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Hypertrophic Cardiomyopathy

Mutations in Alpha-Actinin-2
Cause Hypertrophic Cardiomyopathy
A Genome-Wide Analysis

Christine Chiu, BSC,*† Richard D. Bagnall, PHD,* Jodie Ingles, BBIOMEDSC,*† Laura Yeates, BSC,*
Marina Kennerson, PHD,‡ Jennifer A. Donald, PHD,§ Mika Jormakka, PHD,� Joanne M. Lind, PHD,¶
Christopher Semsarian, MBBS, PHD*†#

Sydney, New South Wales, Australia

Objectives This study describes a genome-wide linkage analysis of a large family with clinically heterogeneous hypertrophic
cardiomyopathy (HCM).

Background Familial HCM is a disorder characterized by genetic heterogeneity. In as many as 50% of HCM cases, the genetic
cause remains unknown, suggesting that other genes may be involved.

Methods Clinical evaluation, including clinical history, physical examination, electrocardiography, and 2-dimensional echo-
cardiography, was performed, and blood was collected from family members (n � 23) for deoxyribonucleic acid
analysis. The family was genotyped with markers from the 10-cM AB PRISM Human Linkage mapping set (Ap-
plied Biosystems, Foster City, California), and 2-point linkage analysis was performed.

Results Affected family members showed marked clinical diversity, ranging from asymptomatic individuals to those with syn-
cope, heart failure, and premature sudden death. The disease locus for this family was mapped to chromosome
1q42.2-q43, near the marker D1S2850 (logarithm of odds ratio � 2.82, � � 0). A missense mutation, Ala119Thr, in
the alpha-actinin-2 (ACTN2) gene was identified that segregated with disease in the family. An additional 297 HCM
probands were screened for mutations in the ACTN2 gene using high-resolution melt analysis. Three causative ACTN2
mutations, Thr495Met, Glu583Ala, and Glu628Gly, were identified in an additional 4 families (total 1.7%) with HCM.

Conclusions This is the first genome-wide linkage analysis that shows mutations in ACTN2 cause HCM. Mutations in genes
encoding Z-disk proteins account for a small but significant proportion of genotyped HCM families. (J Am Coll
Cardiol 2010;55:1127–35) © 2010 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2009.11.016
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amilial hypertrophic cardiomyopathy (HCM) is the most
ommon genetic myocardial disease with a prevalence of
.2% in the adult population (1). It is clinically characterized
y left ventricular hypertrophy (LVH) in the absence of
ther loading conditions (2). Genetic studies have shown
hat HCM is caused by �450 different mutations in at least
3 genes encoding sarcomere or sarcomere-related proteins
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3). Screening of the most common sarcomere disease genes
dentifies a mutation in approximately 50% of HCM cases
4). In the remainder of HCM cases, a number of possibil-
ties exist in defining such cases, including mutations in as
et unknown genes, as well as diseases that may mimic
CM, such as glycogen storage diseases and Fabry disease

5,6). Family-based linkage studies and candidate gene
creening techniques are 2 methods used in the identifica-
ion of new disease genes in HCM.

See page 1136

The Z-disc region of the cardiac sarcomere is a critical
egion that represents the interface between the contractile
pparatus and the cytoskeleton (7). Although HCM has been
efined as a disease of the sarcomere, recent studies using
andidate gene approaches have identified several deoxyribo-
ucleic acid (DNA) variants in sarcomere-associated genes

o be linked with HCM (8). One of the Z-disc proteins
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of critical biological importance
is alpha-actinin-2 (ACTN2), the
major component of the Z-disc.
The alpha-actinins belong to the
spectrin superfamily (reviewed in
Sjoblom et al. [9]) and compose 4
members of which ACTN2 is the
major cardiac muscle isoform (10).
ACTN2 is an important compo-
nent of the sarcomere Z-disc in
which its primary function is to
anchor and cross-link actin fila-
ments (7). Binding studies have
shown that ACTN2 interacts with
a number of other proteins and
plays a key role in thin filament

rganization and the interaction between the sarcomere cy-
oskeleton and the muscle membrane (9).

