WORD PROBLEMS AND A HOMOLOGICAL FINITENESS CONDITION FOR MONOIDS

Craig C. SQUIER
Department of Mathematical Sciences, State University of New York at Binghamton, Binghamton, NY 13901, U.S.A.

Communicated by F.W. Lawvere
Received 7 April 1986
Revised 28 April 1986

Introduction

Our purpose is to prove that a monoid which has a 'nice' solution to its word problem satisfies a certain homological finiteness condition. More precisely, we prove: if a monoid S has a finite terminating Church–Rosser presentation, then S is $(FP)_3$; this is Theorem 4.1 below. (See Section 2 for the definition of "terminating" and "Church–Rosser".) Examples of groups that are not $(FP)_3$ are known; see Section 4 for a brief description of several of these. For completeness, we provide an example of a monoid that is not $(FP)_3$. In each case, the monoid (or group) is finitely-presented and has a solvable word problem. These examples answer (in the negative) the following question of Jantzen [15]: does a finitely-presented monoid with a solvable word problem have a finite terminating Church–Rosser presentation?

The Church–Rosser property was discovered by Church and Rosser [9] during the course of research on the λ-calculus. Properties of terminating relations were investigated by Newman [16]. For a systematic treatment of both topics together with further references, see [14]. Monoids with terminating Church–Rosser presentations have been studied by Nivat [17] and others. See [5] for a recent survey.

We conclude this introduction with a brief outline of what follows and some further discussion.

Section 1 contains basic results on Noetherian relations. In particular, we develop some tools for dealing with free abelian groups which have a basis ordered by a Noetherian relation.

Section 2 introduces terminating and Church–Rosser presentations. (Because of difficulties in verifying that the relation \rightarrow defined in Section 2 is Noetherian, it is common to assume that the rewriting rules R are length-reducing: if $(r, s) \in R$, then $|r| > |s|$. We specifically do not make this assumption, so that our terminology differs, for example, from that of [5].) Variations of Theorem 2.1, which gives
equivalent conditions for a terminating presentation to be Church–Rosser, are well known; see [14]. Condition 2.1(c) gives a simple proof of Theorem 2.4, which shows that a terminating Church–Rosser presentation can be assumed to have a particular form. A version of this theorem was communicated to the author by Friederich Otto. Theorem 2.4 plays an important role in Section 3.

Section 3 contains our main results. After reviewing how a presentation of a monoid S yields a resolution through dimension 2 of \mathbb{Z} as a trivial left $\mathbb{Z}S$-module, we show (Theorem 3.1) how to extend this resolution through dimension 3, in the situation when S has a terminating Church–Rosser presentation. We also give a criterion (Theorem 3.2) for such an S to be 3-dimensional.

In Section 4, after defining the $(FP)_k$-condition, we reinterpret Theorem 3.1 in the situation when S has a finite terminating Church–Rosser presentation and conclude with some examples.

We have made an effort to make this paper self-contained. Nonetheless, Sections 3 and 4 will be difficult for the reader with no background in homological algebra. We suggest [12] as a good introductory text; [8] also contains some material of relevance in homological monoid theory. Much of the material in Section 3 leading up to Theorem 3.1 is well known in group theory: see [6, p. 45, exercise 3 or p. 90, exercise 4].

Notation: we use λ to denote the empty word in a free monoid.

1. Noetherian induction

Let X be a set and let \rightarrow be a relation on X. The relation \rightarrow is called Noetherian provided there does not exist an infinite sequence $\{x_n \mid n \geq 0\}$ of elements of X such that each $x_n \rightarrow x_{n+1}$. We shall need

Proposition 1.1 (Principle of Noetherian induction). Let X be a set, let \rightarrow be a Noetherian relation on X and let P be a predicate on X. Suppose that whenever $x \in X$ has the property that every $y \in X$ with $x \rightarrow y$ satisfies P, it follows that x satisfies P. Then every $x \in X$ satisfies P. □

For a proof, see [10], and, for applications, see [14].

An element z of X is called \rightarrow-irreducible provided for every $x \in X$, $z \rightarrow x$ is false. We remark that the hypothesis of Noetherian induction will often have to be verified separately for irreducibles. (Also, $P(x)$ for a reducible x will often follow from $P(y)$ for a single y satisfying $x \rightarrow y$.)

We let \Rightarrow denote the reflexive transitive closure of \rightarrow and let \Rightarrow^+ denote the transitive closure of \rightarrow. Note that if \rightarrow is Noetherian, then \Rightarrow is a partial order: if $x \Rightarrow y$ and $y \Rightarrow x$, then $x = y$. Thus, if \rightarrow is Noetherian, then every finite subset A of X has an \Rightarrow-maximal element: there exists $y \in A$ such that if $x \in A$ satisfies
x \rightarrow y$, then $x = y$. If $x \in X$, we let $\Delta^+(x) = \{ y \in X | x \rightarrow y \}$. Note that x is \rightarrow-irreducible if and only if $\Delta^+(x) = \emptyset$.

Let $F(X)$ denote the collection of finite subsets of X. We use the relation \rightarrow on X to define a similar relation (also denoted) \rightarrow on $F(X)$.

Definition 1.2. Let A, B be finite subsets of X. Then $A \rightarrow B$ means: there exists $x \in A$ and a finite subset D of $\Delta^+(x)$ such that $B = (A \cup D) - \{x\}$.

Using the \rightarrow and \leftarrow notation as above, note that if $A \rightarrow B$, then for each $y \in B$, there exists $x \in A$ such that $x \leftarrow y$. Also note that the only $A \in F(X)$ that is \rightarrow-irreducible on $F(X)$ is the empty set.

Lemma 1.3. If \rightarrow is Noetherian on X, then \rightarrow is Noetherian on $F(X)$.

Proof. By way of contradiction, we show that the existence of an infinite \rightarrow-chain $A_0 \rightarrow A_1 \rightarrow \cdots$ on $F(X)$ implies the existence of an infinite \rightarrow-chain on X.

Given $A_0 \rightarrow A_1 \rightarrow \cdots$ as above, define a directed graph Γ as follows: a vertex of Γ is an ordered pair (x, n) where n is a non-negative integer and $x \in A_n$. There is a directed edge from (x, n) to (y, m) provided $m = n + 1$ and either $y = x$ or $y \notin A_n$ and $y \in \Delta^+(x)$. Clearly, if (y, m) is a vertex of Γ with $m > 0$, then there exists a unique vertex (x, n) of Γ such that there exists a directed edge from (x, n) to (y, m). (In particular, $n = m - 1$.) It follows that Γ is a disjoint union of directed trees, one for each element of A_0. Each such tree satisfies the following condition: if there is an edge from (x, n) to $(x, n + 1)$, then there is no edge from (x, n) to any other vertex.

