,-exp X,ih. 

It follows that 

d = exp X,,- exp Xqk exp Xh,j exp X,i . do 

and, as the elements in every step above are unique, this decomposition is unique. 

It is also clear that this map is differentiable and, as the construction above depends 

differentiably on exp X and exp Y which in turn depends differentiably on d, the lemma 

follows. 0 

2. Other classes of symmetric pairs 

In this section we introduce two other classes of symmetric pairs (g, T) that are 

closely related with symmetric spaces of Hermitian type. The first class is the class 

of parahermitian symmetric spaces. We will only formulate the definition for the pair 

(g, T). For the general case see [27,15,16,30] and the literature there. The other class 

is related to the regular real forms of g, introduced by Ol’shanskii for irreducible Lie 

algebras in his papers [35] and [36] on invariant cones. 

Let in this section (g,T) be an arbitary semisimple symmetric pair. Otherwise we 
keep the notation from the previous sections. Notice that an ideal m of h is an ideal 

of g if and only if m c {X E h 1 ad XI, = O}. This follows from [m, q] c m n q c 

hnq = (0). T o simplify notation we define the h-representation ad, : h -+ End(q) by 

ad, X := ad(X) 

Definition 2.1. (1) (g, ) T is called eflective if the representation ad, of h is faithful. 

(2) (g, T) is called paruhermitian if there exists a linear endomorphism I, on q and 

a bilinear form (. , .) on q such that 

(a) 1,” = id, 

(b) [I,,adqhl = 0, 
(c) (1,X, Y) + (X, 1,Y) = 0 for all X, Y E q, 
(d) (ad(X)Y, 2) + (Y, ad(X)Z) = 0 for all X E h and Y, 2 E q. 

In that case {g, h,l,, (. , e)} is called a parahermitian symmetric system. 

(3) Let 2” E g. Then (g, ZO) is called graded (of the first kind) if 

g = g(4) @ g(O) @ g(+l) 

where g(X) = {X E g I ad(Z”)X = XX}. 

If 2’ is as in (3), then we can find a Cartan involution 0 of g such that 02” = -2”. 
Furthermore u := ~~(20) $ g(1) is a parabolic subalgebra with Levi-decomposition as 
indicated and g(1) abelian. Now one of the main results in [17] can be formulated as 



206 G. ‘Olafsson 

Lemma 2.2. The semisimple symmetric pair (g, r) is eflective and parahermitian if 

and only if there exists a Z E g such that (g, 2) is ra e and zg( 2) = h. In particular, g d d 

Z E h, ad Z has the eigenvalues 0,1, -1 and on g, the involution r is given by 

r = exp(ri ad 2). 

The idea of the proof is to show, that the linear map D : g + g Dlh = 0, III, = I, 

is a derivation. As g is semisimple then there exists a 2 E g such that D = ad 2. The 

other direction is: define 1, = ad, 2, and let (. , .) be the restriction of the Killing-form 

to q. 

Remark 2.3. Let (g, r) be a semisimple symmetric pair associated with the symmetric 

space G/H, then (g,r) is parahermitian if and only if G/H is parahermitian and 

H c CG(Z) := {a E G 1 Ad(a)2 = Z} w h ere Z E h, is given by I0 = ad, 2. If G is 

contained in G, as we are assuming in this paper, then we always have CG(Z) = G’ as 
this obviously holds for the simply connected group G, (see [17, Lemma 3.5, p. 91)]. 

We introduce now the regular spaces by interchangig the role of the compact and 

non-compact part of q. For g simple those spaces were first introduced by Ol’shanskii 

in [35,36] 

Definition 2.4. The semisimple symmetric pair (g, r) is called regular if zq(cP) = q, 

where cP is the center of q,. 

View g C g, and let cr be the conjuagtion of g, relative to g. Define 

gc := gz = h $ iq and g’ := gfv = hk $ ih, $ q, $ iqk. 

If we want to keep in mind the involution we use to construct gr or gc we write 
(g, T)” := gc and (g, r)r := gr. By holomorphic extension and then restriction r and 

8 define involutions on gc and g’. We denote those involutions by the same letters 

or with the superscript ’ respectively ‘. Then rC = algc and ~‘0’ =: 00 is a Cartan 

involution of gc. rT is a Cartan involution of g’ and 1371~~ = algr. To simplify notation 

we define the associated pair by (g,r)” := (g,r o 19) and ra = T o 0. Notice that ’ and 

’ are related by 

with the obvious notation. The pair (g, r)” is called the c-dual of (g, 7) and (g, r)’ is 
the dual or Riemannian dual of (g, 7). 

Definition 2.5. Let (g,r) and (1,~) b e wo symmetric pairs. Then (g, r) and (1, ‘p) t 
are isomorphic, (g, T) N (1, cp), if th ere exists an isomorphism of Lie algebras X : g -+ 1 

such that 

Xor=poX. 
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Lemma 2.6. Assume that (g,r) is effective. Then 

(1) (g,r) is of Hermitian type, respectively regular if and only if the same holds for 

each irreducible factor. 

(2) (g, r) is regular if and only if (g, 9) is is paruhermitian. 

(3) Let (g,r) be of H ermitian type. Choose 2, E c defining a complex structure on 

p (and 6’ = exp TZ,). Define 9 := exp tr.Z,. Then r o p = 9 o ra and 9 induces 

isomorphisms 

(55 T> = (a TY, kc, T> 2 (g’, 7”) and (g”, 0) = (g’, 0). 

Proof. The first part is obvious. For the second claim we notice first that (g, r”) 

parahermitian $ (g,r) regular by Lemma 2.2. For the other direction we go over to 

the Riemannian dual of (g,?). As the maximal compact subalgebra of that algebra 

has a non-trivial center, it follows by [7, Chapter 71 that there exists an X such that 

h” = zg(X) and (g, X) is graded of the first category. For the last claim we know that 

9 = Ad(expn2,). Thus p4 = id, q2 = 8 and 

por=roAd exp ( (-5~~)) =7.0~3=roeoo. 

Therefore p o r = ra ocpand(inthesameway)ro~=~ora.AsOo~=~oOand 

CT 0 v = q 0 u, as well as g’ = gf” and gc = gc” the second part follows. 0 

Theorem 2.7. Let (g,r) be an effective symmetric pair such that g has no compact 

ideals. Then the following are equivalent. 

(1) (g, T) is of Hermitian type; 

(2) (g”, r) is regular; 

(3) (g”, 19) is effective and parahermitian; 

(4) (g,Br) is of Hermitian type; 

(5) (g’, k) is regular; 

(6) (g’, 19) is eflective and parahermitian. 

Proof. As qc = iq and q; = iqk, it follows that ci = ic. Thus (1) and (2) are 

obviously equivalent. Assume (1) and choose 2, E c as before. Then ad(Z,,) has in g, 

the eigenvalues 0, i, -i and 

g,(O) = kc, a(i) = P: and gc(-i) = P;. 

It follows that -iZ, E {X E gc ( 0(X) = X}, = k, n pc, that (g”, -iZ,) is graded (of 
the first kind) and z,=( -iZO) = g” n k,. That (g, 0) is effective is just the assumption 
that g has no compact ideals. Thus (3) holds. By reversing the arguments (1) follows 
from (3). The theorem now follows from Lemma 2.6. Cl 

We give now a list of the spaces occurring in Theorem 2.7 for g simple. In the first 

column we list the simple Lie algebras such that (g, h) is of Hermitian type. In the 
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second column we list the c-dual regular Lie algebras gc. By the above theorem we 
have 

Hermitian type (g, r) M (g”, r) regular 

where the correspondence is a bijection. In the third column we list the fixpoint algebra 
h and then we give the subalgebra k, n gc occurring as the fixpoint algebra in the 

parahermitian case. In the last one we list rank g, rank G”/K” = rank G/H, and rank h, 

in this ordering. Here n = p + q if p and q are given. We always assume that 0 < p < q 

and not both equal 0. The group case is listed in the second table. The list is taken 

from [2,17,27]. 

g 

SU(P> 9) 
4% n) 

SUPP, 2q) 
so*(2n) 

so*(4n) 

so(2, P + 9) 

sp(n, R) 

SP(2% R) 

e6(--14) 

e6(--14) 

e7(---25) 

e7( -25) 

Sl(P + Q, R) 
su(n, n) 
SU’(2(P + d) 

so(n, n) 

so’(4n) 

s+J+l, q+l) 

sp(n, R) 

sp(n, n) 

Q(6) 

e6( -26) 

e7(--25) 

e7(7) 

h 
I kc n gc 

SO(P, 9) 
sl(n,C) x Iw 

SP(P, 9.) 

so(n, q 

su’(2n) x Iw 

SO(P, 1) x so(l, 9) 

sl(n, IQ x Iw 

sp(n, C) 