This study describes the clinical and genetic investigation
f a large, 3-generation, Australian family with clinically
eterogeneous HCM and subsequent screening of an addi-
ional 297 unrelated HCM probands, which collectively
mplicates ACTN2 as a causative gene in HCM.

ethods

linical evaluation of subjects. Patients with HCM re-
erred to the HCM Clinic at Royal Prince Alfred Hospital
n Sydney, Australia, were included in this study. Individ-
als were evaluated by using clinical history, physical exam-
nation, electrocardiography, and echocardiography, as pre-
iously described (11,12). Diagnostic criteria for HCM was
efined in adults by a maximal left ventricular wall thickness
f �13 mm on echocardiography, in the absence of other
oading conditions. Within the context of a family history,
ndividuals were considered affected based on the echocar-
iography criteria (see previous text). Electrocardiographic
hanges that were considered of clinical significance in-
luded abnormal Q waves (�0.04 s or depth �25% of an
-wave), LVH (voltage criteria), and marked repolarization

hanges (e.g., T-wave inversion in at least 2 leads). The
isease status of deceased individuals was based on review of
edical records. Individuals younger than 20 years, without

vidence of LVH or electrocardiographic abnormalities
ere considered to be of unknown disease status for the
urposes of linkage analysis. All studies were performed in
trict accordance with the Sydney South West Area Health
ervice human ethics standards.
enotyping. Genomic DNA was extracted from whole

lood. The coding regions and intron/exon boundaries of 10
CM genes (MYH7, MYBPC3, MYL2, MYL3, TNNT2,
NNI3, TPM1, ACTC, PLN, and CSRP3) were sequenced

o determine whether the family carried a diseasing-causing
NA sequence variant in a known gene.
A genome-wide scan was performed at the Australian

Abbreviations
and Acronyms

ACTN2 � alpha-actinin-2

HCM � hypertrophic
cardiomyopathy

ICD � implantable
cardioverter-defibrillator

LOD � logarithm of odds
ratio

LVH � left ventricular
hypertrophy

PCR � polymerase chain
reaction

SR � spectrin-like repeat
enome Research Facility (Victoria, Australia) using 400 i
icrosatellite markers from the 10 cM AB PRISM human
inkage mapping set (Applied Biosystems, Foster City,
alifornia). All available individuals were genotyped regard-

ess of their clinical status, and genotypes were determined
ithout knowledge of clinical details. Fine mapping was
erformed at candidate loci suggestive of linkage, using an
dditional 26 markers from the 5 cM AB PRISM human
inkage mapping set.

inkage analysis. Two-point linkage analysis was per-
ormed using MLINK/LINKAGE software package (ver-
ion 5.1). Logarithm of odds ratio (LOD) scores were
alculated for each marker assuming an autosomal-
ominant mode of inheritance for disease, a penetrance of
5%, a disease allele frequency of 0.001, no phenocopies,
nd equal allele frequencies for genotyped markers. Haplo-
ypes were constructed assuming a minimum number of
ecombinations.

andidate gene screening. All coding regions and in-
ron/exon boundaries of ACTN2 were sequenced (Ensembl
NST00000366578). Primer information and polymerase

hain reaction conditions are available (Online Supplemen-
ary Data 1). An additional HCM cohort of unrelated
robands (n � 297) were screened for mutations in ACTN2
sing high-resolution melt analysis, as previously described
13,14). Primers were designed for high-resolution melt
nalysis using the Lightscanner Design Software (version
.0.R.84, Idaho Technology, Inc., Salt Lake City, Utah).
enomic DNA (10 ng) was amplified in 10 �l PCR

eactions containing 2.5� high-resolution melt analysis
astermix (TrendBio, Melbourne, Victoria, Australia) and

0 pmol of each primer. The PCR reactions were overlaid
ith 10 �l of mineral oil (Sigma-Aldrich, St. Louis,
issouri) and amplified under appropriate conditions. All