If \rightarrow is Noetherian on X, it follows from the principle of Noetherian induction that each such tree has only finitely many edges from a vertex (x, n) to any vertex (y, m) with $y \neq x$. (Note that each vertex is involved in only finitely many edges.) The lemma follows easily. □

Let $G(X)$ denote the free abelian group with basis X. If $W \in G(X)$, then the *support* of W consists of those elements of X which have non-zero coefficient in the unique expression for W as a linear combination of elements of X. Clearly, each support is a finite subset of X.

Theorem 1.4. Let X be a set, let \rightarrow be a Noetherian relation on X, let Y be a subset of X and let H be a subgroup of $G(X)$. Suppose that for each $y \in Y$, H contains an element of the form $y - W_y$ where the support of W_y is a subset of $\Delta^+(y)$. Then for each $W \in G(X)$, there exists $W' \in H$ such that the support of $W - W'$ is disjoint from Y.

Proof. By the lemma, \rightarrow is Noetherian on $F(X)$. We prove the following by Noetherian induction on $A \in F(X)$: if the support of W is a subset of A, then a
suitable \(W'\) exists. If the support of \(W\) is disjoint from \(Y\), take \(W' = 0\). If \(y \in A \cap Y\), write \(W = ny + W_1\) where \(y\) is not in the support of \(W_1\). By hypothesis, choose \(y - W_y \in H\) where the support of \(W_y\) is a subset of \(\Delta^*(y)\). Let \(D\) denote the support of \(W_y\). Clearly, the support of \(W - n(y - W_y)\) is a subset of \(B = (A \cup D) - \{y\}\). Since \(A \rightarrow B\), by the inductive hypothesis, there exists \(W'' \in H\) such that the support of \(W - n(y - W_y) - W''\) is disjoint from \(Y\). Clearly \(W' = n(y - W_y) + W'' \in H\) and the support of \(W - W'\) is disjoint from \(Y\).

We note a simple consequence of Theorem 1.4. If \(K\) is an abelian group and \(f : G(X) \rightarrow K\) is a homomorphism such that \(H \subseteq \ker f\) and the restriction of \(f\) to the subgroup of \(G(X)\) generated by \(X - Y\) is injective, then \(H = \ker f\). (If \(f(W) = 0\), then choosing \(W'\) as in Theorem 1.4, \(f(W - W') = 0\). Since \(W - W'\) belongs to the subgroup of \(G(X)\) generated by \(X - Y\), \(W = W' \in H\).)

2. Presentations and the Church-Rosser property

Let \(\Sigma\) be a set. We let \(\Sigma^* \) denote the free monoid on \(\Sigma\); elements of \(\Sigma^*\) are finite sequences (called words) of elements of \(\Sigma\). The empty word will be denoted \(\lambda\). If \(w \in \Sigma^*\), the length of \(w\) will be denoted \(|w|\).

Let \(R \subseteq \Sigma^* \times \Sigma^*\). We write \(x \rightarrow y\) for \(x, y \in \Sigma^*\) to mean that there exist \(u, v \in \Sigma^*\) and \((r, s) \in R\) such that \(x = urv\) and \(y = usv\). We use the notation \(\Rightarrow\) and \(\rightarrow\) as in Section 1. In addition, we let \(\sim\) denote the equivalence relation generated by \(\rightarrow\); in other words, \(\sim\) is the reflexive symmetric transitive closure of \(\rightarrow\). It follows that \(\sim\) is a congruence on \(\Sigma^*\): if \(x, y \in \Sigma^*\) satisfy \(x \sim y\) and \(u, v \in \Sigma^*\), then \(uxv \sim uyv\). Therefore, the set of equivalence classes in \(\Sigma^*\) under \(\sim\) forms a monoid \(S\); the pair \((\Sigma, R)\) is called a presentation of \(S\). (When several subsets \(R \subseteq \Sigma^* \times \Sigma^*\) are under consideration, we will use notation such as "\(x \rightarrow y\) modulo \(R\)" to distinguish them.)

We call \(R\) terminating provided the relation \(\rightarrow\) on \(\Sigma^*\) is Noetherian. We use the term "irreducible" (relative to the relation \(\rightarrow\) on \(\Sigma^*\)) as in Section 1. Note that if \(R\) is terminating, then for each \(x \in \Sigma^*\) there exists an irreducible \(z \in \Sigma^*\) such that \(x \Rightarrow z\). (The proof is an easy application of Noetherian induction.)

We call \(R\) Church-Rosser provided whenever \(x, y \in \Sigma^*\) satisfy \(x \sim y\), it follows that there exists \(z \in \Sigma^*\) such that \(x \Rightarrow z\) and \(y \Rightarrow z\).

Theorem 2.1. Let \(R \subseteq \Sigma^* \times \Sigma^*\) be terminating. Then the following are equivalent:

(a) \(R\) is Church-Rosser;
(b) Let \((r_1, s_1), (r_2, s_2) \in R\). If \(r_1 = uv\) and \(r_2 = vw\) with \(v \neq \lambda\), then there exists \(z \in \Sigma^*\) such that \(s_1w \Rightarrow z\) and \(us_2w \Rightarrow z\). If \(r_1 = ur_2w\), then there exists \(z \in \Sigma^*\) such that \(s_1 \Rightarrow z\) and \(us_2w \Rightarrow z\);
(c) For each \(x \in \Sigma^*\) there exists a unique irreducible \(z \in \Sigma^*\) such that \(x \Rightarrow z\).
Proof. (a) implies (b). This is automatic, since \(s_1w \sim uS_2 \).

(b) implies (c). We use Noetherian induction. Existence of \(z \) has already been noted. If \(x \) is irreducible, uniqueness is easy. In general, suppose that \(x \rightarrow z_1 \) and \(x \rightarrow z_2 \) with \(z_1, z_2 \) irreducible. Write \(x \rightarrow z_i \) as \(x \rightarrow y_i \rightarrow z_i \). Either the relation applications involved in \(x \rightarrow y_1 \) and \(x \rightarrow y_2 \) are identical or are disjoint or (b) applies. In any case, there exist \(y \in \Sigma^* \) such that \(y_1 \rightarrow y \) and \(y_2 \rightarrow y \). Choose an irreducible \(z \in \Sigma^* \) such that \(y \rightarrow z \). Thus each \(y_i \rightarrow z \). Applying the inductive hypothesis twice, each \(z_i = z \). Thus \(z_1 = z_2 \) as required.

