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We introduce a new almost-periodicity criterion for functions: R +A’ with X a 
complete metric space. This result is used to establish asymptotic almost periodicity 
of precompact positive trajectories to some differential equations of the form 
dujdi + A(t) u(t) 3 0, where A(I) is periodic with respect to t E R. n‘: 1987 Academic 

Press, Inc. 

INTRODUCTION 

The purpose of this paper is to study the asymptotic behavior as t -+ co 
of the solutions to some differential equations of the general form 

with A(t) a (possibly unbounded, non-linear or multi-valued) operator 
which depends on t in a periodic manner. 

The first case of interest is of course that of linear, periodic differential 
systems 

u’+A(t)u(t)=O, (2) 

where A(t) E C( IF& 9(lhY, W)) is a periodic matrix. It is well-known that 
any bounded solution u(t) of (2) on R is almost periodic: R + UP, and also 
that this result is not true in general for almost periodic A(t). However, the 
proof given in the literature is complicated since it relies on comparison 
with the case A(t) constant by means of Floquet theory, which of course 
provides additional information in this case but cannot be extended to an 
efficient infinite-dimensional theory. 
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Another important case is when (1) is autonomous with A(t) = A an 
m-accretive operator in some infinite-dimensional Banach space V. 

This has been studied in 1973 by Dafermos and Slemrod [ 11, who 
established that any precompact positive trajectory is asymptotically 
almost periodic: R -+ V (the result is valid for multi-valued A). 

Their result contains as a special (degenerated) case the well-known 
theorem on almost periodicity of solutions in the energy space for the 
(linear) wave equation with homogeneous Dirichlet boundary conditions 
in a bounded domain of R”. 

Finally, in 1983 [S] the case of general contraction (or isometric) 
processes on a complete metric space was considered. 

The results obtained there encompass the result of [ 1 ] as well as some 
special cases of (2). 

Here we establish that a refinement of the method of [S] permits us to 
treat the general case of (2) in the same framework as the results of [S]. 

1. A SIMPLE ALMOST-PERIODICITY CRITERION 

Let (X, d) be a complete metric space. 
For any u E C( R, X) and any a E R we set (T,u)(t) = u(t + a), Vt E R. 
A function u E C,( IR, X) is called almost periodic: 08 --+ X if we have 

IJ { T,u} is precompact in C,( R, X). (3) 
CI‘SR 

We recall that a set E c R is called relatively dense if there exists I> 0 
such that 

VaER, [a,a+l]nE#0. 

For example, a doubly infinite sequence (am),, z such that a, + , > a, for 
all m is relatively dense if, and only if, a, + , - a,,, is bounded. 

The following weakened form of (3) will prove to be quite useful in the 
sequel of this paper. 

THEOREM 1. Let u E C,( IF!, X) be such that for some relatively dense set 
E c R, we have 

u { T,,, u} is precompact in C,( R, X). (4) 
IPlsE 

Then u: R -+ X is almost periodic. 
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Proof. Hypothesis (4) implies in particular that lJmEE{u(. + m)> is 
precompact in C(O,21; X). Hence we have 

U: [w + X is uniformly continuous. (5) 

[Since if x1 <x2 < x1 + I we have {x,, x2} c [m, m + 211 for some m E E.] 
Now let bklkeN be any sequence of reals and ak = mk + ok, mk E E, 

gk E [0, Z]. We can replace {ak} by a subsequence such that ok + 0 and 
u(mk + t) converges uniformly to u(t) in C,( R, X). For any E > 0, taking 
account of (5) we have for k 2 k(E) 

vt E R, d(u(t+a,), u(t+o))dE+d(u(t+mk+o), o(t+o)). 

Hence u(ak + t) converges to v(t + (T) in C,(R, X), and Theorem 1 is 
proved. 1 

COROLLARY 2. Let u E C&F4 X) be such that for some relatively dense 
set E c [w, there exists a map w: E + X and cp continuous: IW+ -+ [w + with 
q(O)=0 such that we have 

w(E) is precompact in X. (6) 

V(m,n)EExE, Sup 44t + ml, u(t + n) < cp(d(w(m), w(n)). (7) 
rclW 

Then u: Iw -+ X is almost periodic. 

Proof: Clearly (6) and (7) imply that (4) is satisfied. Then we apply 
Theorem 1. 1 

An important special case is the following 

COROLLARY 3, Let E, cp be as in the statement of Corollary 2, and 
assume that u E C,( Iw, X) satisfies 

u(E) is precompact in X, (8) 

V(m,n)EExE, Sup d(u(t + m), u(t + n)) < cp(d(u((m)), d(u(n)). (9) 
tsut 

Then u: [w + X is almost periodic. 