CR reactions were performed in 96-well BLK/WHT
CR plates (Bio-Rad Laboratories, Hercules, California).
he PCR products were then analyzed using the 96-well
ightScanner (Idaho Technology, Inc.) and LightScanner
oftware (version 2.0). Samples with abnormal melt profiles
ere sequenced to identify DNA variants.
Screening of the cardiac ryanodine receptor (RyR2)

nvolved a previously developed targeted approach of mu-
ational hot spots that account for �90% of reported
utations (15). Specifically, 37 of the 106 exons in the
yR2 gene were screened (i.e., exons 7 to 9, 13 to 16, 43 to
0, and 83 to 106).
Direct DNA sequencing, in addition to restriction digests

r allele specific primers, was used to confirm identified
utations and to determine allele frequencies of DNA

ariants in 260 non-HCM ethnicity-matched control sam-
les. Intronic sequence variants were evaluated for altering
NA splicing using NetGene2 Server.

esults

linical characterization of family EI. A total of 23

ndividuals from a 3-generation Australian family were in-



c
f
m
d
a
h
L
i
I
d
f
b
c
v
s
c
a
h
d
v
I
a
r
t
d
1
t

L
h
H
a
I
p
a
I
d
o
(
w
I
G
t
s
m
m
a
m
[
0
(
t
r
w
D
a

i
p
c
q
e
H
d
g
g
t
m
t
t
r
a
C
c
p
u
b
c
d
p
(
e
t
e
r
b
p
d
r
w
m
A
a
s
r
l
O
f
R
n

H
u
a
A
2
v
i
T
d
p
r

1129JACC Vol. 55, No. 11, 2010 Chiu et al.
March 16, 2010:1127–35 Mutations in ACTN2 Cause HCM
luded in the study (Fig. 1A). The clinical characteristics of the
amily highlight marked clinical heterogeneity and are sum-
arized in Table 1. Individual III-2 was the first to be

iagnosed with HCM after experiencing a resuscitated cardiac
rrest during pregnancy. At the time, she had mild apical
ypertrophy and an abnormal electrocardiogram indicating
VH. She had an implantable cardioverter-defibrillator (ICD)

nserted and has subsequently progressed to severe heart failure.
ndividuals II-1, III-4, III-6, and III-9 were subsequently
iagnosed with HCM as a result of clinical screening of the
amily. At the time of clinical screening, individual II-1 was
eing treated for atrial fibrillation and was found to have
oncentric hypertrophy involving both the left and right
entricles. III-6 was found to have moderate asymmetrical
eptal LVH, nonsustained ventricular arrhythmias and re-
eived an ICD. III-9 had apical hypertrophy with evidence of
pical trabeculations and additional mild right ventricular
ypertrophy. She also received an ICD that has subsequently
elivered appropriate shocks on 2 occasions in response to
entricular tachycardia during a follow-up period of 3 years.
ndividual III-4 died suddenly at 36 years of age (DNA not
vailable). At post-mortem, he was reported to have asymmet-
ical septal hypertrophy and histopathological features consis-
ent with HCM, including myocyte hypertrophy, myofiber
isarray, and interstitial fibrosis. An echocardiogram obtained
year before his death showed an asymmetrical septal wall

hickness of 16 mm.
Individual II-3 had previous mild LVH with borderline

VH changes on electrocardiography and at last assessment
ad evidence of left ventricular wall thinning at age 74 years.
is daughter, III-11, had been previously diagnosed with

n arrhythmogenic cardiomyopathy and had received an
CD. As a result, II-3 was classed as affected for the
urposes of the study. Individuals II-5, III-3, III-8, III-10,
nd IV-7 were clinically normal and classified as unaffected.
ndividuals IV-1, IV-2, IV-3, IV-4, and IV-5 did not
emonstrate any clinical evidence of HCM on echocardi-
graphy or electrocardiography; however, given their age
ranging from 10 to 19 years at last clinical evaluation), they
ere deemed to be of unknown clinical status. Individual