(c) implies (a). Note first that if (c) holds and \(u \sim v \), then \(u \) and \(v \) have the same irreducible; (a) follows by an easy induction on the length of a relation chain connecting \(x \) and \(y \) in the definition of the Church–Rosser property. \(\square \)

The equivalence of (a) and (b) is essentially [14, Lemma 2.4] and was originally due to Newman [16]. Pairs of elements of \(R \) as in (b) will play an important role in Section 3 below. The equivalence of (c) is also well known (see the discussion in [14]). The particular version of (c) above allows

Corollary 2.2. Let \(R \subseteq \Sigma^* \times \Sigma^* \) be terminating and Church–Rosser. Suppose that \(R' \subseteq \Sigma^* \times \Sigma^* \) is terminating, has the same irreducibles as \(R \) and satisfies: if \(x, z \in \Sigma^* \) with \(z \) irreducible, then \(x \rightarrow z \) modulo \(R' \) if and only if \(x \rightarrow z \) modulo \(R \). Then \(R' \) is Church–Rosser and if \(x, y \in \Sigma^* \), then \(x \sim y \) modulo \(R \) if and only if \(x \sim y \) modulo \(R' \).

Proof. That \(R' \) is Church–Rosser follows from condition (c) of Theorem 2.1. To prove the second conclusion, note the following consequence of Theorem 2.1: \(x \sim y \) if and only if there exists an irreducible \(z \) such that \(x \rightarrow z \) and \(y \rightarrow z \) (all relative to a terminating Church–Rosser subset of \(\Sigma^* \times \Sigma^* \)). \(\square \)

For convenience, we refer to subsets \(R, R' \subseteq \Sigma^* \) which satisfy the second conclusion of Corollary 2.2 as equivalent.

We use Corollary 2.2 to replace an arbitrary terminating Church–Rosser system with one in a particularly simple form. Before turning to this, given \(R \subseteq \Sigma^* \times \Sigma^* \), define \(R_1 \subseteq \Sigma^* \) to consist of all \(r \in \Sigma^* \) such that there exists \(s \in \Sigma^* \) such that \((r, s) \in R \). Note that \(z \in \Sigma^* \) is \(R \)-irreducible if and only if \(z \not\in \Sigma^* \) \(R_1 \Sigma^* \).

Definition 2.3. \(R \subseteq \Sigma^* \) is reduced provided for each \((r, s) \in R, R_1 \cap \Sigma^*r \Sigma^* = \{r\} \) and \(s \) is \(R \)-irreducible.

Theorem 2.4. Let \(R \subseteq \Sigma^* \times \Sigma^* \) be terminating and Church–Rosser. Then there exists a reduced \(R' \subseteq \Sigma^* \times \Sigma^* \) that is terminating, Church–Rosser and equivalent to \(R \).

Proof. Let \(R_1 \) consist of all \(r \in R_1 \) such that if \(urv \in R_1 \), then \(u = v = \lambda \). (In other words, \(R_1 \) consists of the minimal elements of \(R \) with respect to a suitable
subword ordering.) Let $R' = \{(r, s) \in R \mid r \in R'_1\}$. We show that R' is Church–Rosser and equivalent to R by showing that the hypotheses of Corollary 2.2 are satisfied.

Since $R' \subseteq R$ and R is terminating, it follows that R' is terminating.

Since $R'_1 \subseteq R_1$, it follows that if z is R-irreducible, then z is R'-irreducible.

For the converse, note that if $r \in R_1$, then these exist $r' \in R'_1$ and $u, v \in \Sigma^*$ such that $r = ur'v$. It follows that if z is R-reducible, then z is R'-reducible, as required.

Finally, since $R' \subseteq R$, if $x \rightarrow z$ modulo R', then $x \rightarrow z$ modulo R. To complete this part of the proof, we prove: if $x \rightarrow z$ modulo R and z is irreducible, then $x \rightarrow z$ modulo R'. We proceed by Noetherian induction on \rightarrow modulo R. If x is irreducible, then $x = z$, so $x \rightarrow z$ modulo R'. If x is reducible modulo R, then, as noted above, x is reducible modulo R'_1, so there exists $y \in \Sigma^*$ such that $x \rightarrow y$ modulo both R and R'. Since R is terminating and Church–Rosser, $y \rightarrow z$ modulo R, by the uniqueness of z. By the inductive hypothesis, $y \rightarrow z$ modulo R', so that $x \rightarrow z$ modulo R', as required.

It follows from Corollary 2.2 that R' is Church–Rosser and equivalent to R. Clearly, if $(r, s) \in R'_1$, then $R'_1 \cap \Sigma^*r\Sigma^* = \{r\}$, so R' satisfies half of the definition of reduced. We modify R' to obtain R'' which is reduced.

Define R''_1 to consist of all pairs (r, s) where $(r, s) \in R$, $s \rightarrow z$ modulo R' and s is R'-irreducible. Proceeding as above, we show that R'' is Church–Rosser and equivalent to R'.

Note that if $x \rightarrow y$ modulo R'', then $x \rightarrow y$ modulo R. Since R' is terminating, we conclude that R'' is terminating.

Note that $R''_1 = R'_1$. We conclude that R'' and R' have the same irreducibles.

Finally, since $x \rightarrow y$ modulo R'' implies $x \rightarrow y$ modulo R', we conclude that if $x \rightarrow z$ modulo R'', then $x \rightarrow z$ modulo R'. To complete this part of the proof, we prove: if $x \rightarrow z$ modulo R' and z is irreducible, then $x \rightarrow z$ modulo R''. We proceed by Noetherian induction on \rightarrow modulo R''. If x is irreducible, then $x = z$ as above. Otherwise, there exists $y \in \Sigma^*$ such that $x \rightarrow y$ modulo R''. Then $x \rightarrow y$ modulo R'. Since R' is terminating and Church–Rosser, we conclude as above that $y \rightarrow z$ modulo R' so, by the inductive hypothesis, $y \rightarrow z$ modulo R'' so, in turn, $x \rightarrow z$ modulo R'', as required.

Since $R''_1 = R'_1$, we conclude that if $(r, s) \in R''_1$, then $R''_1 \cap \Sigma^*r\Sigma^* = \{r\}$. By definition, if $(r, s) \in R''$, then s is irreducible. We conclude that R'' is reduced, terminating, Church–Rosser and equivalent to R, as required.

For convenience, we call a reduced terminating Church–Rosser $R \subseteq \Sigma^* \times \Sigma^*$ uniquely terminating. (Thus, our terminology differs from [15].)