SP(2,2) 

f4( -20) 

%(-26) x R 

su’(8) 

Sl(P, R) x sl(q, R) x R 
sl(n,C) x Iw 

su’(2p) x su’(2q) x Iw 

sl(n, Iw) x Iw 

su’(2n) x Iw 

SO(P,P) x IJk 

sl(n, IQ x Iw 

su8(2n) x Iw 

so(5,5) x Iw 

so(9,l) x Iw 

eS(--26) x Iw 

e6(6) x R 

g : Hermitian type g” : Regular 

SU(P, q) x SU(P,d 

so’(2n) x so*(2n) 

so(2, fz) x so(2, n) 

SP(T R) x SP(% R) 

e6(--14) x e6(--14) 

e7(-25) x e7(-25) 

sl(p+ q,@) 

so(2n, C) 

so(n + 2, C) 

SP(% q 

e6 

e7 

Rank: g, M, h 

n-l,n-l,[z] 

2n-l,n,2n-1 

2n-l,n-1,n 

n, n, 2151 

2n, n, 2n 

[ql,P + 1, 

[+I + [T 

n, n, n 

2n, n, 2n 

6,672 

6,294 

7,317 

7,7,7 

h 

SU(P, 9) 

so*(2n) 

so(2, n) 

sdn, R) 

e6( -14) 

e7( -25) 

Up to now we only have looked at the infinitesimal situation. We describe now 
shortly how to construct the corresponding spaces. Remember that we are assuming that 

G c G, where G, is simply connected. Thus we can define the involutins 9, T, ra, 7, CT 
etc. on G,, and as G, is simply connected the fixpoint groups of those involutions are 
all connected. For H we have the Cartan decomposition H = (H fl K) exp(hp). Define 

(G’“), c H" := (H fl K)exp(q,) c GT”, G” := G1 and H” := H c G”. As r o 8 is a 
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Cartan involution on gc we see that (rc)a = 0 and thus (H”)” is well defined. Thus we 

can now define 

M” := G/H”, h4” := G”/H” and MC” = G”/H”“. 

Analogously we can define the correspodning spaces for the Riemannian dual, herby 

using the relation between ’ and ‘. In that case H’ = (G’)’ is a maximal compact 

subgroup of G’ and thus M’ := G’IH’ is of non-compact type and independent of the 

covering group we use. 

3. The strongly orthogonal roots 

In this section we show that r (r of Hermitian type) permutes the maximal set 

of strongly orthogonal roots of A(p,?, tc) (tc a compact Cartan subalgebra) in a very 

simple way, and henceforth, that the constructions in [19,20,40] can be done in r- 

equivariant fashion. Then we relate this to the root system A. 

Let t be a Cartan subalgebra of k (and g) containing a. Then t = a $ t n h is 

r-stable (X E t + X - rX E q II zg(a) = a + rX E X + a c t). Choose an ordering 

in it’ such that ia* comes first. Denote again the corresponding set of positive roots by 

the superscript +. Choose some r- and (Weyl group)-invariant inner product (. 1 a) on 

it’ (e.g., that coming from the Killing form of g,, [31, p. 1351). We recall the following 

definition: 

Definition 3.1. Let C denote one of the sets of roots. Then o, ,0 E C are called strongly 
orthogonal if o # */j’ and cr f p $ C. 

Notice, that cr,,0 strongly orthogonal implies a,,0 orthogonal. Assume for the mo- 

ment, that g is simple. Let r be the real rank of g and let rT := A(pt,t,). Let 

yr be the highest root in rr. If we have defined l?r 1 rr._r 1 ... 1 rk # 0 and 
yj E rj, j = k,. . . r, we define I’k-1 to be the set of all y in I’k that are strongly or- 

thogonal to ok. If rrc-1 is not empty (or equivalent k > 1) we let ~k_~ be the highest root 
in rk_1. Set r := {rl,. . . ,y,}.Ifgisoftheformglxgl,letI’n={y,O,...,y,O}, s=r/2 
be the above constructed set for gr. Let 

Y2j := t$w, Yzj-1 := (0, -ry,, j = l,...,s. 

Then r := {yj 1 j = l,..., r} is a maximal set of strongly orthogonal roots in A(p$, tc) 

and 

-vzj = 72+-l, - v2j-1 = Yzj, j = l,...,s. 

We will now generalize this and describe how r permutes the strongly orthogonal roots 

in general. For that we need first the following lemma, that can also be found in [24, 

p. 651 but with a different proof. 

Lemma 3.2. Let cy E A(pc,tc). If TQ # fa then (Y and TCY are strongly orthogonal. 
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Proof. Assume as we may that (Y is positive. Then -TQ is positive too and thus 

cr - ra is not a root. Let X E pea. Then 7X E pCTol and [X, TX] E k,(,+,,) fl q, c 

q,k n zgc(a,) = a, c t, and thus Q + T(Y cannot be a root. Cl 

For a linear form X E tF we set 

i := Xl& = +<x - TX), 

r, := && = 4(x + TX), 

xv = 211xll-2x. 

Corollary 3.3. Let (u E A(p,, tc). 1frcu # -_(y then [Ic~/[ = (l&II and llal12 = 2/&l12. 

Proof. As Q E A(p,,t,), al, # 0, th us T(Y # fcu and by the above lemma (Y and ~cx 

are strongly orthogonal and thus orthogonal. Hence 

0 = (cl 1 --T(Y) = (& 1 &) - (6 1 5). 

As (CY I a) = (~5 1 6) + (6 I 6) the claim follows. 0 

Theorem 3.4. Let l? = (71,. . . , yr} be the maximal set of strongly orthogonal roots 

enumerated as above. Then there exist two disjoint sets M and N in (1,. . . , r} such 

that 

(1) (1, * *. 7 r} = Mti {j,j - 1 I j E N}, 

(2) ifj E N th en -T”lj = Tj-1, 

(3) forj E M, -T”/j = yj. 

Proof. By the definition of r we can assume that (g,~) is irreducible. By the above 

the theorem holds for g = gl x gl. Thus we may assume, that g is simple. We then 

prove the theorem by induction on r. If r = 1 we set M := (1) and N := 0. 
Assume then that the theorem holds for all s < r. Let yT and I’r be as before. If 

-ry, = yr we set A := rr__l otherwise yr and S := -77, are strongly orthogonal, e.g., 

S E rT-l. Assume, that S is not the highest root in I’,_l. Then we can find a y E rr_l, 

some cy E A+(g,, h) and natural numbers n, > 0 such that 

y=st c n,cx. 
o( 

Let 20 E c be as in Section 1. Then a(.%~) = 0 or i according to cr compact or non- 

compact. Thus Cncy~(Zo) = 0 and it follows that all the (Y’S are compact. 

We now claim that (cx I yT) = 0 f or all a. As 6 and y are both orthogonal to yr it 
follows that 

CQQ I 74 = 0. 
a 

As n, > 0 and (a I rr) > 0 ( o th erwise yr -I- (Y would be a positve non-compact root 

greater than yr) the claim follows. 
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Let p := C ~L,Q. Then (y 1 6”) = 2 + (p 1 6”) and (y 1 S) 2 0 (otherwise y + S 

would be a root). As (y - 3S)(Zo) = -2i, y - 315 is not a root and (y 1 6”) < 2. Hence 
(p 1 S”)< 0. If we assume (a 1 6) < 0 then 0 > (a IS) = (-~a I -yl-) and so 7,.-j-(-Ta) E 

A(p$,t,). But then --~cx is negative. As -T leaves the s&t {a E A+(g,,t,) I & # 0} 

stable, we have (~1~ = 0. But then T(Y = (Y and 0 = (+y7 I a) = (7,. I --T(Y), a 

contradiction. Thus (,D I 6) = 0 and (y I 6”) = 2. Hence 0 = y - 6 E A(k,, tc) and p is 
orthogonal to yr and 6. From this it follows, that 

-T+Y = yr t (-TP> E A(p:,G). 

As the Weyl group wk of A(k,, tc) leaves A(p :,tc) stable and --r/3 I yT it follows, 

that 

or - (+P) = s-,p(y, - rP) E A(p:,Q, 

where se7p E Wk is, as usually, the reflection in the hyperplane orthogonal to -rp. 
As yr is maximal in A(p:, tc), -rp can neither be positive nor negative, which is a 

contradiction, and -77, is in fact the maximal root in l?r_l. 
If rT-z = 0 we put N := (1) and M := 0; otherwise we now define A := rr_2. 

Having now defined A we see that -rA = A. Let gcA be the Lie algebra generated by 

the root spaces g,(k,), y E A. Then gcA is a T- and g-stable semisimple subalgebra 

of g, and gCA II g = gn has smaller real rank than g. As ~~~~ anticommutes with 

the almost complex structure Jlpngnr the pair (g*, ~1~~) is of Hermitian type and our 
induction hypothesis works and the theorem is proved. q 

NOW we can do the same construction with A(p$, tc) replaced by At. In particular 
let s be the real-rank of M, and let 

be constructed in the same way as rr 1 . a. 1 rl (see [31]) and let p = {Xl,. . . A,} be 
the corresponding set of strongly orthogonal roots. 