Proof In the above Corollary 2 we take w = uIE. 1 

Remark 4. In the applications we shall have E = ZT for some T> 0 
and q(r) = Kr, KE [ 1, + co[. 
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2. APPLICATION TO TJME-DEPENDENT PERIODIC ODE 

In this section, we consider Eq. (2), where A(t) E C((w, JZ(lP) satisfies 

A(t+ T)=A(t), VteR, (10) 

with T some positive real number. 
We give a new and simple proof of the following result. 

COROLLARY 5. Let UE C’(oB, W) be a solution of (2) with A(t) us above. 
Assume that we have 

(11) 

Then u: [w + Iw” is almost periodic. 

Proof: Let V be the linear span of u(ZT), and U(t) the fundamental 
matrix associated to (2). Also, let B= {b, ,..., 6,) be an orthonormal basis 
for V. Because A(t) is T-periodic, it is clear that we have 

VbEB, Sup II u(t) bll < + ~0, 
1aR 

and since V is finite dimensional we infer 

vvEV,vtElR, II U(t) VII G WI 

for some constant C 2 1. 

12) 

13) 

Since u(t + mT) is a solution of (2) with initial value in V for all m E Z, 
we deduce from (11) that we have 

V(m,n)eZxZ, VteR, Ilu(t+mT)-u(t+nT)IIdCllu(mT)-u(nT)I/. 

(14) 

Therefore Corollary 5 is now an immediate consequence of 
Theorem 1. 1 

Remark 6. (a) It is well-known (cf., for example [S, Remark 1.3, 
p. 4771) that the conclusion of Corollary 5 is not satisfied for general 
almost periodic A(t), even if n = 2 and (A(t))* = -A(t) for all t. For a 
counterexample to a slightly different property in the nonlinear framework, 
cf. [S]. 

(b) In the autonomous case A(t)- A, Vt E Iw, the above method 
provides an extremely simple proof of the almost periodicity of bounded 
solutions of (2). (The usual proof is by computation.) 
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(c) In the same vein as above, we have the following result. 

COROLLARY 7. Let UE C’(R+, W) be a solution of (2) with A(t) as 
above. Assume that we have 

SUP Ilu(t < +a. (15) 
I,0 

Then there exists an almost-periodic solution v of (2) such that 

lim 1124(t)-v(t)(l =O. (16) 
t+ +cc 

Proof: We introduce as previously the fundamental matrix U(t) 

associated to (2) and we call V, the linear span of u(NT). 
As before we obtain 

VWE V,,Vt>O, IIU(t) WII <C,llwll for some constant C, > 1. (17) 

Now let z,(t) = u(t + rT), Vr E N. 
As a consequence of (15), there exists a sequence rk --, + co such that 

zrk -+ z in C’(a, b; IX”) for all a, b such that -co <a < b < + 00, and z is a 
bounded solution of (2) on R. 

By Corollary 5, z: R + IV’ is almost periodic. To summarize, we have 

VteR, lim u(t+r,T)=z(t) (18) 
k-m 

with z an almost-periodic solution of (2). 
Now we may assume (by refining the sequence rk if necessary) that we 

have 

:imrn S~uwp Ilz(t - rk T) - v(t)ll = 0 

because z is almost periodic: R + R”. 
Obviously, v is again a solution of (2) on R. Finally, we have 

lim Ilu(rk T) - v(rk T)ll = 0, 
k+m 

v(ZT) c I/, 

-- 
[since v(ZT) c z(ZT) c u(NT)]. 
From (17) and (21) we deduce 

VkEN,Vt3rkT, lb(t) - v(t)ll d C, I14rk 0 - 4rk TN. 

Finally, (20) and (22) clearly imply (16). 

(19) 

(20) 

(21) 

(22) 
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3. APPLICATION TO GENERAL “QUASI-CONTRACTWE" PERIODIC PROCESSES 

In this section, we give a new proof of the main results of [S] in a 
slightly generalized form that could be convenient for some applications. 
First we recall some definitions 

- A process on a complete metric space (X, d) is by definition (cf. [2]) 
a two-parameter family U(t, r) of maps: X+ X defined for (t, r) E R’ x R + 
and such that 

VtER,vxEX, U(t,O)x=x, (23) 

v(t,o,7)EOBx[W+x[W+,VxEX, U(t,a+7)x=U(t+a,r)U(t,o)x, 

(24) 

VXEX, VtElR, U(t, r)xEC(R+, X). (25) 

- For any x E X, the function t + U(0, t) x defined for t 2 0 is called the 
positive trajectory starting from x. 

