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a b s t r a c t

Epithelial-to-mesenchymal transition (EMT) has been implicated in various physiological and path-
ological events. In this study, we found that the synthetic glucocorticoid dexamethasone (Dex) can
inhibit transforming growth factor-beta1-induced EMT and cell migration. We also demonstrated
that Dex inhibits EMT through a mechanism involving the suppression of ROS generation. Surpris-
ingly, Dex alone induced mesenchymal-to-epithelial transition (MET). Dexamethasone treatment
abolished Snail1 binding to the E-cadherin promoter, suggesting that suppression of Snail1 contrib-
utes to the above roles of Dex. Our findings demonstrate that Dex functions as both a suppressor of
EMT and as an inducer of MET and therefore may be implicated in certain pathophysiological events.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Epithelial-to-mesenchymal transition (EMT) is a trans-differen-
tiation process by which epithelial cells lose their epithelial cell
characteristics and acquire a mesenchymal phenotype. EMT is
characterized by changes in cell morphology, the disruption of
tight junctions and adherent junctions, and decreased expression
of E-cadherin, zonula occludens-1 (ZO-1) and other molecules. In
addition, EMT is associated with increased expression of mesen-
chymal markers, such as fibronectin and vimentin. EMT plays an
important role in embryogenesis, wound healing, tissue remodel-
ing, fibrosis, and tumor metastasis [1,2]. The inverse process, mes-
enchymal-to-epithelial transition (MET), has also been implicated
in development and other biological events. However, very little
is known about the regulatory mechanisms underlying the MET.

The multifunctional cytokine transforming growth factor-b
(TGF-b) regulates cell proliferation, differentiation, migration,
extracellular matrix production, apoptosis and tumorigenesis [3].
TGF-b is also a potent inducer of EMT, and it has long been recog-
nized that through EMT induction, TGF-b can promote tumor
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metastasis and invasion. Blockade of TGF-b signaling can decrease
tumor cell motility and metastasis [4].

A growing number of molecules have been found to be involved
in the EMT process. Among them, the zinc-finger transcription fac-
tor Snail, one member of the Snail superfamily of transcriptional
repressors, plays a major role in triggering EMT [5]. Ectopic expres-
sion of Snail suppresses E-cadherin expression, leading to a full
EMT phenotype, whereas silencing of Snail expression reverses this
process [6,7]. Snail expression has been detected in a number of
different human carcinoma and melanoma cell lines [8]. More
importantly, Snail is expressed at the invasive front of epidermoid
carcinomas and has been associated with breast carcinoma metas-
tasis [9]. These data support a key role for Snail as an inducer of tu-
mor metastasis.

Glucocorticoids are important signaling molecules involved in a
variety of physiological and pathological responses [10]. Synthetic
glucocorticoids are widely used drugs with broad anti-inflamma-
tory effects. The biological effects of glucocorticoids are mediated
by the glucocorticoid receptor (GR), a member of the nuclear
receptor superfamily [11,12]. The glucocorticoid receptor regulates
target gene expression through a glucocorticoid response element
(GRE)-dependent mechanism. Depending on the nature of the GRE,
glucocorticoid receptor binding can result in activation or
repression of genes containing GR-binding sites. Alternatively,
the glucocorticoid receptor can induce or suppress gene expression
lsevier B.V. All rights reserved.
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through GRE-independent mechanisms, which are mediated
through protein–protein interactions of the glucocorticoid receptor
with other transcription factors. RU486 is a glucocorticoid antago-
nist that can compete with glucocorticoids and prevent glucocorti-
coid-receptor binding and is widely used in steroid hormone
research and for the treatment of Cushing’s syndrome [13].

The TGF-b and glucocorticoid signaling pathways interact both
positively and negatively. Glucocorticoids inhibit the TGF-b-
induced expression of extracellular matrix proteins, collagen, and
tissue inhibitors of metalloproteinases [14–16]. TGF-b has also
been shown to antagonize the effects of glucocorticoids during
wound healing and fibrosis [17–19]. In addition, glucocorticoids
and TGF-b have been shown to have opposite effects on the regu-
lation of bone formation [20]. Conversely, TGF-b and glucocorticoid
signaling pathways interact positively in some processes [21–24].
However, it remains unclear whether glucocorticoid signaling is in-
volved in TGF-b-induced EMT.