V-6 has not had clinical testing.
enome-wide linkage analysis. To exclude the possibility

hat family EI carried a known HCM mutation in a
arcomere gene, DNA from individual II-1 underwent
utation screening of 10 genes known to cause HCM. No
utation was found, and as a result, a genome-wide linkage

nalysis was performed. Two-point linkage analysis of 400
arkers identified suggestive linkage of 3 loci (1q42.2-q43

LOD � 1.57, � � 0.05], 4q31.21 [LOD � 1.32, � �
.05], and 17p13.1-17p12 [LOD � 1.65, � � 0.05])
Online Supplementary Data 2). Additional markers within
hese regions were genotyped and maximum LOD scores
emained unchanged at the 4q31.21 and 17p13.1 loci,
hereas a maximum LOD score of 2.82 at � � 0 for marker
1S2850 on chromosome 1 was achieved. This LOD score
t marker D1S2850 was equivalent to the theoretical max- 1
mum LOD score achievable for this family, based on
re-test power calculations using a hypothetical marker that
ompletely segregated with disease. Changing allele fre-
uencies of the polymorphic markers and setting the pen-
trance at 50% did not significantly alter the LOD scores.
aplotypes were constructed using 11 adjacent markers to

efine the maximum limits of the disease locus. The
enotypes for individual III-4 were inferred using the
enotypes of both his parents and children. A recombina-
ion event in individual III-2 limits the linkage region to
arker D1S2800 on the centromeric side. The recombina-

ion event in individual III-10 at marker D1S2670 limits
he critical region on the telomeric side (Fig. 1). This
esulted in a 5.7-Mb region flanked by markers D1S2800
nd D1S2670.
andidate gene screening. The 5.7-Mb disease region

ontained 38 genes, of which 8 encoded hypothetical
roteins, 9 were pseudogenes, and 19 were considered
nlikely candidate genes based primarily on their known
iological function and the expression pattern of the en-
oded proteins. Two genes were selected as potential HCM
isease genes based on their known cardiac expression
rofile and function (Table 2). The ryanodine receptor
RyR2) and ACTN2 are both expressed in the heart. RyR2
ncodes the cardiac ryanodine receptor, a key component in
he regulation of calcium cycling in the heart. ACTN2
ncodes ACTN2. Targeted analysis of the RyR2 gene
evealed no disease-causing mutations, although it should
e noted that the targeted approach has only been used
reviously in cases of unexplained sudden death where the
iagnosis of HCM had been excluded (15). The coding
egions and intron/exon boundaries of the ACTN2 gene
ere sequenced in individual II-1, and a G to A missense
utation in exon 3 was identified that resulted in an
la119Thr substitution. This variant was found in all

ffected family members and was not present in 260 control
amples (520 alleles). The Ala119Thr variant is located in a
egion that is highly conserved among interspecies ortho-
ogues and between the 4 human �-actinin paralogues.

verexpression of the Ala119Thr variant in stably trans-
ected myoblast cells resulted in a significant increase in
NA markers of hypertrophy, supporting the causative
ature of the variant (Online Supplementary Data 3).
To determine the prevalence of ACTN2 mutations in
CM, we screened an additional 297 HCM probands

sing high-resolution melt analysis and identified 14 novel
nd 12 known variants (Table 3). Five variants in the
CTN2 coding region were absent in control samples and in
96 HCM probands. Co-inheritance screening eliminated 2
ariants, Arg328Gln and Ala644Thr, because they were
dentified in unaffected family members. Three variants,
hr495Met, Glu583Ala, and Glu628Gly, were considered
isease-causing mutations in 4 families (Fig. 1B). The
athogenic mutations were located in highly conserved
egions among interspecies orthologues and paralogues (Fig.