- A complete trajectory is by definition any function u(t): R + X such 
that V(t,r)eRxR+, u(t + z) = U(t, z) u(t). As a consequence of (25), any 
positive trajectory (resp. complete trajectory) is continuous. 

- A process U on (X, d) is called T-periodic if we have 

VtEQv720, U(t + T, 7) = U(t, 7). 

THEOREM 8. Let U be a T-periodic process on X such that we have for 
some M> 1 

V(t,7)ERXR+,v(X,y)EXXX, d(U(t, 7) 4 u(t, 7) y) G Md(x, y). (27) 

Then we have the following conclusions 

(a) Any complete trajectory u(t) such that u(R - ) be precompact is 
almost periodic: R + X. 

(b) If u is a positive trajectory such that u( 53’ + ) be precompact, there 
exists an almost periodic, complete trajectory u(t) such that 

lim d(u(t), u(t)) = 0. (28) r--r +m 

Proof: We set E = ZT and E+ = N T. 
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(a) It follows immediately from (27) and the above definitions that 
we have 

d(u(t + m), u(t + n)) < Md(u(m -p), u(n -PI), 

V(m,n)EE,YpEE+,Vt>, -p. (29) 

By the diagonal procedure, we can find an increasing sequence { pk} in 
E+ such that 

VmeE, lim d(u(m -pk), w(m)) = 0, where w: E + u(R-). (30) 
k+m 

By letting p =pk and k + m in (29) we obtain 

d(u(t + m), u(t + n)) d Md(w(m), w(n)) V(m,n)EE,VtE[W. (31) 

The result then is an immediate consequence of Corollary 2. 
(b) The proof is analogous to the deduction of Corollary 7 from 

Corollary 5. Indeed, by using precompactness of u( R + ) and the “stability” 
hypothesis (27), we construct a complete trajectory w(t) such that 

w(t) = k “T, u(n, + t), V’tEl-8 

and uniformly on compact intervals of R, where {nk} is an increasing 
sequence in E+. By (a), w is almost periodic: IF! +X. After relining {nk} if 
necessary we can assume that uk(t) = w(t - nk) converges in C&R, X) to 
some function u as k -+ + cc. By using (27) we easily conclude that (28) is 
satisfied, and of course u is an almost-periodic trajectory of U. 

Remark 9. (a) Theorem 8 contains as a special case Theorem 1.1 of 
[S]. Our present result is slightly more general, with a new proof, probably 
more elegant and certainly easier to understand than the argument given in 
c51. 

(b) Theorem 8 allows us to treat some multi-valued non- 
autonomous problems, such as the evolution equation dujdt + Au(t) sf( t), 
wherefis periodic and A is any maximal monotone operator in a Hilbert 
space H. It implies that any precompact trajectory of this equation is 
asymptotically almost periodic as t -+ + 00. However, for simplicity in 
Section 4 below we will restrict our attention to examples in the framework 
of single-valued operators. 

4. EXAMPLES 

In this section, we illustrate the general results obtained in the three 
sections above by giving a list of simple examples. 
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EXAMPLE 1. Consider the first order ODE 

24’ + a(t) u(t) = 0, (32) 

where A = R -+ R is T-periodic. The solution of (32) with initial value u0 is 
given by the formula 

u(r)=u,exp(j):a(s)&). 

In this case, either all solutions with u0 # 0 are unbounded on [0, + cc [, or 
jc a(s) ds < 0. Then we have two cases 

- If JjJ a(s) ds < 0, all solutions tend to 0 exponentially as t + + co. 
- If j+(s) ds=O, exp(jh a(s) ds) is T-periodic and so are all the 

solutions. 

EXAMPLE 2. Consider the second order ODE 

24” + u(t) u’ + b(t) 24 = 0, (33) 

where a and 6: R + R are both T-periodic (and continuous). Let u be a 
solution of (33) which is bounded for t 20. Then we have the following 
alternative 

- Either u is asymptotic as t -+ + co to a 2T-periodic solution (which 
may be either a constant, or a non-constant T-periodic solution, or a non- 
trivial T-anti-periodic solution). 

- Or all solutions of (33) (and especially the given u(t)) are almost 
periodic. 

Proof It follows from “Esclangon’s lemma” (cf., e.g. [3, Theorem 5.4, 
p. 821) that u’(t) is also bounded for t 9 0. 