2. Materials and methods

2.1. Cell culture and transfection

MvlLu cells (Mink lung epithelial cell line) were cultured in
MEM medium containing 10% FBS, penicillin (100 U/mL), strepto-
mycin (100 lg/mL) and non-essential amino acids. Cells were incu-
bated at 37 �C in a humidified atmosphere of 5% CO2 until 30–50%
of confluence was reached. Transfection was carried out using
Lipofectamine 2000 (Invitrogen) according to the manufacturer’s
instructions.

2.2. Cell lysate preparation and immunoblotting

Cells were lysed in lysis buffer containing 50 mmol/L HEPES (pH
7.4), 5 mmol/L EDTA, 50 mmol/L NaCl, 1% Triton X-100, 50 mmol/L
NaF, 10 mmol/L Na4P2O7�10H2O, 5 lg/mL aprotinin, 5 lg/mL leu-
peptin, 1 mmol/L Na3VO4, and 1 mmol/L phenylmethylsulfonyl
fluoride (PMSF). Proteins (30 lg) were separated by SDS–poly-
acrylamide gel electrophoresis and transferred onto nitrocellulose
membranes. The membranes were subsequently blocked with 5%
skim milk and incubated with the indicated antibodies. Protein
bands were visualized using ECL reagents.

2.3. Measurements of cellular reactive oxygen species (ROS)

Cells were trypsinized, suspended in 1 mL of serum-free DMEM,
incubated with 10 lmol/L 20,70-dichlorofluorescein-diacetate
(DCFDA) at 37 �C for 30 min, and then washed 3 times with ser-
um-free DMEM medium. DCFDA was excited at 488 nm, and fluo-
rescence was measured at 525 nm with a flow cytometer (Becton
Dickinson FACSCalibur). The mean fluorescence per cell was used
for comparison.

2.4. Scratch assays

Confluent monolayers of cells were scratched by a pipette tip
and further incubated with 10% FBS medium in the presence or ab-
sence of TGF-b1 for 48 h. Cell migration images were taken under a
microscope.

2.5. E-cadherin promoter analysis

The E-cadherin promoter luciferase reporter plasmid was a gen-
erous gift from Dr. Amparo Cano. Mv1Lu cells were seeded in 24-
well tissue culture plates and transiently transfected with human
E-cadherin promoter reporter and pRL-CMV Renilla reporter using
Lipofectamine 2000 (Invitrogen) according to the manufacturer’s
instructions. Where indicated, cotransfections were carried out in
the presence of empty vector or human Snail1 expression plas-
mids. Twenty-four hours after transfection, cells were treated
with Dex or TGF-b1. Luciferase activities (firefly luciferase and
Renilla luciferase) were determined by a dual luciferase reporter
assay system (Promega). Luciferase activity was normalized to
E-cadherin promoter activity in control cells. All experimental
values were determined from triplicate wells.

2.6. Immunofluorescence analysis of actin remodeling

Cells were grown on glass slides and treated with TGF-b1 and
Dex. To terminate the reactions, slides were quickly washed with
PBS followed by fixing in 4% polyoxymethylene for 10 min. The
samples were stained with Texas red-phalloidin to visualize F-actin
and nuclei were stained with DAPI (blue fluorescence). Images were
taken at 1000� magnification under a confocal microscope.

2.7. Antibodies and plasmids

Antibodies against the following were obtained: E-Cadherin (BD
Biosciences), Snail1 (Cell Signaling Technology), a-SMA (Millipore),
fibronectin and Flag (Sigma), actin, glucocorticoid receptor, vimen-
tin and Cytokeratin 18 (Santa Cruz). Human Snail1 sequence was
cloned into the pCMV-Tag2B plasmid.