Theorem 3.5. Let the notation be as above. Then 

p := {?j (j E NuM}. 

Inparticulars= jNl+IMJ. Letn:{l,...,s} + M U N be the bijection such that 
x(i) < I for i < j. Then Xj = j,+), for all j = 1,. . .s. 

Proof. First we show that the set {?I,. . . , Ts}, s := (NI t /MI, is strongly orthogonal. 

For that assume that X,I.L E {?j I j E N u M}, X # p and X - p E A. Choose j and 

k such that X = ;ij and p = yk. Then +yj I ok, -Tyk and thus X I p. It follows that 
(X - p I p”) = -2 and th us sP(X - p) = X + p E A, a contradiction. Let now 6 E Ai 
be strongly orthogonal to all Tj’s. Let (Y E A(p:, tc) be such that & = 6. If yj - cx is a 
root for some j, then obviously Tj - 6 E A and that is impossible. Thus (Y is strongly 

orthogonal to all yj in contradiction to the maximality of the set r. In the same way I 
it follows, that ;/T is maximal in rS and the last assertion follows by induction. •I 
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Example 3.6. In Lemma 4.3 we will see that s = ]M] + IN] equals to the rank of 

H/H II Ii. As T = IMJ + 2lNl we have IN] = T - s = rank(G/K) - rank(H/H n K). 
Hence the only irreducible pairs with N # 0 are 

1. (g x g, diagonal), s = r/2. 

2. (su(~P, 2q), SP(P, q)), r = min(22+ 2q), s = min(q, p). 

3. (eG(-l+ f4(--20)), T = 2, s = 1. 

4. The Cayley transform 

In this section we use the results of the last section to relate root vectors in pea 
and pc&, cr E A(pc, tc). We then use that to construct maximal abelian subalgebras 

b and b’3 of p such that b n h (resp. bq n q) is a maximal abelian subalgebra of 

h, (resp. qP). This relates our construction in [31] to ‘classical’ constructions based 

on t,. We also recall the construction of the Cayley transform and show how this 
construction can be done r- or q-equivariant [19,40]. We will restrict ourself to the 

Cayley transform although this may be applied as well to the boundary components 

and the partial Cayley transforms by replacing the set I by I’ and Xl by the partial 

sums CL+ Rz,,, . 

For Q E A(gC, tC) h c oose H, E [gCa,gC_o,] such that cx(Ha) = 2. Choose E, E g,, 
such that E__, = aE, and H, = [E,, E-,] (see [7]). The following can then be proved 

as in [24, p. 571 or more simply by using the involution 7. 

Lemma 4.1. For CY E A(pc,t,) we can choose E, such that TE, = E,,. 

Let Q E A(g,,t,) such that 6 # 0. Let /3 := 6 E A and define 

ri, := 
HCY if --To = a, 

H,-rH, if -T~#CY. 

&j := 
ECY if -ro = o, 

E,+rE._, if -TCY# Q. 

0 if --To = cr, ._ .- 
E, -rE_, if -TCV # (1~. 

Lemma 4.2. Let CI E A(g,, tc) such that 15 # 0. Let /3 := 8 E A. Then 

(1) fip E ia n [gCp, g,-p] and P(fifl) = 2; 

(2) & = E, - rlE, E gcp(-> and & = E, t p% E g&t); 

(3) &p = [&,aEo] = [fio,aip] and [&,a&] = H, + rH,. 
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Proof. As the claim of the lemma is obvious for ---TO = Q we may assume that this is 

not the case. As rg = or, rE_, E g,(_,,), Q f rcx $ A(gc, tc) and a(E, f rE_,) = 

E_, * rE, it follows: 

[E, f TE-,, E_, f rE,] = [E,, E-J - r[E,, E-a] = H, - rH,. 

For H E a, we also have 

[H, E, f rE_,] = [H, Ea] f [H, rE_,] = CI(H)(E~ f TE_,). 

By cx I --TCY and H-,, = -rH, it follows that a(-rH,) = 0 and then by direct 

calculation p(Hcy - rH,) = 2. The rest of the lemma is now obvious. Cl 

Choose Ej := EyJ E per, such that rEj = E,, and define 

where gj = ETA, Ej = ,!I?.+,, j = 1,. . . , T. Then Xj E p, Xj E h,, Xj E q, and 

2Xj = &j + _%;.. Define 

b := ($iRXj. 

j=l 

Lemma 4.3. Let the notation be as above. Let A : { 1,. . . , s} + M UN be the bijection 

such that T(i) < r(j) for i < j. Then b is a maximal abelian r-stable subalgebra of 

p such that b n h, = @=, RX,(j) is maximal abelian in h,. Furthermore b f~ q, = 

@j&v @A. 

The first part is well known, e.g., [7, p. 3851. The second part follows from Lemma 

4.2 and [31, Lemma 2.31 (by replacing r by 07). The last part follows from the fact, 

that the ortogonal projection of 2Xj onto h, (resp. qp) is given by _%j (resp. Xj). 0 

Lemma 4.4. Let Hj := H7, and fij := I?+,. Define Ho := ii C,‘,, Hj and X,, := 

4 C,‘,, Xj. Then Ho = ii C,“,, B,(j) E a and X0 = f C,“,, _?,+I E b II h,. 

Proof. As H-,, = -rHj it follows that 

The other part follows in the same way. q 

Remark 4.5. In the same way we may construct a maximal abelian subalgebra bQ in 

p such that bq fl q, is maximal abelian in q,. For that we only have to replace r by Or 
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everywhere. The corresponding vectors are then: 

x,9= $qj) EI+“h,. 
j=l 

Notice that for J = ad(&) as before and k e := exp(i7rZe), then J(b) = Ad(ko)(b) = 

bq. 

Define it- := ‘&, ‘wHYJ and ia- := it- n ia = C$=, “irirC,,. Let Xi E bq n q, 

be as in Lemma 4.5 and define 

c := exp YXi and C = Ad(c). 

By Lemma 4.5, [19] and [40] C is just the usual Cayley transform. As C o 77 = q o C we 

call C the q-equivariant Cayley transform. The usual slz-reduction gives 

C(Hj) = xj, C(Xj) = -Hj, and C(X!) = X,“, 

as well as 

c(it-) = b, and c(ia-) = b II h. 

By the theorem of Moore [26] (see [39, p. 15]), we have now relatively to ad(X,): 

g = g(-1) @ g(-$) @ g(0) @g(i) @ g(I), 

where g(fi) may be zero. Let 9 := Ad(exp(wiXn)) = Ad(ke)-r o C2 o Ad(ke). Then 

&(H) = -I, &(O) = 1, and qle(*;) = fi. 

In paricular q4 = 1 and p2 = 1 e g(&i) = 0. In that case 9 = C2 o 0. Let 

gT := g’p2 and GT := Gv2. 

Then GT is reductive with the Lie algebra gT and p defines by restriction an involution 

on GT. We collect now some facts that we need about invariant convex cones (see e.g., 

[lo]). Let L be a Lie group and V a finite dimensional real Euclidean vector space and 
a L-module. As we are only interested in closed or open convex cones we define C c V 
to be a cone if C is closed or open, convex and R+C c C (for C open we replace Iw+ 

byIR+\{O}.)If no o t th erwise stated we will assume C closed and use the notation R 

for open cones. C is an L-invariant cone if C is a cone and LC c C. If C is a cone we 
define the dual cone C” c V* by 

C” := {u E v 1 VW E c: (u 1 ?J) > O}. 
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C is proper if C and C’ are both non-zero. This is equivalent to one of the following 

1. C is pointed, i.e., there exists a u E V such that (w ] U) > 0 for all ‘u. E C \ (0). 

2. c f-l -c = (0). 
We call C generating if C - C := {u - v ] u, v E C} = V and regular if it is proper 

and generating, or equivalently both C and C* have non empty interior. Denote by 

ConL(V) the set of L-invariant, regular cones in V. If fl is an open cone we define dual 

cone by 

sz* := {u E v 1 vv E s2 \ (0) : (u 1 w) > O}. 

Definition 4.6. Let R be an open and proper convex cone in a real vector space V. 

Then 

D(R) := V + iR C V, 

is called a tube domain over R and also a Siegel domain of type I. 

Let W be a complex vector space and & a Hermitian form on W with values in V, 

such that 

Qh 4 E 6 \ UC ‘1L E w \ (0). 

Then & is called a CHermitian form and 

is called a Siegel domain of type II. 