C) and located in important functional domains (Fig. 2A).
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Figure 1 Pedigrees of HCM Families With ACTN2 Mutations

(A) Pedigree including the results of a haplotype analysis of the hypertrophic cardiomyopathy (HCM) family in the linkage analysis. Squares � males; circles � females;
line through a symbol � deceased individual; solid symbols � clinically affected individuals; open symbols with “N” � clinically unaffected individuals; open symbols
with “N?” � clinically normal individuals with an unknown disease state; arrow � proband. The microsatellite alleles contributing to the haplotype of all affected individ-
uals are marked with boxes. �/� � presence of the heterozygous Ala119Thr mutation; �/� � no mutation identified. (B) Pedigrees of HCM families HO, IS, GB, and
KO. Symbols represented as described for A. �/� � presence of a heterozygous mutation as marked; �/� � no mutation identified. Continued on the next page.
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The clinical characteristics of the 4 families are summa-
ized in Table 4. The Thr495Met variant was identified in
unrelated individuals, HO and IS, and has been previously

eported to cause HCM (8). The families are from different
thnic backgrounds (i.e., European and South American).
n addition, single-nucleotide polymorphism analysis in the

Figure 1 Continued

(C) Conservation of the amino acid changes in ACTN2 pathogenic mutations acros

linical Features in Family EITable 1 Clinical Features in Family EI

Individual Sex Ala119Thr
Current Age

(yrs)
Age at Echo

(yrs)
LVmax
(mm)

P
(m

II-1 M �/� 75 75 15 1

II-3 M �/� 74 70 12 1

III-2 F �/� 48 44 9

III-4 M NA Died 36 35 18 N

III-6 M �/� 44 NA 22 N

III-9 F �/� 39 36 15

III-11 F �/� 51 50 13 1

IV-1 F �/� 19 NA 10 N

IV-4 F �/� 10 10 6

II-5 M �/� 68 67 12 1

III-3 M �/� 47 45 6

III-8 M �/� 41 38 9

III-10 M �/� 35 33 10 1

IV-2 F �/� 18 NA 8

IV-3 F �/� 11 11 8

IV-5 M �/� 18 16 8

IV-6 F �/� 31 NA NA N

IV-7 F �/� 26 25 8

CG � electrocardiogram; Echo � echocardiography; FS � fractional shortening; HF � heart failure

iameter; LVESD � left ventricular end-systolic diameter; LVH � left ventricular hypertrophy; LVmax � ma
entricular.
CTN2 gene indicated the mutations in these 2 individuals
rom families HO and IS were from different founders,
ollectively supporting the pathogenic role of the
hr495Met mutation. HO (II-2) has a family history of
CM with 1 affected sibling. One of her daughters HO

III-1), age 15 years, was found to also carry the Thr495Met

cies.

LVESD
(mm)

LVEDD
(mm)

FS
(%) ICD ECG Comments

36 42 14 No Atrial fibrillation Progression to severe HF

39 55 29 No T-wave changes Progression to LV wall
thinning

34 47 27 Yes NA Resuscitated cardiac
arrest, progression to
severe HF

NA NA NA No NA Sudden death; myocyte
hypertrophy, disarray,
fibrosis

NA NA NA Yes LVH voltage
criteria

22 35 31 Yes LVH voltage
criteria

Apical hypertrophy and
trabeculations,
RV hypertrophy

27 43 37 Yes ST-T changes Midseptal and lateral LVH

NA NA NA No NA

26 43 38 No Normal

40 57 30 No Normal

NA NA NA No Normal

32 55 42 No Normal

35 54 35 No Normal

NA NA NA No Normal

30 47 37 No Normal

NA NA NA No Normal

NA NA NA No NA

26 44 41 No Normal

implantable cardioverter-defibrillator; LV � left ventricular; LVEDD � left ventricular end-diastolic
s spe
W
m)

9

1

8

A

A

8

0

A

6

1

7

9

0

8

9

6

A

8

; ICD �
ximal left ventricular wall thickness; NA � not available; PW � posterior wall thickness; RV � right
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ariant and has localized thickening of the intraventricular
eptal wall, indicating early HCM (Fig. 1B). The second
ndividual IS (II-1) is a male age 20 years with severe
ypertrophy. Clinical examination of his parents and sister
ound them to be unaffected. A genetic result could not be
btained because the family declined to be tested (Fig. 1B).
he Glu583Ala variant was identified in GB (III-4), a male

ge 65 years with mild hypertrophy and a family history of
CM. No further information was available (Fig. 1B). The
lu628Gly variant was identified in KO (I-1), a female age 44

ears with moderate hypertrophy. Her 2 sons, KO (II-1) and
O (II-2), also carried the Glu628Gly variant. Clinical screen-

ng of KO (II-1) showed mild asymmetrical septal hypertrophy
ith borderline voltage criteria for LVH. KO (II-2) was

linically normal; however, he is 15 years of age and most likely
s in the presymptomatic phase of disease (Fig. 1B).