2.8. Chromatin immunoprecipitation (ChIP) assays

Chromatin preparation and ChIP experiments were performed
according to the protocol from Upstate Biotechnology. E-Cadherin
promoter was amplified with the primers described in Supplemen-
tary data. PCR was carried out according to the following program:
40 cycles at 94 �C for 40 s, 62–65 �C for 40s, and 72 �C for 40s.
Amplified DNA was separated on a 2% agarose gel and visualized
with ethidium bromide.

2.9. Determination of Snail1 mRNA levels by reverse transcription-PCR

Total cellular RNA was isolated using Trizol reagent according to
the manufacturer’s instructions. RNA was reverse transcribed and
amplified by PCR with the following primers described in Supple-
mentary data. The following PCR conditions were used for Snail1:
30 s at 94 �C, 40 s at 60 �C, and 30 s at 72 �C. The amplification prod-
ucts obtained in 35 cycles were analyzed on 2% agarose gels.

2.10. Materials

Dexamethasone (Dex), LY29402, SB203580 and RU486 were
purchased from Sigma. Compound C was from Calbiochem. NAC
and 20,70-dichlorofluorescein-diacetate (DCFDA) were from
Beyotime.

2.11. Statistical analysis

Data are expressed as means ± S.E.M. from at least three inde-
pendent experiments. Statistical analysis was performed using Stu-
dent’s t-test or one way ANOVA, followed by the LSD-t test for
multiple comparisons. P values < 0.05 were considered statistically
significant.

3. Results

3.1. Dex inhibits TGF-b1-induced EMT and cell migration

Upon treatment with TGF-b1 (2 ng/mL), Mv1Lu cells acquired a
spindle-like cell morphology (Fig. 1A, upper panel), which is



Fig. 1. Dexamethasone (Dex) inhibits TGF-b1-induced EMT and cell migration. Mv1Lu cells were treated with TGF-b1 (2 ng/mL) for the indicated times. (A) EMT was assessed
by observing cell morphological changes under a phase-contrast microscope (top). The expression levels of EMT markers E-cadherin and fibronectin were examined by
western blot (middle). To examine cell motility, confluent Mv1Lu cells were scratched by a pipette tip and treated with TGF-b1 for 48 h in 10% FBS-containing medium. Cell
migration was observed under a phase-contrast microscope (bottom). (B) Cells were treated with TGF-b1 (2 ng/mL) and/or Dex (100 nM) for 48 h in 10% FBS-containing
medium, EMT was examined by examining the cell morphological changes (upper) and the expression levels of E-cadherin, a-SMA, vimentin, Cytokeratin 18 and fibronectin
(lower) were determined. The effect of Dex (100 nM) on actin remodeling induced by TGF-b1 (48 h) was examined by immunofluorescence (bottom). (C) Dose response of
Dex-induced inhibition of TGF-b1-induced EMT. Cells were treated with TGF-b1 (2 ng/mL) and the indicated doses of Dex. EMT was examined by cell morphological
phenotype (upper) and the levels of fibronectin and E-cadherin (middle). Data are presented as means ± S.D. from at least three independent experiments. *P < 0.05, **P < 0.01.
(D) Cells were treated with or without TGF-b1 in the presence or absence of Dex (100 nM) as described above. Cell migration was determined by scratch assay.
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consistent with the observed decrease in the epithelial marker E-
cadherin and upregulation of the mesenchymal marker fibronectin
(Fig. 1A, middle panel). TGF-b1 also increased the motility of
Mv1Lu cells as shown by a scratch assay (Fig. 1A, lower panel).
Interestingly, treatment of cells with the synthetic glucocorticoid
dexamethasone significantly inhibited TGF-b1-induced EMT, as