Note that if $R \subseteq \Sigma^* \times \Sigma^*$ is uniquely terminating and $(r, s_1), (r, s_2) \in R$, then $s_1 = s_2$. (Clearly, $s_1 \sim s_2$. Since s_1 and s_2 are irreducible, $s_1 = s_2$.) Also, if $u_1r_1v_1 = u_2r_2v_2$ with $r_1, r_2 \in R_1$ and $|u_1r_1| = |u_2r_2|$, then $u_1 = u_2$, $r_1 = r_2$ and $v_1 = v_2$. (Neither r_1 nor r_2 can be a proper subword of the other.) Finally, we note the following:
Corollary 2.5. Each finite terminating Church–Rosser presentation is equivalent to a finite uniquely terminating presentation.

Proof. In the proof of Theorem 2.4, assume that \(R \) is finite. Since \(R' \subseteq R \), \(R' \) is finite, so \(R'_1 \) is finite. Clearly, the cardinality of \(R'' \) equals the cardinality of \(R'_1 \), so \(R'' \) is finite. \(\square \)

For various reasons, we will need to consider both finite and infinite presentations below.

3. A partial free resolution

Let \(S \) be a monoid with identity element 1 and (associative) multiplication denoted \((x, y) \mapsto xy\). Let \(\mathbb{Z} \) denote the ring of (ordinary) integers and let \(\mathbb{Z} S \) denote the monoid ring of \(S \) with coefficients in \(\mathbb{Z} \). Modules over \(\mathbb{Z} S \) will be left modules.

View \(\mathbb{Z} \) as a \(\mathbb{Z} S \)-module on which each element of \(S \) acts as the identity: if \(w \in S \) and \(n \in \mathbb{Z} \), then \(wn = n \). Let \(C_0 \) be the free \(\mathbb{Z} S \)-module on a single formal symbol \([0]\). (Essentially, \(C_0 \) is \(\mathbb{Z} S \) viewed as a left module over itself.) Define a \(\mathbb{Z} S \)-module homomorphism \(\varepsilon : C_0 \to \mathbb{Z} \) by \(\varepsilon([0]) = 1 \); \(\varepsilon \) is called the augmentation and the kernel of \(\varepsilon \) is called the augmentation ideal. Clearly, \(\ker \varepsilon \) is a free abelian group with basis \(\{ (w-1)[0] \mid w \in S, \ w \neq 1 \} \).

To describe \(\ker \varepsilon \) as a \(\mathbb{Z} S \)-module, suppose that \(S \) is generated as a monoid by a set \(\Sigma \). Let \(C_1 \) be the free \(\mathbb{Z} S \)-module on the set of formal symbols \([a]\), one for each \(a \in \Sigma \). Define a \(\mathbb{Z} S \)-module homomorphism \(\partial_1 : C_1 \to C_0 \) by \(\partial_1([x]) = (x-1)[0] \). Clearly, \(\text{im} \partial_1 \subseteq \ker \varepsilon \). In fact, \(\text{im} \partial_1 = \ker \varepsilon \), as will become apparent (and be crucial) below.

To describe \(\ker \partial_1 \), we shall need the free differential calculus ([11] or see [6, pp. 45, 90]). Letting \(\Sigma^* \) denote the free monoid on (formal symbols) \(\Sigma \), we define, for each \(a \in \Sigma \), a function \((\partial/\partial a) : \Sigma^* \to \mathbb{Z} \Sigma^* \) inductively as follows:

\[
\frac{\partial}{\partial a} (1) = 0 ,
\]

and if \(w \in \Sigma^* \) and \(b \in \Sigma \), then

\[
\frac{\partial}{\partial a} (wb) = \begin{cases}
\frac{\partial}{\partial a} (w) & \text{if } b \neq a , \\
\frac{\partial}{\partial a} (w) + w & \text{if } b = a .
\end{cases}
\]

It is easy to verify that if \(u, v \in \Sigma^* \), then \((\partial/\partial a)(uv) = (\partial/\partial a)(u) + u(\partial/\partial a)(v) \).

Moreover, the following ‘fundamental theorem of calculus’ holds: if \(w \in \Sigma^* \), then

\[
w - 1 = \sum_{a \in \Sigma} \frac{\partial}{\partial a} (a - 1) .
\]
In particular, the equality \(\text{im} \partial_1 = \text{ker} \varepsilon \) is now apparent.

In order to describe \(\text{ker} \varepsilon \), we assume that \(R \) is a set of defining relations of \(S \) in terms of the generating set \(\Sigma \) of \(S \). In other words, \(R \subseteq \Sigma^* \times \Sigma^* \) and the congruence generated by \(R \) is the kernel of the natural homomorphism from \(\Sigma^* \) onto \(S \). Let \(C_2 \) be the free \(\mathbb{Z}S \)-module on the set of formal symbols \([r \mapsto s]\), one for each \((r, s) \in R\). To define \(\partial_2 : C_2 \rightarrow C_1 \), it is convenient to introduce the following notation: \(\phi : \Sigma^* \rightarrow S \) denotes the natural homomorphism and if \(W \in \mathbb{Z}\Sigma^* \), then \(W^\phi \) denotes the image in \(\mathbb{Z}S \) of \(W \) under the natural extension of \(\phi \) to \(\mathbb{Z}\Sigma^* \). With this notation, we define a \(\mathbb{Z}S \)-module homomorphism \(\partial_2 : C_2 \rightarrow C_1 \) by the formula

\[
\partial_2([r \mapsto s]) = \sum_{a \in \Sigma} \left(\frac{\partial r}{\partial a} - \frac{\partial s}{\partial a} \right)^\phi [a].
\]

It is an easy consequence of the fundamental theorem of calculus that \(\text{im} \partial_2 \subseteq \text{ker} \partial_1 \). In fact, \(\text{im} \partial_2 = \text{ker} \partial_1 \). We will outline a proof of this equality below.

Our main goal is to define a \(\mathbb{Z}S \)-module \(C_3 \) and a homomorphism \(\partial_3 : C_3 \rightarrow C_2 \) that satisfy \(\text{im} \partial_3 = \text{ker} \partial_2 \) in the situation when \(R \) is uniquely terminating. We will not assume that \(R \) is uniquely terminating until after giving the proof that \(\text{im} \partial_2 = \text{ker} \partial_1 \).

For each \(m \in S \), choose a ‘normal form’ \(w \in \Sigma^* \) so that \(w^\phi = m \). For each \(w \in \Sigma^* \), choose a relation chain from \(w \) to the normal form for \(w^\phi \). Note that if \(u, v \in \Sigma^* \) and \((r, s) \in R\), then

\[
\left(\frac{\partial}{\partial a} (urv) - \frac{\partial}{\partial a} (usv) \right)^\phi = \left(\frac{\partial u}{\partial a} + u \frac{\partial r}{\partial a} + ur \frac{\partial v}{\partial a} - \frac{\partial u}{\partial a} - u \frac{\partial s}{\partial a} - us \frac{\partial v}{\partial a} \right)^\phi = u^\phi \left(\frac{\partial r}{\partial a} - \frac{\partial s}{\partial a} \right)^\phi
\]

since \(r^\phi = s^\phi \).