Theorem 4.7 (Koranyi, Wolf). Let the notation be as above. Let D, = G/K C pt 

be as before. Then the following are equivalent: 

(1) D, is of tube type; 

(2) There exists a 3-dimensional subalgebra of g containing 20 and isomorphic to 

sl(2, R); 

(3) 20 = Ho; 

(4) V(Zo) = -20; 
(5) @ = 1; 

(6) g(f;) = 0. 

The proof can be found in [19]. For convenience, we extend the definition of ‘Hermi- 
tian type’ as follows. A reductive symmetric pair (G, H) in the Harish-Chandra class 

is of Hermitian type if the center of G is compact and ([g,g],r]lg,gl) is of Hermitian 

type. We will then also call the pair (g, r) of Hermitian type. Let CT be the center of 

gT. 

Lemma 4.8. Let the notation be as above. Then: 

(1) T o 9 = cp o r and 8 o C,P = p o 8. Thus GT is r- and e-stable and GT/KT, 

KT := GT n K, is of tube type with almost complex structure on PT given by ad HOIPT, 

PT :=PngT- 
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(2) Let VT := vlgT. Then (go, (PT) is of Hermitian type with (-1)-eigenspce qT = 

g(l)$g(-1), to C gT andq c (t-)‘. Furthermore, to is maximal abelian subalgebra 

ofwlc, P/l,. . Y/T> is a maximal set of strongly orthogonal roots and --J,PT~ = yj. 

(3) (gT, TlgT) is of Hermitian type. 

Proof. The first part of (1) f o 11 ows from the construction of q and Theorem 4.7. The 

last part is Lemma 4.6 in [19, p. 2741. For (2) we first notice that t c gT. As t is maximal 

abelian in g the center of gT has to be contained in t. Furthermore CT commutes with 

Xu and thus CT C g(0) fl t = (t-)’ as we will see in a moment, As cpH0 = -Ho by 

Theorem 4.7 it follows, that VT is of Hermitian type. 

X=H-+H++ c X,, 

aWg=,t) 

where H- E t-, H+ E (t-)‘, X, E g,,. Then 

Thus X commutes with t- if and only if all Q’S are orthogonal to all yj’s. But then 

p(X) = -H- + H+ + cXa 

as p(Hj) = -Hj. Thus zgT(t-) II qT = t- and (2) follows. By Lemma 4.4, r(Ho) = 

-Ho and (3) follows by Lemma 1.4. Cl 

Let 1~ := HO -X0. By [19] (see [40, p. 161) there is an open, self-dual G(O)-invariant 

cone 

s2 = G(0) . lc c g(l), 

where G(0) = Cr+ (Xu) C GF and a*X = Ad(a)X. Then R is a Riemannian symmetric 

space 0 N G(O)/K(O) with K(0) = KnG(0). N t o ice that R is the unique G(O)-invariant 

cone in g(l) containing Ic (if 01 contains Ic then Qr II R # 0 + R c 01 + 0; c 

R* = R. As R is minimal fl; = 0). 

Define a positive system A+(g, b) := { CI o C-’ 1 Q E A+(gc, tc), cxJt- # 0} and let 

s := g(A+(g, b)) = so $ s1j2 $ sr and W := s1/2c n C(pz) 

where sx := s n g(X). Then there exists a G(O)-equivariant bijection L : s1/2 + s1i2 

such that W = {X - ZLX 1 X E s~,~}. W is G(O)-stable and s1i2 3 X I+ w(X) := 

i(X - k(X)) E W is a complex G(O)-equivariant isomorphism commuting with 7. 
(The last claim follows by: q(p+) = p- and 77(s1i2) = s1/2. As 77 is conjugate linear, 

7 0 L = --L 0 7.) We also let V := g(l)c and define the the Hermitian V-valued form & 

on W by 
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We also define Q : cP+ K,P- + V $ W by 

o(g) := C(P+VS)). 

Then the following holds (see [40, p. 171): 

Theorem 4.9 (Koranyi, Wolf). Let the notation be as above. Then 

(1) & is a RHermitiun form and for all a E G(O), W, WI E W 

&(A++? Ad(a)W) = Ad(+l(W JG). 

(2) Q determines a G-invariant biholomorphc isomorphism of G/Ii onto D(0,Q). 

(3) Let a E G(O), X E sl, Y E s1j2 and let b = uexp(X)exp(Y). Then 

b . (2, W) = (Ad(u)X + Ad(u)2 

+ &(Ad(a)W,Ad(#(Y)), Ad(a)W t Ad@+(Y)). 

We will now describe the H-orbit through ilc in D(R,&). For that let SA := exp(sx) 

and B := exp b. 

Lemma 4.10. (1) Let a E cP+K,P-. Then a(q(u)) = q(a(u)) and in particular 

a(H/H n Ii) = D&Q)? 

(2) Let W wl E W. Then &(v(W,v(wl)) = -rl(Q(w,wl)). 
(3) Let a E G(O)S1&/2 and (Z,O)) E D(R, Q) then ~(a. (Z,O) = rl(a)(qZ, 0). 

Proof. The first part follows from C o 77 = 77 o C and q(c) = c whereas the second part 

follows directly from the definition. The last part follows from part (3) in Theorem 4.9. 

0 

As r]~~ and PT are commuting involutions of Hermitian type we now that the G(O)- 

and H~IGT orbit through o(O) = iIc are diffeomorphic (see Theorem 1.6). We describe 

this diffeomorphism now in terms of the data used to define the Siegel domain D(0, Q). 

We first look at GT and thus we assume for a moment that G = GT, i.e., G/Ii of tube 

type. 

Lemma 4.11. Assume that G/K is of tube type. Then 

G(0) = Soa Be K(0) = exp(se rl q) . B n exp(q) . (G(0) n H)K(O) 

H = S; - S,7. B’ .Kn H = S;G(O)'K n H 

where the second products are in general not difleomorphisms. The map 

5’; . G(O)'lc 3 exp(X) age 1~ H exp([Ic,X]) . g. Ic E R 

is a diffeomorphism of H/H n Ii onto 52. Also (Gq7, r) is of Hermitian type and the 

Cuyley transform induces a diffeomorphism 

Dv7 N V n q + i(0 n q). 
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Proof. The first two decompositions are just the Iwasawa decompositions, G(0) re- 

spectively H II GT. By [40, Lemma 2.2.4, p. 161, [Ic,sn] = sr. As 

sonq@sonh 3 (X,Y> H exp(X)exp(Y) E S(O) 

is a diffeomorphism the first part follows. As cpr(Zu) = -20 and r.Ze = Zu, (g”‘r) is 

Hermitian. As the ‘g(1) ’ in this case is g(1) fl q(1) the lemma follows. 0 

In the general case we know, that 

H/H n Ii N- exp(sQ,) . (H n GT)/H n KT. 

From Lemma 4.10 we now have: 

Theorem 4.12. The H-orbit through iIc in D(s2,Q) is given by 

qn, Q)q = {(X t iz, W) E s; $ isghp0Vp-Q&(W,W)~~} 

~{(iZ,W)Eis~xW~~z-~(w,w)E~} 

where the difleomorphism is given by 

a exp(X) exp(Y) - iIc = (Ad(a)X + Ad(a)ilc, Ad(a)w(Z)) 

++ (exp(Pc, Ad(a)X]) -Wa)ik, Ad(a)w(Z)) 

for a E G(0) n H, X E ST and Y E WV. 

5. Cayley type involutions 

This section is devoted to some special kinds of involutions. The first kind of involu- 

tions are those that generalize complex conjugation on SU(p, q), SO*(2n) and Sp(n, IR) 

(see [29]). Those involutions are charaterized by rank M = rank K/K n H = rank G, 

i.e., a = t. The second type of involutions are those that are inner and then there are 

the special inner involutions coming from a Cayley transform as the involution VT in 

Lemma 4.8 in the case that G/K is a tube. Except for Lemma 5.2 and 5.3 we assume 

that (g, 7) is of Hermitian type and that (g, h) is effective without compact ideals. 

Definition 5.1. Let g be a semisimple Lie algebra with Cartan decomposition g = 

k $ p. Then g is split, or a normal real form of g,, if there exists a Cartan subalgebra 

of g contained in p. 

Lemma 5.2. Assume that (g, T) is regular and (g, h”) eflective. Let b c q, be maximal 

abeliun. Then cP c b and b is a maximal abelian subalgebra of p. 

Proof. By the same argument as in the proof of Lemma 1.2 it follows, that zg(c(qp)) 1 

hk $ q,. As a is maximal abelian cP c a. But by Lemma 2.2 there exists a 2” E cP c a 

such that ~~(2”) = h”. Thus a C q,. 0 
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Lemma 5.3. Let g be a semisimple Hermitian Lie algebra without compact ideals. 

Then there exists an involution r of Hermitian type, unique up to conjugation, such 

that rank M = rank K/K fl H = rank G. This involution is characterized by gc being 

split. 