Fig. 2. RU 486 reverses the inhibitory effect of dexamethasone (Dex) on TGF-b1-induced EMT and cell migration. (A) Mv1Lu cells were treated with TGF-b1 (2 ng/mL) for 48 h
in the presence of different concentrations of RU 486 and EMT was assessed by cell morphological changes and protein levels of E-cadherin. (B) Cells were treated with TGF-
b1 for 48 h in the presence or absence of 100 nM Dex and RU 486 (0.5 lM). EMT was assessed by observing cell morphological changes and E-cadherin protein levels. Cell
migration was measured by scratch assay (C).
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indicated by changes in cell morphology, cytoskeleton rearrange-
ment, and levels of E-cadherin, Cytokeratin 18, a-SMA, vimentin
and fibronectin (Fig. 1B). Inhibition of EMT by Dex occurred in a
dose-dependent manner (Fig. 1C). Consistent with its effects on
EMT, Dex also inhibited TGF-b1-induced cell migration (Fig. 1D)
in scratch assays. In addition, Dex inhibited cell migration in the
absence of exogenous TGF-b1 (Fig. 1D). Interestingly, Dex had no
effect on the proliferation of Mv1Lu cells, but could block TGF-
b1-induced growth arrest (Fig. S1).

3.2. RU486 reverses the effect of Dex

To confirm the specific effects of glucocorticoids on these phe-
notypes, a glucocorticoid receptor antagonist, RU 486, was used



Fig. 3. Dexamethasone (Dex) inhibits EMT by suppressing ROS generation. (A) Mv1Lu cells were treated with TGF-b1 (2 ng/mL) for the indicated times. The level of cellular
ROS was measured as described in Section 2. (B) NAC inhibits TGF-b1-induced EMT. Mv1Lu cells were treated with TGF-b1 for 48 h in the presence of 10 mmol/L NAC. EMT
was determined by cell morphological changes (upper) and expression of E-cadherin and fibronectin (lower). (C) Dex inhibits TGF-b1-induced ROS generation. After
treatment with TGF-b1 (2 ng/mL) and/or Dex (100 nM) for 48 h, cells were washed 3 times with serum-free medium, incubated for 30 min with 10 lM DCFDA, washed again
3 times with serum-free medium and imaged by fluorescence microscopy. (D) Cells were treated with TGF-b1 and/or Dex (100 nM) for the indicated times, and ROS
generation was measured as described in Section 2. Data are presented as means ± S.D. from at least three independent experiments. *P < 0.05, **P < 0.01. (E) Cells were
treated with TGF-b1 and/or 100 nM Dex for 48 h in the absence or presence of 0.3 mmol/L H2O2, and EMT was examined by observing cell morphological changes (upper) and
protein levels of E-cadherin and fibronectin (lower).
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to block the effects of Dex. RU 486 does not noticeably affect TGF-
b1-induced EMT (Fig. 2A), although high doses of RU 486 (5–
10 lM) can induce cell phenotype changes and a decrease in E-cad-
herin. These changes may be due to non-specific effects, since high
concentrations of RU 486 can also lead to decreased cell growth. In
the presence of RU 486, Dex-mediated suppression of TGF-b1-in-
duced EMT was abolished, as shown by cell morphology and
expression of E-cadherin (Fig. 2B). RU 486 treatment also abolished
the Dex-mediated inhibition of cell migration (Fig. 2C). These re-
sults indicate that glucocorticoid has strong inhibitory effects on
TGF-b1-induced EMT and cell migration.

3.3. Dex inhibits EMT through suppression of ROS generation

Treatment of cells with TGF-b1 markedly increases the cellular
ROS level, as measured by DCFDA fluorescence (Fig. 3A). N-Acetyl-
cysteine (NAC) is a powerful antioxidant that reacts with several
ROS. NAC can also suppress TGF-b1-induced ROS generation
(Fig. S2). In the presence of NAC, TGF-b1-induced morphological
changes, the increase in fibronectin, and the decrease in E-cadherin
were blocked (Fig. 3B). Interestingly, Dex can also significantly sup-
press TGF-b1-induced ROS generation (Fig. 3C and D). Treatment
with H2O2, a well-known oxidant that can increase cellular ROS
levels, abolished the inhibitory effect of Dex on TGF-b1-induced
EMT (Fig. 3E), which confirmed that Dex inhibits TGF-b1-induced
EMT through a mechanism involving the suppression of ROS.
Treatment with H2O2 alone did not induce EMT, suggesting that
ROS is necessary but not sufficient to induce EMT.