Let \(x \in \Sigma^* \) and let \(y \) be the normal form of \(x^\phi \). Let \(x = u_1 r_1 v_1, u_is_i v_i = u_2 r_2 v_2, \ldots, u_n s_n v_n = y \) be the chosen relation chain from \(x \) to \(y \), where for each \(i \) either \((r_i, s_i) \in R\) or \((s_i, r_i) \in R\). Applying the note above several times gives

\[
\left(\frac{\partial x}{\partial a} - \frac{\partial y}{\partial a} \right)^\phi = \sum_{i=1}^{n} u_i^\phi \left(\frac{\partial r_i}{\partial a} - \frac{\partial s_i}{\partial a} \right)^\phi.
\]

Define

\[
\Phi(x) = \sum_{i=1}^{n} \epsilon_i u_i^\phi [r_i' \mapsto s_i']^\phi
\]

where if \((r_i, s_i) \in R\), then \(\epsilon_i = 1 \), \(r_i' = r_i \) and \(s_i' = s_i \) and if \((s_i, r_i) \in R\), then \(\epsilon_i = -1 \), \(r_i' = s_i \) and \(s_i' = r_i \). Clearly, \(\Phi(x) \in C_2 \). Note that
Define an abelian group homomorphism $s_1 : C_0 \rightarrow C_1$ by the formula

$$s_1(w^\phi[\emptyset]) = \sum_{a \in \Sigma} \left(\frac{\partial w}{\partial a} \right)^\phi [a]$$

where w is the normal form of w^ϕ. (It is easy to verify that $\partial_1 s_1 (w^\phi[\emptyset]) = (w - 1)^\phi[\emptyset]$. This yields an alternate proof of the equality $\text{im} \partial_1 = \ker \Sigma.$) It follows easily that

$$s_1 \partial_1 (w^\phi[b]) = \sum_{a \in \Sigma} \left(\frac{\partial z}{\partial a} - \frac{\partial w}{\partial a} \right)^\phi [a]$$

where w is the normal form of w^ϕ and z is the normal form of $(wa)^\phi$. Define an abelian group homomorphism $s_2 : C_1 \rightarrow C_2$ by the formula

$$s_2(w^\phi[b]) = \Phi(wb)$$

where w is the normal form of w^ϕ. Using the formula for $\partial_2 \Phi$ above, it follows that

$$\partial_2 s_2 (w^\phi[b]) = \sum_{a \in \Sigma} \left(\frac{\partial (wb)}{\partial a} - \frac{\partial z}{\partial a} \right)^\phi [a] = w^\phi[b] + \sum_{a \in \Sigma} \left(\frac{\partial w}{\partial a} - \frac{\partial z}{\partial a} \right)^\phi [a]$$

where, as above, z denotes the normal form of $(wb)^\phi$. We conclude that $\partial_2 s_2 + s_1 \partial_1$ is the identity on C_1, from which im $\partial_2 = \ker \partial_1$ follows easily.

We are at last ready to define C_3 and ∂_3 under the assumption (from now on in force) that R is uniquely terminating. Under this assumption, there is a natural choice of normal form for an element of S: if $m \in S$, then the normal form of m will be the unique irreducible $w \in \Sigma^*$ which satisfies $w^\phi = m$. We also assume that for each $w \in \Sigma^*$, the chosen relation chain from w to the normal form of w consists of reductions only. (In the relevant notation above, each $(r_i, s_i) \in R$ and not $(s_i, r_i) \in R$. In particular, the definition of $\Phi(z)$ simplifies as follows: each $r'_i = r_i$, $s'_i = s_i$ and $e_i = 1$.)

Let C_3 be the free $\mathbb{Z}S$-module on the set of formal symbols $[r_1 r_2 \rightarrow s_{12}, r_2 r_3 \rightarrow s_{23}]$, one for each pair $(r_1 r_2, s_{12}), (r_2 r_3, s_{23}) \in R$ where $r_2 \neq \lambda$. Define a $\mathbb{Z}S$-module homomorphism $\partial_3 : C_3 \rightarrow C_2$ by the formula

$$\partial_3([r_1 r_2 \rightarrow s_{12}, r_2 r_3 \rightarrow s_{23}]) = r_1[r_2 r_3 \rightarrow s_{23}] + \Phi(r_1 s_{23}) - [r_1 r_2 \rightarrow s_{12}] - \Phi(s_{12} r_3).$$

(The reader should be warned about a slight abuse of notation: given words $r_1 r_2$ and $r_2 r_3$, there may be several choices of r_2. There will be one generator of C_3 for
each choice of \(r_2 \) and a given choice will be used consistently in the definition of \(\partial_3 \). It follows from the definition of \(\partial_2 \), the formula for \(\partial_2 \Phi \) above and the fact that \(r_1 s_{23} \) and \(s_{12} r_3 \) have the same normal form that \(\partial_2 \partial_3 = 0 \), so that \(\text{im} \partial_3 \subseteq \text{ker} \partial_2 \).

Theorem 3.1. \(\text{im} \partial_3 = \text{ker} \partial_2 \).

Proof. We will use Noetherian induction as developed in Section 1 and the full force of the assumption that \(R \) is uniquely terminating. Let \(X \) denote the set of all \(w^\phi[r \to s] \) where \(w \in \Sigma^* \) is irreducible and \((r, s) \in R \). Recall that \(C_2 \) is a free abelian group with basis \(X \). We define a relation \(\to \) on \(X \) as follows:

\[w^\phi_1[r_1 \to s_1] \to w^\phi_2[r_2 \to s_2] \]

provided either \(w_1 r_1 \to w_2 r_2 x \) for some \(x \in \Sigma^* \) or \(w_1 r_1 = w_2 r_2 x \) for some non-empty \(x \in \Sigma^* \). Since \(\to \) and the 'proper prefix' relation are Noetherian and since a reduction of a prefix is a prefix of a reduction, it follows that \(\to \) is Noetherian on \(X \). Extend \(\to \) to finite subsets of \(X \) as in Section 1. We apply Theorem 1.4 to obtain the following: for each \(W_2 \in C_2 \), there exists \(W_3 \in C_3 \) such that if \(w^\phi[r \to s] \) is in the support of \(W_2 - \partial_3 W_3 \), then each proper prefix of \(w^\phi[r \to s] \) is irreducible. In the notation of Theorem 1.4, let \(Y \) consist of all \(w^\phi[r \to s] \) in \(X \) such that some proper prefix of \(w^\phi[r \to s] \) is reducible. Since \(w^\phi[r \to s] \) and \(\text{im} \partial_3 \subseteq \text{ker} \partial_2 \), it follows that \(\text{im} \partial_3 = \text{ker} \partial_2 \).