Proof. Let t be a Cartan subalgebra of g contained in k. Then multiplication by 

-1 is an automorphism of A(g,,t,) in the sense of [7, p. 4211. By Theorem 5.1. (see 

also [45, p. 2891) th ere exists an homomorphism T of g, with ~‘(t = -1. It can be 

shown, that r can be constructed such that r o u = rs o T, i.e., r leaves g stable. 

If rl is another involution of G satisfying rank G/H1 = rank K/K n HI = rank G, 

HI = G?, we can find a Cartan subalgebra tl c {X E k ) TV = -X}. But then 

we can find a k E Ir’ such that Ad(k)tl = t, [45, p. 3521, and we can assume that 

t = tl. By Theorem 5.9, [7, p. 4251, and its proof, there then exists a X E t such 

that 7 = Ad(exp(X)) o rl o Ad(exp(-X)). By construction t C qk and it C qi. Thus 

g” is split. Assume now that gc is split. Then we caa choose a Cartan subalgebra tC 

contained in pc and containing ic. By the above lemma tC C q;. Hence t := itc C qk 

is a Cartan subalgebra of g contained in qk. q 

Those are (su(p, q), so(p, q)), (so*(2n), so(n, C)), (sp(n, R), sl(n, IR) x R), where the 
involution is given by complex conjugation. Then there is the pair (so(2,2p), so(p, 1) x 

so(p, 1)) and (so(2,2p + l), so(p, 1) x so(p + l,l)). Here the involution is given as 

conjugation by d( 1, -1, 1, -1,. . . , 1, -1) respectively d( 1, -1, 1, -1,. . . , 1). At last we 

have the two exceptional cases (e6(_,4), sp(2,2)) and (e7(_25), su*(8)). 

The next type of involutions are those that are inner. If g = gl x gl and T(X, Y) = 

(Y, X) then every inner automorphism leaves the factors invariant and so g is never 

inner. Thus g is a product of simple factors invariant under r. Thus we can assume 

that g is simple. Notice that by [7, Chapter 9, Theorem 5.71, r is inner if and only if 

rankg = rank h and in fact if 7 = exp(adX) then X may be chosen in kd. The main 

idea of the proof is, that if rank h = rankg, then there is a &stable Cartan subalgebra 

t in h and g. Then tk $ it, is a Cartan subalgebra of the compact Lie algebra k $ ip 

and TltkeitP = id. Hence there exists a XI, + ix, E t.l, $ it, such that 

T = Ad(exp(Xk + ix,)). 

As t.k $ it, is a-stable, Xk, X, E t and in particular [Xk, X,] = 0. Define 

?-I, := Ad(expXk), and ~~ := Ad(expiX,). 

Before we look at the general case we need the following lemma where k, = exp( i,iZ,) 

as before: 

Lemma 5.4. Let T = exp(niX) be an involution of Hermitian type with X E h,. 

Define [, $ : G, --+ G, by 

[:=Ad(exp:X), and $I := Ad exp q Ad(k,)X ( ). 
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Then 

(1) F : (g,r) + (g”, ) T is an isomorphism. to 0 = 8 o r o f and [ define isomorphisms 

G -+ G”, K + k and G/K + G”/17’, 

where I? is the maximal compact subgroup of G” corresponding to the Cartan involu- 

tion ra. 

(2) 11, : (g, 4 + (g’, 0) is an isomorphism. $ o 8 = r o 11, and 1(1 define isomorphisms 

G + G’, K -+ I{’ and G/K + G’IH’. 

Proof. As Ad(k,) o T o Ad(k,l) = Ad@) o r = ra it follows that $J~ = P and we 

only have to prove (2) as (1) f 11 o ows in the same manner by replacing 9 by 7. For 

simplicity we write Y = Ad(k,)X = JX. Then $ o cr = u o $-’ = u o P o 7/, and 
+oe=eo+-l = T o + Here (T is the conjugation of g, relative to g as usually. Hence 

II, defines a Lie algebra isomorphism over Iw g N gc @ = gr and k, N h,. Cl 

Lemma 5.5. Tk and rP are commuting involutions of g such that r = ‘rkrP. rk and rP 

commutes with t9 and rP is non-trivial. Furthermore rP is regular, parahermitian and 

of Hermitian type. 

Proof. That TkTP = r = TPTk is clear. Now 0 o rk = rl, o 0 and 8 o rP = r;r o 8. Thus 

h-=oOTkOTp=TkOTp -ld=TO~=TkOTpOe. 

Hence Tk o rP = Tk o r;r. From this it follows, that 7-g’ = rP and so rP is an involution 

commuting with 0. As r 2 = 1 it also follows that rk is an involution commuting with 6. 

Let 2, E c be as before. Then [Z,, Xk] = 0. As r is of Hermitian type -2, = r2, = 

rP?-kzO = ~~2,. Hence rP # id and of Hermitian type. Denote now by the superscript ’ 

the dual objects build up from (g, rP). By the above g’ (with h’ as a maximal compact 

subalgebra) is Hermitian. Hence there exists a X” in the center of h’ such that ad(X’) 

has the eigenvalues O,i, -i and rP = exp(nad(XO)), [7, Chapter 81. Now the center 
of h’ is one-dimensional and &stable and thus contained in the iq, or hk space for 

rP. Thus X” E i{Y E g / TV = -Y}p or X” E {Y ) TV = Y}k. As rP is of 
Hermitian type X” E ip as otherwise ~~(2,) = 2, is a contradiction. Now it follows 

that (g, -iXO) is graded and {Y 1 TV = Y} = zg(-ix”). Thus rP is parahermitian. 

Replace rP by r: = exp(Ad(k,)(-ix”)) . As (g, rP) N (g, $) the lemma follows from 

Lemma 2.6. 0 

We will now give a characterization of the involutions of the form rP. We notice that 
in this case (g, 7) N (g’, r) etc. and hence those involutions can also be described in 

terms of properties of the dual resp. c-dual pair. This we leave to the reader, see (6), 

(7) and (10) in th e o f 11 owing theorem. Recall that if G/K is of tube type, then a Cayley 

transform of G/K is a map C of G/K into a tube domain D(0), C = Ad(exp ;rriX) 
such that ad(X) has the eigenvalues 0, 1, -1. In particular C has order 4. 
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Theorem 5.6. Let g be simple and r of Hermitian type. Then the following are 

equivalent: 

(1) G/K is a tube domain and there exists a Cayley transform C such that T is 

conjugate to C2. 

(2) q is reducible as a h module. 

(3) If cb is the center of h then cb is non zero. In that case dim ch = 1 and cb c p. 

(4) 7 is inner and r = 7-r. 

(5) t = Ad(expX) is inner and h c zg(X). 

(6) All the spaces in Theorem 2.7 are isomorphic. 

(7) (g, r) is isomorphic to one of the pairs (g”, r), (g”, e), (g’, 0) or (g’, r”). 

(8) (g, r) is regular. 

(9) (g, r) is parahermitian. 

(10) (g’, 0) is of Hermitian type. 

Proof. If (1) holds then r = Ad(exp nix) and g = g(0) $ g(1) $ g(-1) relatively to 

X. But then h = g(0) and q = g( 1) $ g(-1). In particular X is central in h and thus 

g(fl) is ad(h)-stable. As g(fl) # (0) it f 11 o ows that q is reducible as a h-module. 
If (2) holds then, as (P’)~ = q, is reducible, it follows that g’ is Hermitian. Thus the 

center of h is one dimensional by [7, Chapter 81, and as above we see that ch C h,. 

Assume (3), then (4) follows by using the Riemannian dual form again. (5) is now 

obvious. As X is then central in h we have X E h,, e.g., r = rP. By Lemma 5.4 

all the spaces are isomorphic. Thus (6) holds and then (7) is obvious. Assume that 

(g, r) is isomorphic to one of the pairs (g”,r) or (g”, 8), (the other cases follow in 

the same way by replacing (g, r) by the associated pair). Then gc is Hermitian and 

it follows that (g”,r) N (g”,0) as the Cartan involution on gc is Br. Hence (g,r) is 
regular by Theorem 2.7. If (g,r) is regular then (g, ra) 21 (g, r) is parahermitian by 
Lemma 2.6. As (gT,ra)c = (g,?) with respect to the Cartan involution r on gr it 

follows by Theorem 2.7, part (3) that (g’, r”) is of Hermitian type. But using the 
Cartan involution T on g’ it follows by Lemma 2.6 that (g’, Y) N (g’, 19) and thus (10) 

follows from (9). 