3.4. Dex promotes MET

MET is the reverse process of EMT, and has been implicated in
embryonic development [25]. Surprisingly, we observed that Dex
not only blocked TGF-b1-induced EMT (Fig. 1), but also induced
MET. Cells that underwent EMT 48 h after TGF-b1 induction
(Fig. 4A) could be restored to their original epithelial phenotype



Fig. 4. Dexamethasone (Dex) promotes MET. After treatment with TGF-b1 (2 ng/mL) for 48 h, Mv1Lu cells acquired a mesenchymal phenotype (A). The mesenchymal-like
cells (in A) were treated with Dex (100 nM) for another 48 h in the presence of TGF-b1. MET was assessed by cell morphology (B, upper) and the levels of mesenchymal
markers fibronectin and epithelial maker E-cadherin were determined by Western blot (B, lower). (C) Cells were treated with TGF-b1 (2 ng/mL) for 48 h to induce EMT. Then,
cells were treated with Dex (100 nM) for the indicated times in the presence of TGF-b1, and MET was determined by cell morphology. (D) RU 486 inhibits Dex-induced MET.
After treatment with TGF-b1 (2 ng/mL) for 48 h to induce EMT, cells were treated with Dex (100 nM) for an additional 48 h in the presence or absence of RU 486 (0.5 lM).
MET was assessed by observing cell morphological changes and the protein levels of E-cadherin and fibronectin. (E) SB203580, LY294002, Compound C, TSA did not induce
MET. Mv1Lu cells were treated with TGF-b1 (2 ng/mL) for 48 h to induce EMT. Afterward, they were treated with SB203580 (10 lM), LY294002 (10 lM), Compound C
(10 lM), TSA (20 ng/mL) or Dex (100 nM) for 48 h in the presence of TGF-b1, and MET was assessed by cell morphology and levels of fibronectin and E-cadherin.

L. Zhang et al. / FEBS Letters 584 (2010) 4646–4654 4651
after the addition of Dex for a further 48 h (Fig. 4B), as shown by
cell morphology and expression levels of E-cadherin and fibronec-
tin. Dexamethasone-induced MET exhibited a typical time-depen-
dent progression (Fig. 4C). Furthermore, RU 486 treatment blocked
Dex-induced MET in the presence of TGF-b1 (Fig. 4D), supporting a
role for glucocorticoids in the induction of MET. To determine
whether glucocorticoid promotes MET simply by virtue of inhibit-
ing EMT, we examined the effects of other EMT inhibitors on MET
induction: SB203580 (p38 inhibitor), LY294002 (PI3K inhibitor),
TSA (HDAC inhibitor), and Compound C (AMP-activated kinase



Fig. 5. Dexamethasone (Dex) promotes MET and inhibits EMT by blocking the inhibitory effect of Snail1 on E-cadherin promoter. (A) Dex increases E-cadherin promoter
activity during MET. Twenty-four hours after transfection of the luciferase reporter plasmid, Mv1Lu cells were treated with TGF-b1 (2 ng/mL) for 48 h to induce EMT. The EMT
cells were treated with 100 nM Dex for the indicated times in the presence of TGF-b1 and E-cadherin promoter activity was examined. Data are presented as means ± S.D.
from at least three independent experiments. **P < 0.01. (B) Dex stimulates E-cadherin promoter activity. Mv1Lu cells were treated with Dex for indicated times, and relative
E-cadherin promoter activity was examined. Data are presented as means ± S.D. from at least three independent experiments. **P < 0.01. (C) Dex induced MET (performed as
above). Snail1 mRNA levels were examined by RT-PCR. (D) ChIP assays showed that Dex impaired Snail1 binding to the E-cadherin promoter during MET and EMT. Upper
panel: cells were treated with TGF-b1 (2 ng/mL) for 48 h to induce EMT, and then treated with/without Dex (100 nM) for 48 h in the presence of TGF-b1. Lower panel: cells
were treated with TGF-b1 (2 ng/mL) for 48 h in the presence or absence of Dex (100 nM). ChIP assays were carried out using antibodies against Snail1 and IgG. (E) Dex
abolishes Snail1 overexpression-induced suppression of E-cadherin promoter activity. Twenty-four hours after transient transfection of Snail1, cells were treated with Dex for
the indicated times, and relative E-cadherin promoter activity was examined. (F) Dex inhibits Snail1-induced EMT. After transient transfection of Snail1, cells were treated
with/without 100 nM Dex for 48 h. EMT was assessed by cell morphological changes (upper panel) and the expression levels of E-cadherin (lower panel).
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inhibitor) [26–29]. Although all these inhibitors could suppress
TGF-b1-induced EMT (Fig. S3), they did not induce the MET
(Fig. 4E, upper and lower panels). Similar results were obtained
in cells co-treated with these inhibitors (Fig. S4).