To prove \(\text{im} \partial_3 = \text{ker} \partial_2 \), we assume that \(W \in C_2 \) has the property that for each \(w^\phi[r \to s] \) in the support of \(W \), each proper prefix of \(w^\phi[r \to s] \) is irreducible and we show that \(\partial_3 W \neq 0 \). To do this, choose \(w^\phi[r \to s] \) maximal in the support of \(W \) with respect to the Noetherian relation \(\to \) on \(X \) and write \(r = xa \) with \(x \in \Sigma^* \) and \(a \in \Sigma \). Thus \((wx)^\phi[a] \) occurs in the expansion of \(\partial_3(w^\phi[r \to s]) \) as the longest term in \(w(\partial r/\partial a) \). We show that \((wx)^\phi[a] \) can occur nowhere else in the expansion of \(\partial_2 W \). (Thus \((wx)^\phi[a] \) is in the support of \(\partial_2 W \), so that \(\partial_3 W = 0 \).

Note first that if \(w^\phi_1[r_1 \to s_1] \) occurs in the support of \(W \) and \(r_1 = uav \), then, by hypothesis, \(w_1 u \) is irreducible and is therefore the normal form of \((w_1 u)^\phi \). (In particular, \(wx \) in the normal form of \((wx)^\phi \).

Assume that \((wx)^\phi[a] \) cancels with a term of some \((w_1(\partial r_1/\partial a))^\phi[a] \) where \(w^\phi_1[r_1 \to s_1] \) is in the support of \(W \). Writing \(r_1 = uav \) as above gives \(wx = w_1 u \), so that \(w = wxa \) is a prefix of \(w_1 r_1 = w_1 uav \). If \(v \neq \lambda \), this contradicts the maximality of \(w^\phi[r \to s] \). If \(v = \lambda \), the fact that \(R \) is uniquely terminating leads to the conclusion that \(w = w_1 \) and \(r = r_1 \), so that \(w^\phi[r \to s] = w^\phi_1[r_1 \to s_1] \). This contradicts the assumption that \((wx)^\phi[a] \) cancels 'somewhere else'.

Assume that \((wx)^\phi[a] \) cancels with a term of some \(w_1(\partial s_1/\partial a)^\phi[a] \) where \(w^\phi_1[r_1 \to s_1] \) is in the support of \(W \). Then \(wx \) is a (not necessarily proper) reduction
of some \(w_1u \) where \(w_1u \) is a prefix of \(w_1s_1 \). But then \(wr = wxa \) is a prefix of a proper reduction of \(w_1r_1 \) which contradicts the maximality of \(w^\phi [r \rightarrow s] \).

To finish the proof that \(\text{im} \partial_3 = \ker \partial_2 \), see the discussion following Theorem 1.4. \(\Box \)

We use the ideas developed in the proof of Theorem 3.1 to give a sufficient condition for \(\ker \partial_3 = 0 \).

Theorem 3.2. Suppose that \(R \) is uniquely terminating and satisfies the following two conditions:

(a) If \((r_1r_2, s_{12}), (r_2r_3, s_{23}) \in R \), then either \(r_2 = \lambda \) or \(r_3 = \lambda \);

(b) If \((r_1r_2r_3, s_{123}), (r_2r_3r_4, s_{234}) \in R \), then either \(r_2 = \lambda \) or \(r_4 = \lambda \).

Then \(\ker \partial_3 = 0 \).

Proof. We begin by noting a consequence of (a): if \((r_1r_2, s_{12}), (r_2r_3, s_{23}) \in R \) with \(r_2 \neq \lambda \) and \(w \in \Sigma^* \) is irreducible, then \(wr_1 \) is irreducible. (The only alternative is that there exists \((r, s) \in R \) such that some proper suffix of \(r \) is a proper prefix of \(r_1 \), a contradiction.) It follows that if \(w^\phi [r_1r_2 \rightarrow s_{12}, r_2r_3 \rightarrow s_{23}] \) is a basis element for \(C_3 \) (as an abelian group), then, in the formula for \(\partial_3 (w^\phi [r_1r_2 \rightarrow s_{12}, r_2r_3 \rightarrow s_{23}]) \), \(w^\phi [r_1r_2 \rightarrow s_{12}] \) and each term of \(w^\phi \Phi (r_1, s_{23}) \) and \(w^\phi \Phi (s_{12}, r_3) \) is a proper reduction of \((wr_1)^\phi [r_2r_3 \rightarrow s_{23}] \), using the \(\rightarrow \) on \(C_2 \) defined in the proof of Theorem 3.1. (The fact that \(wr_1 \) is irreducible is crucial here.)

Assume that \(W \in C_3 \) satisfies \(\partial_3 W = 0 \). If \(W \neq 0 \), choose a term \(w^\phi [r_1r_2 \rightarrow s_{12}, r_2r_3 \rightarrow s_{23}] \) in the support of \(W \) so that \((wr_1)^\phi [r_2r_3 \rightarrow s_{23}] \) is maximal among all terms that occur in \(\partial_3 W \) (before cancellation). Arguing as in the proof of Theorem 3.1, \((wr_1)^\phi [r_2r_3 \rightarrow s_{23}] \) can only cancel with another maximal element. This requires the existence of \(w' \in \Sigma^* \), \((r'_1r'_2, s_{12}') \in R \) and an equality \(r'_2r'_3 = r_2r_3 \) so that \(wr_1 = w'r_1' \) (again using the irreducibility of \(wr_1 \) and \(w'r_1' \)). Unless \(w = w' \) and \(r_1 = r_1' \) (in which case \((wr_1)^\phi [r_2r_3 \rightarrow s_{23}] \) and \((w'r_1')^\phi [r_2r_3 \rightarrow s_{23}] \) arise from the same term of \(W \), we obtain a violation of condition (b). \(\Box \)

4. Homological finiteness and examples

We begin with an important consequence of Theorem 3.1. We call a monoid \((\text{FP})_k\) provided there is a sequence

\[
\xrightarrow{\partial_k} C_k \xrightarrow{\partial_{k-1}} \cdots \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\epsilon} \mathbb{Z}
\]

of left \(Z \)-modules and \(Z \)-module homomorphisms (as indicated) which satisfy:

- each \(C_i \) is a finitely-generated free left \(Z \)-module;
- for each \(i > 0 \), \(\text{im} \partial_{i+1} = \ker \partial_i \);
im \delta = \ker \varepsilon \text{ and } \varepsilon \text{ is surjective. (The } \mathbb{Z}S\text{-module structure on } \mathbb{Z} \text{ is the 'trivial' one: if } x \in S \text{ and } n \in \mathbb{Z}, \text{ then } xn = n\text{.) The notation of an } (FP)_k\text{-group is well known (see, for example, [3, Chapter I or 6, Chapter VIII]). Technically, the concept we just defined should be called "}(FP)_k\text{ on the left"}, \text{ a distinction that need not be made in group theory.}

We record the following consequence of Theorem 3.1:

Theorem 4.1. If a monoid \(S\) has a finite terminating Church–Rosser presentation, then \(S\) is \((FP)_3\).

