A Theorem of Molien Type in Combinatorics

TORBJÖRN TAMBOUR

In this note we give a simple proof of a special case of the Pólya enumeration theorem, and also a new proof of Burnside's lemma.

1. THE PROBLEM

Let G be a finite group acting on a finite set S. Then G also acts on the sets

$$S^{(k)} = \{\{s_1, \ldots, s_k\}; s_i \in S\}$$

by

$$g \cdot \{s_1, \ldots, s_k\} = \{g \cdot s_1, \ldots, g \cdot s_k\}.$$

Denote the number of orbits in this action by p_k and put

$$P(S, G; t) = \sum_{k \geq 0} p_k t^k$$

(we let $p_0 = 1$).

This can, of course, easily be calculated using the Pólya enumeration theorem. Here we will use Burnside's lemma to calculate $P(S, G; t)$ in a very simple way.

2. THE THEOREM

When a group G acts on a set S, we denote the set of orbits by S/G, and $\langle g \rangle$ is the subgroup of G generated by g. The number of elements of a finite set T will be denoted by $|T|$.

Theorem.

$$P(S, G; t) = \frac{1}{|G|} \sum_{g \in G} \prod_{O \in S/G} (1 + t^{|O|}).$$

The proof is simple and uses almost only

Burnside's Lemma. _When a finite group G acts on a finite set S, denote by $\chi(g)$ the number of $s \in S$ such that $g \cdot s = s$. Then_

$$|S/G| = \frac{1}{|G|} \sum_{g \in G} \chi(g).$$

(It is probably more correct to call this Cauchy–Frobenius–Burnside's lemma.) The lemma can of course be proved in a completely elementary way, but let us give an 'invariant-theoretical' proof here.

Proof of the Lemma. Let V be a complex vector space with basis S. Then the action of G on S gives an action also on V, so that V is a G-module. For $O \in S/G$, let

$$v_O = \sum_{s \in O} s.$$

Obviously $v_O \in V^G$, the subspace of V consisting of G-invariant elements.
Conversely, if $v = \sum_{s \in S} a_s s \in V^G$, then
\[
\sum_s a_s s = v = g^{-1} v = \sum_s a_s g^{-1} s = \sum_s a_{gs} s,
\]
so that $a_{gs} = a_s$ for all s and g. Hence v is a linear combination of the v_0. Since these are clearly linearly independent, we obtain
\[
|S/G| = \dim V^G.
\]
Let $\langle , , \rangle$ denote the scalar product on the space of central functions on G, i.e.
\[
\langle \varphi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \varphi(g) \overline{\psi(g)}.
\]
If 1_G is the trivial character of G and χ_V the character of V, then
\[
\dim V^G = \langle 1_G, \chi_V \rangle.
\]
(For the details and the proofs, see, e.g., [3, Ch. 2].) But χ_V is precisely the χ in the lemma, whence
\[
|S/G| = \dim V^G = \langle 1_G, \chi \rangle = \frac{1}{|G|} \sum_{g \in G} \chi(g).
\]
This proves the lemma.

Proof of the Theorem. Let $\chi_k(g)$ be the number of fixed points of $g \in G$ in $S^{(k)}$. A subset $\{s_1, \ldots, s_k\}$ of S is a fixed point of g if and only if it is a union of orbits of $\langle g \rangle$ in S. Hence
\[
1 + \sum_{k \geq 1} \chi_k(g) = \prod_{\alpha \in S/\langle g \rangle} (1 + t^{\alpha}).
\]
Summing over g proves the theorem, by the lemma.

We will now rewrite the right-hand side in a suggestive way. When A is an $n \times n$ matrix with entries a_{ij}, we define its *permanent* to be
\[
\text{per } A = \sum_{\sigma \in S_n} a_{\sigma(1)} \cdots a_{\sigma(n)},
\]
i.e. as the determinant, but without sign changes.

As above, let V be a vector space with basis S, and when $O \in S/\langle g \rangle$, let $V(O)$ be the subspace with basis O. As an endomorphism of $V(O)$, g has the matrix
\[
\begin{pmatrix}
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{pmatrix},
\]
in a suitable ordering of the basis. It is easy to see that the permanent of $1 + tg$ (acting on $V(O)$) is $1 + t^{(O)}$. From [2, Ch. 2], Theorem 2.1 (the analogue of the Laplace expansion theorem for determinants) we conclude that on V, $1 + tg$ has the permanent
\[
\prod_{O \in S/\langle g \rangle} (1 + t^{(O)}).
\]
Hence the theorem can be rephrased as
\[
P(S, G; t) = \frac{1}{|G|} \sum_{g \in G} \text{per} \ (1 + tg).
\]

3. SOME REMARKS

Let \(V_k \) be the vector space with basis \(S^{(k)} \). Then, as in the proof of Burnside's lemma, we see that
\[
p_k = \dim(V_k)^G,
\]
where \((V_k)^G\) is the subspace consisting of \(G \)-invariant elements. In this sense, the theorem is an invariant-theoretical one. This becomes even more clear if one compares it with the classical Molien theorem.

When \(V \) is a finite-dimensional, complex vector space and \(G \) is a finite subgroup of \(\text{GL}(V) \), then \(G \) acts on the polynomial algebra \(\mathbb{C}[V] \) and also on the exterior algebra \(\Lambda(V) \). Molien's theorem (see e.g., [1], [3], or [5, Prop. 4.1.3]) states that the Hilbert series of the \(G \)-invariant sub-algebras are
\[
H(\mathbb{C}[V]^G, t) = \sum_{m \geq 0} (\dim \mathbb{C}[V]^G_m) t^m = \frac{1}{|G|} \sum_{g \in G} \frac{1}{\det(1 - tg)}
\]
and
\[
H(\Lambda(V)^G, t) = \sum_{m \geq 0} (\dim \Lambda(V)_m^G) t^m = \frac{1}{|G|} \sum_{g \in G} \det (1 + tg),
\]
where \(\mathbb{C}[V]^G_m \) and \(\Lambda(V)_m^G \) are the subspaces consisting of invariant, homogeneous polynomials of degree \(m \). Hence our theorem is a 'finite' Molien theorem.

ACKNOWLEDGEMENT

The author wishes to thank the referee for valuable comments.

REFERENCES

Received 10 December 1987 and in revised form 29 April 1988

TORBJÖRN TAMBOUR
Department of Mathematics, University of Lund,
Box 118, S-221 00 Lund, Sweden