3.5. Dex promotes MET and inhibits EMT by blocking the inhibitory
effect of Snail1 on the E-cadherin promoter

To investigate the mechanism by which Dex promotes MET, we
examined E-cadherin promoter activity. Dex could restore the
E-cadherin promoter activity of cells with a mesenchymal pheno-
type to the normal level of epithelial cells (Fig. 5A). Dex treatment
also abolished the inhibition of E-cadherin promoter activity by
TGF-b1 during EMT (Fig. S5A). Moreover, Dex enhanced the
E-cadherin promoter activity in a time-dependent manner in nor-
mal Mv1Lu cells (Fig. 5B). Snail1 is a key regulatory molecule for
EMT that can bind to E-box elements of the E-cadherin promoter
and suppress E-cadherin transcription. Snail1 expression increases
during TGF-b1-induced EMT (Fig. S5B). The above results suggest
that suppression of Snail1 may play a role in this MET process.
Dex had no inhibitory effect on Snail1 mRNA levels during MET
(Fig. 5C), and did not block the TGF-b1-induced increase in Snail1
expression levels (Fig. S5C). Dex treatment (48 h) of cells that
have undergone EMT impaired the interaction of Snail1 with
the E-cadherin promoter during MET, as shown by ChIP assay
(Fig. 5D, upper panel). Dex also blocked Snail1 binding to the
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E-cadherin promoter during EMT (Fig. 5D, lower panel). We ex-
cluded the possibility that Dex inhibits the Snail–E-cadherin pro-
moter interaction by inducing glucocorticoid receptor binding to
the E-cadherin promoter. As shown in Fig. S6, the glucocorticoid
receptor did not interact with the E-cadherin promoter. Further-
more, Dex treatment also significantly restored the E-cadherin
promoter activity that was suppressed by Snail1 overexpression
in Mv1Lu cells (Fig. 5E). These results demonstrate that blocking
Snail1 binding to the E-cadherin promoter contributes to the
Dex-mediated suppression of EMT and the induction of MET. To
confirm this model, we generated a cell line transiently over-
expressing Snail1. Overexpression of Snail1 induced the morpho-
logical phenotype characteristic of EMT. Treatment of Snail1-
overexpressing cells with Dex completely restored the epithelial
phenotype as shown by cell morphology (Fig. 5F, upper) and
E-cadherin levels (Fig. 5F, lower).

4. Discussion

Glucocorticoids are among the most widely used anti-
inflammatory drugs for the treatment of inflammatory disorders
including rheumatoid arthritis, asthma, dermatitis, idiopathic
pulmonary fibrosis and autoimmune diseases such as Crohn’s dis-
ease [10]. Here, we found that the synthetic glucocorticoid Dex can
block TGF-b1-induced EMT in Mv1Lu cells. Recently, Godoy et al.
reported changes in the mRNA levels of 12 of 17 analyzed EMT
markers in mouse primary hepatocytes in the presence of Dex
[30]. This finding suggested that Dex may be a potent regulator
of EMT, which is supported by our observations.