Proof. By Theorem 2.4, we may assume that \(S\) has a finite uniquely terminating presentation. In this situation, the modules \(C_0, C_1, C_2\) and \(C_3\) defined in Section 3 are all finitely-generated free \(\mathbb{Z}S\)-modules; Theorem 3.1 and the other results summarized in Section 3 show that \(S\) is \((FP)_3\). \(\square\)

We conclude with some examples of finitely-presented monoids that have solvable word problems but are not \((FP)_3\) and therefore do not have a finite uniquely terminating presentation. This answers a question raised in [15]. The first few examples are groups that arose in various contexts; we do little more than refer the reader to the relevant literature. For completeness (and to illustrate how the homological algebra developed in Section 3 can be carried out in practice), we give our own (monoid) example.

Example 4.2. The first example of a finitely-presented group that is not \((FP)_3\) was given by Stallings [18]. For a description of this group that makes it clear that it has a solvable word problem, see [3, p. 37].

Example 4.3. In [1], Abels gave examples of groups of \(4 \times 4\) matrices which are (somewhat surprisingly) finitely-presented. The definition of these groups is sufficiently explicit to make it clear that they have solvable word problems. Bieri [4] showed that these groups are not \((FP)_3\). For further discussion, see [2].

Example 4.4. In [13], Houghton defined a group generated by two permutations of a countably infinite set. Again, the definition is sufficiently explicit to solve the word problem. Burns and Solitar (unpublished) showed that this group is finitely-presented. Recently, Brown [7] showed that this group is not \((FP)_3\). Here is our example:

Example 4.5. For each non-negative integer \(k\), let \(S_k\) denote the monoid defined by the following presentation:
Word problems and a homological finiteness condition

generators: \(a, b, t, x_1, \ldots, x_k, y_1, \ldots, y_k \);

relations: \(at^nb \rightarrow \lambda, \) \((P_n)\)
\(x_ia \rightarrow ax_i, \) \((A_i)\)
\(x_it \rightarrow tx_i, \) \((T_i)\)
\(x_ib \rightarrow bx_i, \) \((B_i)\)
\(x_iy_i \rightarrow \lambda. \) \((Q_i)\)

(For convenience, we have used \(\rightarrow \) notations in the relations and have given each relation a name.) In \(P_n, n \) ranges over all non-negative integers; in \(A_i, T_i, B_i \) and \(Q_i, i \) ranges from 1 to \(k. \) For each \(k, \Sigma_k \) denotes the indicated set of generators of \(S_k \) and \(R_k \) denotes the indicated set of (one-way) relations. Clearly, each \(S_k \) is finitely-generated.

Claim. If \(k \geq 1, \) then \(S_k \) is finitely-related.

Proof. We show that if \(k \geq 1, \) then for each \(n \geq 1, P_n \) follows from \(P_0 \) and the other relations, by induction on \(n: \)

\[
\begin{align*}
at^{n+1}b & \rightarrow at^{n+1}bx_iy_i \quad (Q_i) \\
& \sim at^{n+1}x_iby_i \quad (B_i) \\
& \sim at^nby_i \quad (T_i, n \text{ times}) \\
& \sim x_iat^nby_i \quad (A_i) \\
& \sim x_iy_i \quad (P_n) \\
& \sim \lambda. \quad (Q_i)
\end{align*}
\]

Thus, if \(k \geq 1, \) then \(P_{n+1} \) follows from \(P_n \) and any choice of \(Q_i, B_i, A_i \) and \(T_i.\)

(We will eventually show that \(S_0 \) is not finitely-related.) \(\square \)

Claim. For each \(k \geq 0, R_k \) is terminating.

Proof. We define a function \(f \) from \(\Sigma_k^* \) to a well-ordered set such that if \(w, w' \in \Sigma_k^* \) satisfy \(w \rightarrow w' \) (modulo \(R_k \)), then \(f(w) > f(w') \). The fact that \(R_k \) is terminating follows easily. First, if \(w \rightarrow w' \) arises via \(P_n \) or \(Q_i \), then \(n_1(w) > n_1(w') \), where, for \(w \in \Sigma_k^*, n_1(w) \) is defined by

\[n_1(w) = \text{the total number of } a\text{'s, } b\text{'s, } x_i\text{'s or } y_i\text{'s that occur in } w. \]

Second, if \(w \rightarrow w' \) arises via \(A_i \), then \(n_1(w) = n_1(w') \) and \(n_2(w) > n_2(w') \), where, for \(w \in \Sigma_k^*, n_2(w) \) is defined by

\[n_2(w) = \text{the total number of factorizations } w = u_1x_1u_2au_3 \text{ of } w \text{ with } u_1, u_2, u_3 \in \Sigma_k^*. \]
Third, if $w \rightarrow w'$ arises via T_i or B_i, then $n_1(w) = n_1(w')$, $n_2(w) = n_2(w')$ and $n_3(w) > n_3(w')$ where, for $w \in \Sigma_k^*$, $n_3(w)$ is defined by

$$n_3(w) = \text{the total number of factorizations } w = u_1u_2tu_3 \text{ or } w = u_1x_iu_2tu_3 \text{ of } w \text{ with } u_1, u_2, u_3 \in \Sigma_k^*.$$

The function $f(w) = (n_1(w), n_2(w), n_3(w))$ from Σ_k^* to the set of ordered triples of non-negative integers ordered lexicographically satisfies: if $w \rightarrow w'$, then $f(w) > f(w')$, as required. □

Claim. For each $k \geq 0$, R_k satisfies the Church–Rosser property.