iscussion

his study presents the first genome-wide linkage anal-
sis that identifies ACTN2 as a causative gene in HCM.
fter excluding mutations in known sarcomere genes, the
aximum peak obtained after 2-point linkage analysis

howed suggestive linkage to chromosome 1q42.2-43.
wo key candidate genes under this linkage peak, RyR2

nd ACTN2, were investigated. Mutation analysis of the
CTN2 gene identified a heterozygous missense muta-

ion Ala119Thr that cosegregated with disease in the EI
amily. Further ACTN2 gene screening in an HCM

enes Residing in 5.7-Mb Region of LinkageTable 2 Genes Residing in 5.7-Mb Region of Linkage

Gene Encoded Protein

TARBP1 TAR (HIV-1) RNA binding protein-1

IRF2BP2 Interferon regulatory factor-2 binding protein-2

TOMM20 Translocase of outer mitochondrial membrane-20 homolog

SNORA14B Small nucleolar RNA, H/ACA box 14B

RBM34 RNA binding motif protein-34

ARID4B AT rich interactive domain-4B (RBP1-like)

GGPS1 Geranylgeranyl diphosphate synthase-1

TBCE Tubulin folding cofactor E

B3GALNT2 �-1,3-N-acetylgalactosaminyltransferase-2

GNG4 Guanine nucleotide binding protein (G protein), gamma-4

LYST Lysosomal trafficking regulator

NID1 Nidogen-1

GPR137B G-protein–coupled receptor-137B

ERO1LB ERO1-like beta

EDARADD EDAR-associated death domain

LGALS8 Lectin, galactoside binding, soluble-8

HEATR1 HEAT repeat containing-1

ACTN2 Actinin, alpha-2

MTR 5-Methyltetrahydrofolate-homocysteine methyltransferase

RYR2 Ryanodine receptor-2

ZP4 Zona pellucida glycoprotein-4

old text indicates 2 main candidate genes. Genes are ordered from centromere to telomere. Hypo
atabase (http://www.proteinatlas.org/index.php). Known disease association is according to the
ARVD � arrhythmogenic right ventricular dysplasia; CPVT � catecholaminergic polymorphic ventricu
Main Organ Site of Expression Known Disease Association

Intestine, testis HIV-1 disease

NA

Mitochondrial, heart

NA

NA

Respiratory epithelium, testis

NA

Spleen, Purkinje cells, heart Sanjad-Sakati syndrome

NA

NA

NA Chediak-Higashi syndrome

Spleen, lymph node

Hepatocytes, adrenal cortex

NA

Pancreas, thyroid Anhidrotic ectodermal dysplasia

NA

NA

Heart, glands, neuronal Dilated cardiomyopathy

NA Methylcobalamin deficiency G

Heart CPVT, ARVD

Epithelia

thetical and pseudogenes are not shown. Main site of expression is according to the Human Protein Atlas
opulation identified an additional 3 variants in 4 fami-
B

CTN2 Variants Identified inustralian HCM Population StudiedTable 3 ACTN2 Variants Identified in
Australian HCM Population Studied

Variant Frequency in HCM Cohort (%) Reference

IVS2�33 A�G 0.3 Novel

Ala119Thr 0.3 Novel

Asn126Asn 4.7 rs1341863

IVS4�73 A�G 0.3 rs1341862

Glu161Glu 9.8 Novel

IVS5�10 C�T 0.3 Novel

IVS7�34 G�A 23.9 rs819640

Val235Val 0.3 rs2288599

IVS8�23 G�C 34.7 rs2288600

IVS9-48 G�C 0.3 Novel

IVS9-42 C�T 0.3 Novel

IVS9�41 C�T 1.7 Novel

IVS10-42 C�T�G 16.5 rs7527525

IVS10-8 G�C 9.4 rs2288601

Arg328Gln 0.3 Novel

Phe447Phe 0.3 rs34785693

Thr495Met 0.7 Reported (8)