ROS are free radicals that contain an oxygen atom and include
hydrogen peroxide, superoxide anion and hydroxyl radical. Cellular
production of ROS has been implicated in various pathophysiolog-
ical processes, such as carcinogenesis [31] and fibrotic diseases
[32]. ROS have been reported to play an important role in TGF-b in-
duced EMT [33,34]. In addition, ROS have also been shown to be in-
volved in the mediation of matrix metalloproteinase 3-, hypoxia-,
and aldosterone-induced EMT [35–37]. Suppression of cellular
ROS signaling with antioxidants, such as NAC, can inhibit TGF-b-in-
duced EMT [38]. In the current study, we have shown that Dex
inhibited TGF-b1-induced EMT by suppressing TGF-b1-induced
ROS generation. However, it remains unclear how glucocorticoids
could block such ROS generation. Dex may suppress TGF-b-induced
ROS generation by modulating mitochondrial function or the
expression levels of certain redox-oxidation enzymes.

A growing body of evidence has been obtained concerning the
mechanisms of EMT regulation. However, much less is known
about MET. Auersperg et al. reported that MET could be induced
by overexpression of the epithelial marker E-cadherin in cultured
cells [39]. Das et al. showed that complete reversal of EMT required
inhibition of both ZEB1 and Rho pathways [40]. Inhibition of p38
MAPK, PI3K, HDAC and AMP-activated kinase inhibited TGF-b-
induced EMT, but could not reverse EMT or induce MET. These
results indicate that inhibition of EMT alone is not sufficient to in-
duce MET. Our novel finding that the glucocorticoid Dex can induce
MET presents an important step toward understanding the regula-
tion of MET.

The transcription factor Snail can suppress E-cadherin transcrip-
tion by recognizing E-box elements in its target promoters, and it
plays a critical role in EMT [6,7]. The finding that Dex stimulates
E-cadherin promoter activity is consistent with previous reports
that Dex can increase E-cadherin expression in human primary
nasal epithelial cells and human osteoblastic Cells [41,42].
E-Cadherin re-expression is required for MET, which indicates that
the suppression of Snail may be involved in Dex-mediated MET. In-
deed, Dex blocked the binding of Snail1 to the E-cadherin promoter,
which abolished the Snail1 overexpression-induced suppression of
transcriptional activity of E-cadherin, contributing to the inhibition
of EMT. These observations indicate that the same signaling compo-
nents can be utilized both in the inhibition of EMT and in the induc-
tion of MET. The precise mechanism by which glucocorticoids
inhibit Snail1 binding to the E-cadherin promoter has not yet been
determined. Dex may induce the interaction of Snail1 with specific
molecules that block E-cadherin promoter association. In addition,
Dex may inhibit Snail1 binding to E-cadherin promoter by blocking
the nuclear translocation of Snail1.

Inhibition of EMT is potentially of great importance in thera-
peutic practice, and the induction of MET may also be a promising
strategy for medical treatment. The present study suggests that in
the treatment of fibrosis, glucocorticoids can act not only through
anti-inflammatory effects but also by inducing MET and inhibiting
EMT. EMT defects have been reported to be involved in the induc-
tion of cleft palate [43], and glucocorticoids have been shown to in-
duce cleft palate in mice [44–47]. Our data further suggest that
glucocorticoid-induced cleft palate may be related to its inhibitory
effect on EMT. It has been reported that Dex does not inhibit TGF-
b1-induced changes in the mRNA levels of E-cadherin and fibro-
nectin, but is able to suppress the increase of a-SMA in human
bronchial epithelial cells [48]. The discrepancy between this report
and our observations may be due to tissue or cell type specificity.
In addition, mRNA levels may not correlate well with levels of pro-
tein molecules because the latter can be regulated at several differ-
ent levels.

In summary, our data show that the synthetic glucocorticoid
Dex inhibits TGF-b1-induced EMT and cell migration by suppress-
ing TGF-b1-induced ROS generation. H2O2, a well-known oxidant
that can increase cellular ROS, can block Dex-mediated suppres-
sion of EMT induced by TGF-b1. We have also demonstrated that
Dex can induce MET. Treatment with Dex blocks Snail1 binding
to the E-cadherin promoter, suggesting that suppression of Snail1
contributes to both the inhibition of EMT and the induction of
MET. Further studies in other cellular models are needed to deter-
mine the ubiquity of these processes in normal and pathological
processes.
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