Proof. Since each R_k is terminating, it suffices to verify that R_k satisfies Theorem 2.1(b). In the notation of Theorem 2.1(b), the critical $r_1 = uw$ and $r_2 = vw$ are given by $u = x_i, v = a$ and $w = t''b$. (In particular, R_0 satisfies Theorem 2.1(b) vacuously.) For convenience in computing ∂_3, while finding the common reduction of s_1w and s_2w, we will record the relevant relation applications and their locations. Reducing $x_i at''b$, starting with $at''b \rightarrow \lambda$, we have

$$x_i at''b \rightarrow x_i \quad \text{via } x_i[R_n].$$

Reducing $x_i at''b$, starting with $x_i a \rightarrow atx_i$, we have

$$x_i at''b \rightarrow atx_i t''b \quad \text{via } [A_i],$$

$$\rightarrow at_i^{n+1}x_ib \quad \text{via } a\frac{t^n-1}{t-1}[T_i],$$

$$\rightarrow at_i^{n+1}bx_i \quad \text{via } at_i^{n+1}[B_i],$$

$$\rightarrow x_i \quad \text{via } [R_{n+1}].$$

By Theorem 2.1(b), R_k has the Church–Rosser property. □

It follows easily that each S_k has a solvable word problem. (The defining relations of each S_k are simple enough to allow any $w \in \Sigma_k^*$ to be reduced to an irreducible z as in Theorem 2.1(c); by Theorem 2.1(a), two irreducibles z_1, z_2 satisfy $z_1 \sim z_2$ if and only if $z_1 = z_2$ in Σ_k^*.)

It is also easy to check that each R_k is reduced (Definition 2.3), so that each R_k is uniquely terminating (Theorem 2.4). Thus all of Section 3 applies. For convenience, we record the formulae for ∂_2 and ∂_3.

$$\partial_2([P_n]) = [a] + a\frac{t^n-1}{t-1}[t] + at^n[b],$$

$$\partial_2([A_i]) = (1 - at)[x_i] + (x_i - 1)[a] - a[t],$$

$$\partial_2([T_i]) = (1 - t)[x_i] + (x_i - 1)[t],$$

$$\partial_2([B_i]) = (1 - b)[x_i] + (x_i - 1)[b],$$

$$\partial_2([Q_i]) = [x_i] + x_i[y_i].$$
(We have omitted the homomorphism symbol ϕ and written 1 for λ in ZS_k.) We write $[R_\eta, A_\eta]$ for the generator of C_3 which corresponds, in the notation of Section 3, to $r_1 = x_1$, $r_2 = a$ and $r_3 = t'b$.

$$\partial_3([R_\eta, A_\eta]) = x_1[R_\eta] - \left([A_\eta] + a \frac{t-1}{t} [T_1] + at^{n+1}[B_1] + [R_{n+1}]\right).$$

We will show that if $k \geq 2$, then S_k is not $(FP)_3$. For completeness, we begin with a discussion of S_0 and S_1.

Claim. S_0 is not finitely-related.

Proof. When $k = 0$, $C_3 = 0$, so $\ker \partial_2 = \{0\}$. We show that

$$H_2(S_0, Z) = \ker \left\langle Z \otimes C_2 \xrightarrow{1 \otimes \partial_2} Z \otimes C_1 \right\rangle$$

is not a finitely-generated abelian group. Here, Z is viewed as a trivial right ZS_0-module, so that $Z \otimes C_2$ is a free abelian group on $\{[P_n] \mid n \geq 0\}$, $Z \otimes C_1$ is a free abelian group on $\{[a], [t], [b]\}$ and so that $1 \otimes \partial_2$ is given by

$$(1 \otimes \partial_2)[P_n] = [a] + n[t] + [b].$$

It follows that $H_2(S_0, Z)$ can be viewed as the free abelian group on $\{[P_n] - [P_0] - n([P_1] - [P_0]) \mid n \geq 2\}$ and is therefore not finitely-generated. Thus S_0 is not finitely-related. (A direct proof of this fact is also possible.)

Claim. S_1 is $(FP)_k$ for all k.

Proof. We will show that S_1 is 2-dimensional. Since S_1 is finitely-presented, the claim follows.

Let C'_2 denote the ZS_1-submodule of C_2 generated by $[P_0]$, $[A_0]$, $[T_0]$, $[B_0]$ and $[Q_0]$. Clearly, C'_2 is a free left ZS_1-module on these generators. Let ∂'_2 denote the restriction of ∂_2 to C_2. The general discussion of Section 3 applies, so that $\im \partial'_2 = \ker \partial_1$. We show $\ker \partial'_2 = 0$.

Define a module homomorphism $\pi : C_2 \to C'_2$ by letting π be the identity on $C'_2 \subseteq C_2$ and inductively defining

$$\pi([R_{n+1}]) = x_1 \pi([R_n]) = \left([A_\eta] + a \frac{t^n-1}{t-1} [T_1] + at^{n+1}[B_1]\right)$$

for $n \geq 0$. An easy consequence of this definition is: $\pi \partial_3 = 0$. If $Z \in \ker \partial_2$, then by Theorem 3.1, there exists $Y \in C_3$ such that $\partial_3 Y = Z$. If, in addition, $Z \in C'_2$, then $Z = \pi Z = \pi \partial_3 Y = 0$, so $\ker \partial'_2 = \{0\}$. It follows that S_1 is $(FP)_k$ for every k; take $C'_k = \{0\}$ for $k \geq 3$. (Since S_1 is $(FP)_3$, Theorem 4.1 does not apply; the
author does not know whether or not S_i has a finite uniquely terminating presentation.) □

Claim. *If $k \geq 2$, then S_k is not (FP)$_3$.*

Proof. We proceed as in the proof that S_0 is not finitely-related, except now in dimension 3. It is easy to verify that each R_k satisfies the hypotheses of Theorem 3.2, so that $\ker \partial_3 = \{0\}$. It follows that

$$H_3(S_k, \mathbb{Z}) = \ker \{\mathbb{Z} \otimes C_3 \xrightarrow{1 \otimes \partial_3} \mathbb{Z} \otimes C_2\}.$$

The claim follows from the fact that if $k \geq 2$, then $H_3(S_k, \mathbb{Z})$ is not a finitely-generated abelian group. Clearly, $\mathbb{Z} \otimes C_2$ and $\mathbb{Z} \otimes C_3$ are free abelian groups on the 'same' generators as C_2 and C_3; $1 \otimes \partial_3$ is given by the formula

$$(1 \otimes \partial_3)[R_n, A_i] = [R_n] - ([A_i] + n[T_i] + [B_i] + [R_{n+1}]).$$

To determine $\ker(1 \otimes \partial_3)$, define $U_i = [R_0, A_i] - [R_0, A_1]$ and $V_i = [R_1, A_i] - [R_1, A_1] - U_i$. It is easy to verify that $\ker(1 \otimes \partial_3)$ is a free abelian group with basis

$$[[R_n, A_i] - [R_n, A_0] + U_i + nV_i | n \geq 2, i \geq 2]$$

and therefore is not finitely-generated when $k \geq 2$. □

Claim. *If $k \geq 2$, then S_k does not have a finite uniquely terminating presentation.*

Proof. Since S_k is not (FP)$_3$ when $k \geq 2$, Theorem 4.1 applies. □

References