Assume now (10). Then (g’, 0) is of Hermitian type. But then the Cartan involution 
r is given by r = Ad(exp(nX”)) with X” central in h’ and 0(X0) = -X0. Furthermore 

ad(X”) has the eigenvalues 0, i, -i. From 0(X0) = -X0 it follows that X” E ih,. Thus 

X := -ix” E h, and ad(X) has the eigenvalues O,l, -1. Let b be a maximal abelian 
subalgebra of p containing X. As z(X) = h it follows, that b c h. Choose a Cayley 
transform Cr transforming it- onto b and choose A+(g, b) as in Section 4. If yl,. . . , yr 

are the strongly orthogonal roots and oj = yj o CT’ we know by the theorem of Moore, 
that D is a tube domain if and only if A+(g, a) = {aj, +(a;fak) 1 1 < i,j, k < r, i < k}. 

Otherwise A+(g,a) = {$crj, oj, $(a; f o/c) 1 1 < i,j,k < r,i < k}. By this we see 
that D has to be a tube domain as otherwise ad(X) would have an eigenvalue l/2 
or 2. Comparing now the eigenvalues of ad(X) and ad(X,) in Section 4 it follows that 
X = X,. Hence r = Ad(L,) o C2Ad(lc,)-l where C is the Cayley transform from 
Section 4. 0 
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Definition 5.7. Let (g,r) be a semisimple pair such that r leaves every simple factor 

of g invariant. Then T is of Cuyley type if and only if restricted to each irreducible 

factor r satisfies (l)-(10) b a ove. In that case we also call M of Cayley type. 

The above defined spaces have also been introduced in [16, Section 51, as spaces 

of Silov type. Our argument for calling this type of involutions Cayley type is their 

relation to the classical Cayley transform. 

Corollary 5.8. Let g be semisimple. Then there exists an inner involution on g of 

Hermitian type if and only if D = G/K is a tube domain. In this case there exists (up 

to a conjugation) a unique involution rP of Cayley type. If r is inner then there exists 

a y E Ad(G) such that y o T o y-l = TkTppr where Tk E AdG(K) commutes with rP. 

Thus if r is inner then r is a product of an inner involution rk E AdG(K) and an 

involution of Cayley type. The only claim that has not be proved so far is, that the 
involution of Cayley type is unique. But if we have two such involutions defined by Xr 

and X2, then we may conjugate say Xr by an element of Ii’ such that Ad(lc)Xr, X2 E b 

where b is a maximal abelian algebra in p and in fact we may assume that Ad(k)Xl 

and X2 are in the same Weyl chamber. But then Ad(k)Xi = X2 by looking at the 

eigenvalues. 

Now we can read of the inner involutions from our first table by rank h = rank g. 
We then find the involutions of Cayley type by ch # 0 or g 21 gc. 

g : Hermitian type 

Inner involutions 

gc : Regular 

su(n, n> 
so* (4n) 

so* (4n) 

so(2, n) *) 

su(n, n) 
so(2n, an) 

so* (4n) 

so(k + 1, n + 1 - k) 

sp(2n, q 

SP(V q 

e7(-25) 

e7(-25) 

’ n and 6 not both even. 

SP(% n) 

SP(% w 

e7(7) 

w-25) 

h 

sl(n, C) x IR 

so(2n, lJ> 

su*(2n) x R 

so(k, 1) x so( 1, n-k) 

sp(n, @) 

sl(n, IR) x R 

su*(q 

e6(-26) x R 

1 
Tk 

Tk = id 

rk # id 

rk = id 

rk # id, k # 1 

Tk=id, k=l 

rk # id 

Tk = id 

Tk # id 

Tk = id 

Example 5.9. For so(2, n) we define an involution r by conjugating by the element 

d(l,-1,1,-l,..., l,-l,l,l,..., 1) or 
. 4 

d(rl,l,.._.,-l,:,l,l ,..., 1). 

k+l times k+l times 

Then the fixpoint algebra is isomorphic to so(1, n - Ic) x so(1, Ic). If n and k are not 

both even, this involution is inner and of Cayley type if k = 1. 
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Example 5.10. (SU(n,n)). Let G = SU(n,n). Let r be the involution 

T((; f;)) := (_“, ;) =Jn(; ;)J;' 

where 

J, = 

Then h={ (_“, ‘:>I TrA = 0, A* = -A, B* = -B 
> 

N sl(n,@) x Iw 

where the isomorphism is given by 

AB ( > -B A 
t+A+iB, 

and 

q={ (“, _;)IA*=-A, B*=J3}. 

The elements Z,, X2 and X, are now given by 

and 

Furthermore 

g(l)= { (“,” _;A)/A*=A}=H(n,@), 

g(-q= { (!; -$$*=A} -H(@), 

where H(n, C) = {A E M,,,(C) 1 A* = A}. For finding the corresponding operation of 

H on H(n, C) we see by 

that the above identification transforms the adjoint action of H on g(l) into the op- 

eration (a, 2) H uZu* of SL(n, C) + IR N H on H(n,C). In this case $ is given by 

conjugation by 
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If we realize G/l{ as D,,, = (2 E A&,,(@) 1 I, - Z*Z > 0} and identify g(1) with 
H(n, @) then we get the usual Cayley transform 

D, 3 2 H (2 + iI,)(iZ + i&J-l E H(n, C) + iH+(n, c) N q+ $ iR. 

Here the H-orbit D’ = (2 E D, 1 Z* = -Z} maps onto the cone H+(n,C) N 0 = 
H e-r,,. 

6. H-invariant cones in q 

In this section we will characterize the symmetric pairs of Hermitian type using an 
infinitesimal causal orientation on M in the sense of [42, p. 221. As TM N G xH q this 

in turn amounts to give a characterization in terms of H-invariant cones in q. Some 

of the results in this section may also be found in the papers [35,36] of Ol‘shanskii 

but without proofs. The main motivation for Ol’shanskii’s studying regular real forms 

is the fact that for g simple, C E Conc(ig) and 1 =. h $ iq a regular real form he 

proves in [35, p. 2811, that 0 # G ll iq E COnH(iq). In particular it now follows from 
Theorem 2.7, that for g simple COnH(iq) is non empty. We will always assume that 

(g, r) is effective and without compact ideals. We will also assume that H is connected 

as otherwise there can arise some problems as explained in [30]. We will also explain 
that shortly at the end. Recall that we are always assuming G c G, where G, is a 

simply connected Lie group with the Lie algebra g,. 

Theorem 6.1. Let (g, r) be an eflectiwe symmetric pair. Let H := Gz. Then (g, r) is 

of Hermitian type (regular) if and only if there exists a C E ConH(q) with C” fl qk # 8 

(C” n p # S), where the superscript ’ denotes the interior. 

Corollary 6.2. Let (g, r) and H be as above. Then (g, r) is of Hermitian type if and 

only if there exists a C E COnH(g) and a X E C” such that the geodesic R 3 t I-+ 

TX(t) := exp(tX) . x0 E G/H is closed. 

Our main tools for proving this and other results about cones are the following 

theorems of Kostant, Paneitz aad Vinberg (see [42,38,46]). 

Theorem 6.3 (Kostant,Vinberg). Let L be a connected semisimple Lie group acting 

on the real vector space V by a representation K. Let K c L be a subgroup of L 

such that n(K) is a maximal compact subgroup of r(L) and let P c L be a minimal 

parabolic subgroup of L. 
(1) There exists a proper L-invariant cone in V if and only if the space of K-fixed 

vectors 

V” := {w E V 1 V k E K : a(/+ = v} 

is non-zero. 

(2) If r is irreducible, then ConL(V) # 0 if and only if any of the following equivalent 

conditions is satisfied: 



(a) V” # 

(b) There 

0. 
exists a ray through 0 which is invariant with respect to P. 

Theorem 6.4 (Paneitz,Vinberg). Let the notation be as in the theorem of Kostant- 

Vinberg and assume that V is irreducible. Let ConL(V) # 0. Then there exists a 

unique (up to the multiplication by (-1)) minimal invariant cone Cmin E ConL(V) 

given by 
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C min = COn(LeVp) = COnL-UK, 

where con(U) := {CjE1 cjvj 1 cj E JR+, 3 v’ E U, I c N finite } denotes the convex hull 

of a subset U of V, up is an eigenvector for P contained in the ray in (2) and UK 

is a non-zero K-invariant vector unique up to a scalar. Furthermore UK E C&,. The 

unique (up to a scalar) maximal cone is then given by C,,, = CLin. 

We point out one idea of the proof as we will use it later on. Let L be a Lie group 

acting on V by K. As we will only deal with K(L) we can assume that L = r(L). Let 

K c L be a compact subgroup of L. If C c V is a proper cone we choose v E C* with 

(u]v) > 0 for all u E C \ 0. L e u E C \ 0. Then (L . u]v) > 0 for all k E K. It follows, t 
that 

UK := 
I 

k . udk 
I( 

is K-invariant and (uI(,v) = j’,.(k . u,v)dk > 0. Thus UK # 0. As K is compact it 

follows that K . u is also compact and thus con K . u = con li - u is compact, too. If C 
is generating we can start with u E C”. Then for all cl,. . . , c, > 0, Cj cj = 1 and all 

kr,. . . k, E K it holds Cj cjkj * u E C”. It follows: 

UK E con K . u = con li . u C C”. 