IVS13�48 T�C 5.7 Novel

IVS13�62 A�G 1.3 rs10925211

IVS15delTTG-28 1.0 Novel

Glu583Ala 0.3 Novel

Glu628Gly 0.3 Novel

Ala644Thr 0.3 Novel

Thr713Thr 0.3 rs34975493

IVS18-30 G�A 1.3 Novel

IVS20�34 A�G 2.7 rs2282366

Ser870Ser 33.3 rs12063382
old type indicates causative mutations.
HCM � hypertrophic cardiomyopathy.

http://www.proteinatlas.org/index.php
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ies. All 4 ACTN2 variants were considered to be disease-
ausing mutations based on established criteria. Muta-
ions in ACTN2 are an important cause of HCM and
upport the notion that disruption of Z-disc proteins can
ead to HCM.

Clinical heterogeneity is a feature of HCM and is
llustrated in the diversity of pathologies, clinical presen-
ations, and clinical outcomes in family EI. The cardiac
ypertrophy observed in affected patients was generally

A

B

Thr495

(iii)

(i)

Figure 2 ACTN2 Mutations in HCM

(A) Location of ACTN2 mutations identified to date. Asterisks indicate ACTN2 mut
Molecular Viewer). (i) Actin-binding domains CH1 and CH2 of ACTN3 (Protein Data
steric hindrance when Ala is substituted with a Thr at residue 119. (iii) The spect
of the mutations identified marked in red. HCM � hypertrophic cardiomyopathy.
ild in severity, with the distribution of hypertrophy e
nvolving the septum in some individuals, but also apical,
oncentric, and right ventricular hypertrophy in others.
espite this generally mild hypertrophic phenotype, the

linical outcomes in affected individuals have been sig-
ificant, including sudden cardiac death, a resuscitated
ardiac arrest during pregnancy, and a number of patients
rogressing from a hypertrophic to a dilated phenotype
ith associated severe heart failure. Such clinical heter-
geneity reinforces the importance of thorough clinical

(ii)

u583 Glu628

identified in previous studies. (B) Predictive protein modeling (using PyMOL
entry code 1wku), with the Ala119Thr mutation marked. (ii) The possibility of
eat rod domain of ACTN2 (Protein Data Bank entry code 1hcl), with the positions
Gl

ations
Bank

rin rep
valuation of family members, regular follow-up of at-
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isk individuals, and the importance of a genetic diagno-
is to complement the clinical findings. This diversity of
henotypes may reflect a distinction between ACTN2-
ediated disease and HCM caused by genes directly

nvolved in sarcomere function. Specifically, the role of
CTN2 in the Z-disc may affect both sarcomere and
ytoskeletal function, leading to a combination of hyper-
rophic and dilated phenotypes.

Few studies have investigated the role of ACTN2 in familial
ardiomyopathies. One study identified an ACTN2 mutation
n an individual with dilated cardiomyopathy (16). The affected
ndividual had severe disease and died at age 7 years. The

ln9Arg mutation was located in the actin-binding domain
egion and was found to prevent ACTN2 binding to the
uscle LIM protein. More recently, a candidate gene ap-

roach identified 3 ACTN2 mutations in 3 HCM probands
1.3% of the HCM cohort tested) (8). A feature identified in
he study was the predisposition to developing a sigmoidal type
f septal hypertrophy in patients with Z-disc–associated
CM. Two families in our current study were found to carry
of the variants (Thr495Met) identified in the previous study.
owever, our current families did not display sigmoidal mor-

hology, but rather the diverse hypertrophic and, in some
ases, progression to a dilated phenotype. Possible explana-
ions for this diversity may relate to the location and
unctional significance of the ACTN2 mutations identi-
ed, as well as the role of secondary genetic or environ-
ental modifying factors (17).
The mutations identified in the current study span a