As a consequence of Corollary 5, U(t) = (u(t), u’(t)) is asymptotic as 
t -+ + co to O(t) = (o(t), o’(t)) with w(t) an almost-periodic solution of 
(33). If Q(0) and sZ( T) are linearly independent, the fundamental matrix is 
almost periodic. If Q(T) = nQ(O) with 1 E R, then Q(nT) = n%(O) and the 
almost periodicity of sZ( t) obviously implies II = f 1 or Q(0) = 0. The con- 
clusion follows easily. 

EXAMPLE 3. Consider the ODE 

u” + b(t) u = 0, (34) 

where b: R + R! is T-periodic. [This equation is called Hill’s equation and 
the study of stability in (34) is already a delicate problem; cf. [4].] 
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Let u = R + + R be a bounded solution of (34). Then 

- Either u(t) + 0 and u’(t) + 0 as t --t + co. 
- Or u(t) is almost periodic. In addition if u is not 2T-periodic, then all 

solutions of (34) are almost periodic. 

Proof. Let 0(t) = (o(t), o’(t)) be as above. Then w(t) = (U’O - uo’)(t) 
is constant and w(t) -+ 0 as t -+ + co. Hence we have 

Vt E IR, (do - uo’)( t) = 0. (35) 

From (35) it follows that u(t) - Ao( t) or w(t) - 0. Of course in the first case 
with o # 0 we must have A. = 1. Hence if o # 0, u(t) is almost periodic. The 
last assertion is clearly contained in the previous results concerning (33). 

EXAMPLE 4. Let A(t) E C( R, Y( R”)) be T-periodic and such that 

A(t) 20, Vt E R. (36) 

Let u be a solution of (2) on R. Then 

(a) There exists an almost-periodic solution v of (2) on R such that 

lim 1124(t) - u(t)(l = 0. 
I--t +‘x 

(b) If u is bounded on ]-co, 01, then in fact u is almost periodic: 
R -+ [w” and such that Ilu(t is constant on R. 

EXAMPLE 5. Let Q be a bounded domain in R” (n E N *). We consider 
the semi-linear partial differential equation 

a% -- 
at2 e2”“‘du-a’(t)~+g I,$ =o, 

( > 

where a(t) E C’(R) is T-periodic, 
g(t, u) E C’(lR x W) is T-periodic in t and such that 

dt, O)=O, VteR, 

$k(t. u))>,O, V(t, u) E R2. 

(37) 
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This equation can be written as a system in X= HA(Q) x L*(Q) by setting 
v=e -““‘(&/at): we obtain 

au - eau’v, 
at- 

au 
at- 

- ea(r)dU - e p"(')g(f, e*("v), 
(38) 

The operator A(t) defined by 

D(A(t)) = H2 n HA(O) x L2(L?), 

A(t)(u, u) = (-e-‘(‘b, -ea(r)du + &‘)g(t, eO’(‘b)) 

is monotone in Xendowed with the usual inner product, and the closure of 
A(t) in Xx X is maximal monotone for all t E II& 

It is not difficult to check that (38) generates a contractive periodic 
process U(t, z) on A’. Moreover the subspace W= HZ n HA(Q) x H;(Q) 
is such that U(t, t) WC W for all (t, t) E R’ x R + and we have 
p( U(t, t) X) <p(x), Vx E W, where p = W -+ R denotes the semi-norm 
p(u, Y) = In { Idul 2 + lVv/ ‘} dx. It follows by density that all positive trujec- 
tories of U(t, r) are precompact in X. By Theorem 8, we conclude that 
any solution u of (37) [in the class C(R+, HA(Q))n C’(5Xw’, L’(!S))] is 
asymptotic in the sense of X, as t + + co, to a solution (o(t, x), 
(wwt, 4) of 

(39) 

In addition, any solution of (39) is almost periodic: R -+ .Y. 

5. CONCLUDING REMARKS 

Remark 10. In the finite dimensional setting, Corollary 7 and 
Theorem 8 are quite powerful. In infinite dimensional cases, a major dif- 
ficulty will be the proof of precompactness of the orbits, even in the linear 
case. 

Remark 11. Theorem 8 admits a generalization when the fixed space X 
is replaced by a closed subset (X,),, w which depends on t in a T-periodic 
manner and such that U(t, r) X, c X,, ~, V(t, r) E R x R +. This framework, 
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rather complicated and more delicate to handle, is useful to study the 
evolution equation (1) when D(A(t)) = A’, depends on t. For some results 
in this direction when A(t) is a subdifferential, we refer the reader to [6] 
and [7]. 
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