We now prove Theorem 6.1. We only prove the claim for cones with C” n k # 0 

resp. of Hermitian type as the other will follow by same method or by using the c-dual 
construction. We can also assume that (g, r) is irreducible by projecting onto each 

irreducible factor resp. by constructing cones by Cr $ . . . $ C, := {(Xl,. . . ,X,) ] Xj E 

Cj} for Cj invariant cone in the irreducible factor (gj, T]~,), g = $:,rgj. 

Assume first that there is a cone C E ConH(q) such that C” n k # 0. Then we can 

find by the above a 2 E C” rl k. Then 2 # 0 and [hk, Z] = 0. Let X E qk. Then 

P,XlI[~,Xl>e = -Pw,[~,xll)e = 0, as [2,X] E hk. Hence 2 E Ck. And then 

S+(Z) = k, zs(c) = qk. Hence (g,~) is of Hermitian type. 

If q is irreducible as a H-modul it follows by the Paneitz-Vinberg theorem that we 

can find a cone C E Con&q) containing a 2 E c as an inner point, i.e., Co n k # 0. If 

q is reducible it follows that (g, 7) is of Cayley type and we can write g = h $ q+ $ q- 

with q* = g(fl) and q* abelian, fJq+ = q-. Furthermore it is easy to see that q* is 
irreducible (otherwise take 0 # qt c q+, qt # q+, an H-invariant submodule. Then 

q: @ o(q:) @ k@(~~l is an ideal). Let 2 = X+ + X_ E c, where X+ E q+ and 

X_ E q-. Then 8X+ = X_, and X+ and X- are H n K-invariant as q* are H-stable. 
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Thus we can find H-invariant cones C* E ConH(q*) such that C+ contains X+ as an 

inner point (relatively to q+), and similarly X_ E CE. The theorem follows now with 

c := c+ $ c-. 0 

We notice now that by our previous remarks on Cayley transforms in Section 4 

it follows, that the cones C* are self dual and so unique up to a sign. In particular 

0(C+) = c_. 

Theorem 6.5. 1f (g, 7) is irreducible then dim qHnK < 2. If (g, h) is irreducible then 

dim qHnK = 1 if and only if q is irreducible as an H-module. This holds if and only if 

every proper H-invariant cone is generating. In this case exactly one of the following 

two cases holds: 

(1) qHnK C qk and C” fl k # 8 but C fl p = (0) for every C E COnH(q). (g, r) is 

of Hermitian type but not Cayley type. 

(2) qHnK c q, and C” rl p # 8 but C n k = (0) for every C E COnH(q). In this 

case (g, r) is regular. 

Theorem 6.6. Let (g, h) b e an irreducible symmetric pair. Then dim qHnK = 2 if 

and only if q is reducible as an H-module. This holds if and only if r is a Cayley 

type involution. In this case q decomposes into q = q+ $ q- with q* irreducible. 

dim(q+)K”H = dim(q-)K”H = dimqfnK = dim qFnH = 1. There exist cones 

Ck, C, E COnH(q) such that 

C,“nk #S, Cknp={o}, 

C;np #S, &nk={O}, 

cOnH(S)={ck, -Ck, cp7 -cp>. 

Proof. First of all the dimension of qHnK * 1s less than or equal to the number of 

irreducible components of q by the Paneitz-Vinberg theorem. As we have seen above, 

this number is < 2 and equals 1 if and only if q is irreducible. Now any cone C E 

COnH(q) Satisfies CoHnK c qHnK and the first theorem follows easily by the above 

arguments using the theorems of Konstant, Paneitz and Vinberg, Theorem 5.6 and 

noticing that qHnK ’ 1s &stable and thus qHnK = qfnK $ qFnK. For the second 

theorem we only have to chose X+ as above. Then Xk + 8(X+) E qfnK \ 0 and 

x+ - e(x+) E qFnK \ 0. The theorem now follows by the above arguments and the 

fact that C* are the (up to a sign) unique invariant cones in q*. Cl 

From now on we assume that (g, 7) is of Hermitian type and irreducible. We choose 
2, E c defining the almost complex structure on p as usually. If q is irreducible then 

we know, that the (up to a sign unique) minimal H-invariant cone in q is given by 

C min := con(Ad(H)Z,) and the maximal cone is C,, := C&,. If q is reducible we 

need the following: 

Lemma 6.7. Assume that (g, r) is irreducible and of Cayley type. Choose X+,X_ as 

above such that 2, = X+ + X-. 



Symmetric spaces of Hermitian type 227 

(1) 1fC E ConH(q) then 

(a) IfC n k # (0) then X+,X_ E C or E -C; 

(b) IfCO n p # (0) then X+,-X_ E C or E -C. 

(2) Let C C q b e un H-invariant closed proper cone. Then C n k # (0) and C n p # 

(0) is impossible. 

Proof. (1) Assume that C n k # (0). Let 2 E CHnK rl k. Then there is a t E IR \ 0 

such that 2 = t(X+ +X_). Thus we may assume that 2, E C. We choose furthermore 

X E ch such that q + = {Y E q ] [X,Y] = Y}. Then q- = {Y E q ] [X,Y] = -Y}. 

With Y := X+ - X- we then have 

etad(X)ZO = cosh(t)Z, + sinh(t)Y = cosh(t)(Z, + tanh(t)Y). 

Divide cash(t) out and let t + foe; it follows that 2, f Y, E C. As 2X+ = 2, + Y and 

2X_ = 2, - Y we have the first claim. The first part follows now by similar arguments 
by starting with Y instead of 2, in the case where C” n p # 0. 

If C n p and C n k are both non trivial we can choose X* as above and such that 

fX+ E C or fX_ E C, thus C would contain a line. q 

This implies that the unique (up to a sign) invariant proper cone in q containing an 

almost complex structure of p commuting with K is also given by con(Ad(H)Z,) in 
the case that q is reducible. 

Example 6.8. Let G = SL(2,R) and define r by 

r((: fz)):=(i “l)(Z :)(i “l)=(Tc -R)* 
Let 

H:=G7= { (; e!+R\O}. 

Then 

G/H N Ad(G) 

is the one-sheeted hyperboloid 

In the above notation we have: 

zo=;(:l ;)A+=(; ;)>x-=(_ol ;). 
Thus the cones Ck are the lines 

c+ = IR+ ; ; ) c- = IR+ “1 ; . ( > ( > 
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The H-orbit through Ze is the hyperbola Ha 2, = (~2, + y(X+ +X_) 1 x2 - y2 = l} 

and the cones Ck, C, are given by 

Remark 6.9. Replace in the above example the group SL(2,Iw) by the locally iso- 

morphic group PSL(2,Iw) = Ad(SL(2,IW)) and define r on PSL(2,Iw) by r(Ad(g)) := 

Ad(r(g)). Then 8 E PSL(2,Iw)’ and hence the cone C, is not PSL(2,1W)7-invariant. 

And in fact q is now irreducible as a PSL(2, Iw)T- module as 0(q+) = q-. In the general 
case the same problem arises if (g, 7) is of Cayley type or regular. Then there may be 

a Ho-invariant cone but no H-invariant one with C” n p # 0. In particular this happens 

if 0 E Ad(G)’ as above, see also [30]. 

7. Remarks on the classification 

In this last section we give a short overwiev - partly without proofs - of the classifica- 

tion of invariant cones in q, [30]. For simplicity we assume that (g, r) is irreducible and 

H connected. Since multiplication by i induces a bijection ConH(q) N ConH(iq) we 

may also assume that r is of Hermitian type. If T is of Cayley type then we know that 

the cones are unique up to a sign by the results of [19], as we have pointed out before, 

but to make the classification uniform and independent of [19] we notice, that we can 

find a X, E ch such that ad(X,) d e fi nes a paracomplex structure on q. It follows that 

[ad(X,)C]” n p # 0 if and only if C” n k # 0. H ence we only have to describe the set 

Con = {C E C on&q) I Co n k # 01. 
Choose now a C qk maximal abelian as before. Let WH = NH(a)/CH(a) be the 

Weyl group of A in H. Then WH = Wk, the Weyl group of Ak. Define P(C) := pr(C) 

and I(C) := C n a, C E Con, where pr is the orthogonal projection. Then P(C) and 

I(C) are WH invariant cones in a. We also define F(c) := con(Ad(H)c) for c a cone 

in a. Then F(c) is an H-invariant cone in q. Let 

-iC,i, := $aE*+R + ri, 
P 

and 

C *- C~i, = -i{X E a 1 VCX E Ai : a(X) > O}. max *- 

Let A be the analytic subgroup of G corresponding to a. Since A = {u E T 1 T(U) = 
CL-~},, where T is the maximal torus corresponding to t, A is closed. Normalize the Haar 
measure on A to have total measure 1. Define for b E G the linear map Kljb : g, -+ g, by Q(X):= J Ad(a) Ad(b) Ad(a)-‘Xdu, 

A 

and let ‘FI := {%l!h 1 h E H}. 
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Lemma 7.1. The orthogonal projection onto a is given by pr(X) = sA Ad(a)X da. In 

particular proAd(h)la = $hla for all h E H. 