umber of important functional domains within the
tructure of ACTN2. The alpha-actinin is the major
ctin cross-linking protein in muscle cells and is com-
osed of an amino terminal actin-binding domain con-
aining 2 calponin homology domains (CH1 and CH2),
ollowed by a rod domain consisting of 4 spectrin-like
epeats (SRs) (SR1 to SR4) and a calmodulin-like do-
ain at the carboxy terminal (Fig. 2) (18,19). ACTN2

xists as a functional antiparallel homodimer (20) with an
ctin-binding domain at either end that allows the
ross-linking of actin filaments. The Ala119Thr muta-
ion identified in family EI is positioned at the start of

ummary of the Clinical Features in Australian HCM Families WithTable 4 Summary of the Clinical Features in Australian HCM Fa

Individual Sex Mutation
Current Age

(yrs)
Age at Echo

(yrs)

HO:1 F Thr495Met 49 48

HO:2 F Thr495Met 15 11

IS:1 M Thr495Met 20 16

GB:1 M Glu583Ala 65 64

KO:1 F Glu628Gly 44 44

KO:2 M Glu628Gly 16 16

KO:3 M Glu628Gly 13 13

VS � intraventricular septal wall thickness; other abbreviations as in Tables 1 and 3.
he second actin-binding site in CH1 (Fig. 2A). Replac- H
ng the alanine at position 119 with the larger threonine
esidue in this structure suggests a possible steric hin-
rance between 2 juxtaposed helices in CH1, which may
ause a structural change affecting the actin-binding
nterface and thereby alter the actin-binding affinity of
CTN2 (Fig. 2B). The 3 additional ACTN2 mutations

dentified in our HCM cohort map to the 2 central SRs
f the rod domain; specifically, Thr495Met is in SR2 and
lu583Ala and Glu628Gly are in SR3 (Fig. 2B). The

Rs are important interaction sites for structural and
ignaling proteins such as muscle LIM protein (21), titin
22), and myozenin (23). Collectively, the location of the
dentified ACTN2 mutations may, at least in part, explain
ome of the clinical heterogeneity in the HCM families
escribed here. Further functional and structural studies
re required, including the determination of the crystal
tructure of ACTN2, to further understand how these
utations in ACTN2 lead to cardiomyopathic disease.
The identification of ACTN2 as a causative disease

ene in HCM, based on both genome-wide and candi-
ate gene approaches, highlights the importance of trying
o identify a genetic cause in those patients with HCM in
hom screening results of known sarcomere genes are
egative. Knowledge of the causative gene mutation has
ignificant clinical implications both in terms of diagnosis
nd in identifying family members at risk of developing
isease. The families described in the current study
ighlight the vast clinical heterogeneity seen in affected

ndividuals, spanning from mild symptoms to severe
eart failure and sudden death. ACTN2 is one of a
ollection of Z-disc proteins that have been shown to be
ssociated with HCM. Mutations in titin, telethonin,
uscle LIM, and myozenin have been found to be

ssociated with HCM in a small number of cases
24 –26). These studies have largely been based on
argeted candidate gene approaches, raising some issues
f true pathogenicity. The current study shows for the
rst time that by using a genome-wide linkage approach,

Z-disc gene, ACTN2, causes HCM and provides
urther evidence of the importance of both sarcomere and
arcomere-associated proteins in the pathogenesis of

2 Mutationss With ACTN2 Mutations

S
m)

PW
(mm)

LVESD
(mm)

LVEDD
(mm)

FS
(%) ECG

8 8 NA NA NA NA

1 8 NA NA NA Abnormal ECG

6 9 21 34 37 LVH voltage criteria

5 12 37 54 30 LVH voltage criteria

7 11 21 37 43 LVH voltage criteria

2 10 27 47 43 Borderline LVH

9 9 25 46 46 Normal
ACTNmilie

IV
(m

1

1

3

1

1

1

CM.
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