Proof. First we notice that A acts on each root space g,, by the non trivial character 

a H ucy, where a” is defined by exp(Y)” = em(‘). As this character is unitary it follows 

that sA uadu = 0 for all Q. For X = Y •t C,(X, - 7(X,)), Y E a we get 

J Ad(u)X da = Y 
A 

and the claim follows. Cl 

Now the first results in the direction of classification are: 

Lemma 7.2. Let C E Con. Then P(C)* = I(C*). 

Theorem 7.3. (1) Let C E Con. Then I(C) is a WH-invariant regular cone in a and 

Gnin C I(Cmin) C J(C) C I(Cmax) C P(Cmax) C Cmax 

for a suitable chosen cm;, and c,,,. 

(2) Cmin = F(Gnin)* 
(3) Let c be a closed regular x-invariant cone in a. Then c is WH-invariant, c* 

is u 7-l-invariant cone in a and Cm;, C P(Cmi,) C c C P(C,,,) C c,,,. Moreover 

F(c) E Con and c = P(F(c)) = I(F(c)). 

The problem is then to relate P and I as well as WH- and a-invariant regular cones 

in a. This is done by the following generalization of the convexity theorem of Paneitz 

[38] or infinitesimal version of the convexity theorem of van den Ban [l]: 

Theorem 7.4. Let X E I(C,,,) and h E H, then @h(X) E con(Wk . X) + cmin. 

From this we get immediately: 

Theorem 7.5. P(Cmi,) = I(Cm;J = cm;, and P(C,,,) = I(C,,,) = c,,,. 

Proof. By the above convexity theorem it follows that cm;, is x-stable. By Theorem 

7.3. P(F(cmin)) = c,in C P(Cmi,) c P(F(c,i,)), as F(c,i,) is a regular cone. NOW 
I(C) is always a subset of P(C) and we are forced to have P(Cmi,) = I(Cm;n). By 

Lemma 7.2 

I(C,,,) = I(C&) = P(c,;,)* = ckn = c,,. 

Thus c,,, C I(Cmax) C P(C,,,) C c,,, by Theorem 7.3. Cl 

Theorem 7.6. Let c be a closed cone in a. Then the following are equivalent: 

(1) c is Wk-invariant and c,in C c C c,,, for a suitable chosen minimal cone. 

(2) c is regular and w-invariant. 

(3) There exists a cone C E Con such that P(C) = c 

(4) There exists a cone C E Con such that I(C) = c. 
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Proof. If (1) holds then by Theorem 7.5 and the convexity theorem *hX E c for 

all h E H and X E c. Thus (2) f 11 o ows. (3) follows from (2) by Theorem 7.3. If (3) 

holds then c is WH-stable and hence x-stable. As co = P(P) and by Lemma 7.2 

(c”)’ = (P(C)*)’ = (I(C*))” # 0 it f o 11 ows that c is regular. Thus by Theorem 7.3 c* 
is regular and E-invariant and c = P(F(c*))* = I(F(c*)*). That (4) ==+ (1) is obvious 

from Theorem 7.3 and thus the theorem follows. •i 

We can now formulate the main theorem. As it stands the theorem holds for semisim- 
ple symmetric pairs of Hermitian type such that (g, h) and (g, k) are effective. 

Theorem 7.7 (Classification of cones). Let (g, h) b e a irreducible semisimple symmet- 

ric pair of Hermitian type. Let H be connected and let Con = {C E Conh(q) 1 Conk # 

S}. Let cm;, C c~i, = c,,, and Cmin C CA, = C,,, be as before. Let C E Con. 

(1) C is uniquely determined by I(C). C” = Ad(H and C = Ad(H 

(2) I(C) = P(C) and I(C)* = I(C*). 

(3) cm;, = I(CtiJ and I(&,,) = cm,,. 
(4) A cone c in a is of the form I(C) f or some C E Con if and only if c is regular 

and E-invariant. This is equivalent to c being WH-inVariant and c,in C c C cmax for 

a suitable choice of a minimal cone. In this case C = F(c) = Ad(H)c. 

Here the first main point of the proof is part (l), w h ere we use for the first time that 

H is sitting in a bigger group G. Assume for a moment that we have proved (1). By 

Theorem 7.6 I(C) is a- invariant. Thus P(C) = pr(Ad(H)I(C)) c I(C) and the first 

part of (2) follows as I(C) C P(C). Th e second part follows from this and Lemma 7.2 
and I(C*) = P(C)* = I(C)*. As we have already proved (3) and (4) we only have to 

prove (1) and for that we need some facts about G-invariant cones in g and extension 
of cones from q to g. Define for C E Con a G-invariant cone in g by 

FG(C) := con(Ad(G)C). 

To avoid confusion we use D for G-invariant cones in g. In particular Dmin is the 

minimal cone and D,,, the corresponding maximal cone. Define JG(D) := D II q and 

PG(O) := prg(D), D E Cone(g). Here prg : g + q is the orthogonal projection. 
C E Con is called extendable if there exists a D E Cone(g) such that C = IG(O). We 

have the following theorem: 

Theorem 7.8. Every cone in Con is extendable. 

For some of the classical groups this was first proved for invariant cones C with 

&iinnq c C c &IV%, n q by J. Hilgert in his notes [8]. Our proof uses the obvious 

relations 

Gin C Dmin n q C D,,, n q C Cm,, 

and then the classification as well as the results from Section 3 on the relation between 

roots of t and a as well as the relation between the corresponding root vectors and 
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co-roots. This gives the first step Dmin = FG(C~~) and FG(C~~~) C II,,,. Then 

by general remarks on the different types of involutions the proof is reduced to the 

cases (su(2~, 2q), SP(P, q)), (so(2, n), so& n - k) x so( 1, Ic)), 4 6 21c < n, 21% # q, and 

(e6(-14)74(-20))T where we show this case by case. 

Lemma 7.9. dmin n a = prq dmin = C,in and &,, n a = prq d,,, = cmax, where 

d min - - Dmin n t and d,,, = d~in. 

Proof. As -r/I E A+(pc, tc) for all ,0 E A+(pc, tc) it follows that dh;, is -r stable. As 

prq X = &(X-TX) it follows that 6,;,fla C prq dmin C dminna or d6,na = prg d,in. 

Let /3 E A+(pc,t,) be such that PIa = cr. Then I?, = Hp if p = cr and otherwise 

fi, = Hp - THY = Hp + H_,p according to our results on root vectors in Section 4. 

Thus cm;, C dmin fI a. 

Let X E -id,;, n a. Then 

x= c &Ha, A, 2 0, 

QEA+(gc,tc) 

=-r(X)= c A,( -r( Ha)) 

aeA+(pc>t,) 

= 
c X- H,. dff) 

a~A+(pc,tc) 

Thus by replacing X, by i(Xcy + X_,(,)) we can assume, that X, = X_,(,). Hence 

x = ;(x - T(X)) 

= c +a - +L)) 
eA+(pc,tc) 

with per > 0. The claim for d,,, follows now by duality. 0 

From this we get 

Lemma 7.10. (1) -T(D~~~) = D,,,, PG(D*~~) = IG(D~~~) = Cm,, as well as 
-T(Dmin> = Dmin, PG(Dtin) = IG(Dmin) = Ctin. 

(2) dmin n a = prg dmin = cm;, and d,,, n a = c,,~. 

(3) Dmin= FG(Cmin) and FG(&~~)c %a,. 

We prove now (1). By continiuty and the obvious fact that Ad( c Co, we 

only have to show that C” c Ad(H Let X E C”. Then by the above X E Dka, 

and thus by Lemma 4.1. in [9, p. 1931, X is semisimple and zg(X) is a compactly 

imbedded subalgebra in g. By [37, p. 4121, X is contained in some Cartan subspace 
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al of q. Then also by [37] we can find a h E H such that Ad(h is O-stable. But 

as zg(Ad(h)(X)) = Ad(h)zg(X) is compact, it follows that Ad(h c qk. But then 

once again by [37, Theorem 3]), th ere exists an a E H such that Ad(a E a. Thus 

Ad(ah)X E Ad(a = a. H ence Ad(ah)X E I(C”) c I(C)” and the theorem follows. 

0 
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