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Casein kinase 2 is the major enzyme in brain that phosphorylates
Ser129 of human a-synuclein: Implication for a-synucleinopathies
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Abstract In Lewy body diseases and multiple system atrophy,
a-synuclein is hyperphosphorylated at Ser129, suggesting a role
in pathogenesis. Here, we report purification of the protein
kinase in rat brain that phosphorylates Ser129 and its identi-
fication as casein kinase-2 (CK2). We show that most of the
activity can be inhibited by heparin, an inhibitor of CK2.
Phosphorylated Ser129 was detected in primary cultured neurons
and inhibited by CK2 inhibitors. In some cases of Lewy body
disease, CK2-like immunoreactivity was recovered in the
sarkosyl-insoluble fraction, which was enriched in phosphory-
lated a-synuclein. Taken together, these findings suggest that
CK2 may be involved in the hyperphosphorylation of a-synuclein
in a-synucleinopathies.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Filamentous a-synuclein (a-syn) inclusions in nerve cells or

glial cells are the defining feature of a group of neurodegener-

ative diseases, which include Parkinson’s disease (PD), demen-

tia with Lewy bodies (DLB) and multiple system atrophy

(MSA) [1–5]. Missense mutations (A30P, E46K and A53T)

in the a-syn gene cause familial forms of PD and DLB [6–8].

Furthermore, multiplications (duplication and triplication) of

a region on the long arm of chromosome 4 that encompasses

the a-syn gene cause inherited forms of PD and DLB [9–11],

indicating that overproduction of wild-type a-syn is sufficient

to cause disease. We have previously used mass spectrometry

and specific antibodies to show that filamentous a-syn in
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DLB and other a-synucleinopathies is phosphorylated at

Ser129 [12–14]. Furthermore, by quantitative immunoblot

analysis, >90% of insoluble a-syn from DLB brains was phos-

phorylated at Ser129, whereas only 4% of a-syn from mouse

brain was phosphorylated, indicating hyperphosphorylation

of this site in the human diseases. Casein kinase 1 (CK1), case-

in kinase 2 (CK2) and G protein-coupled receptor protein ki-

nase 5 (GRK5) phosphorylate Ser129 of a-syn in vitro [15,16].

This residue is also constitutively phosphorylated in transfec-

ted 293 cells [15]. However, little is known about the protein

kinases and protein phosphatases that regulate the phosphor-

ylation at Ser129 of a-syn in vivo.

Here, we report that the a -and b-subunits of CK2 are the

major protein kinases in brain that phosphorylate Ser129 in

human a-syn. Furthermore, in primary cultures of rat cerebral

cortex, CK2 inhibitors strongly reduced phosphorylation of

a-syn.
2. Materials and methods

2.1. Chemicals and antibodies
Phosphorylation-dependent anti-a-syn antibody PSer129 and phos-

phorylation-independent antibody Syn102 were used as described pre-
viously [12]. An antibody to CK2 was purchased from Upstate
Biotechnology. CK1 and CK2 were purchased from New England Bio-
labs. GRK5 was kindly provided by Dr. J.L. Benovic. CK2 inhibitors
5,6-dichloro-1-b-DD-ribofuranosylbenzimidazole (DRB), apigenin and
emodin were purchased from Sigma. The CK1 inhibitor CKI-7 and
okadaic acid were obtained from Seikagaku Company and Wako
Chemicals, respectively.

2.2. Detection of brain protein kinase activity that phosphorylates Ser129
of human a-syn

Human a-syn cDNA in bacterial expression plasmid pRK172 was
used [17]. Site-directed mutagenesis (Quik-Change, Stratagene) was
used to produce A30P, E46K, A53T and S129A a-syn. All constructs
were verified by DNA sequencing. Wild-type and mutant proteins were
expressed in E. coli BL21 (DE3) and purified as described [18,19] and
used for phosphorylation assay. Incubations (25 ll) were carried out at
37 �C and comprised 10 mM Tris–HCl, pH 7.5, 20 mM MgCl2, 1 mM
PMSF, 1 mM ATP, recombinant a-syn (1 mg/ml) and brain extract
(5 ll) or fractionated sample (5 ll). Reactions were initiated by the
addition of ATP and terminated at various times by boiling following
the addition of 2.5 ll of 5 M NaCl and 1 ll 2-mercaptoethanol.
The samples were then centrifuged for 5 min at 20000 · g and the
blished by Elsevier B.V. All rights reserved.
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supernatants diluted, followed by the addition of SDS–PAGE sample
buffer. Aliquots were immunoblotted with antibody PSer129, the reac-
tions developed by enhanced chemiluminescence (ECL) and quantified
as described [18].
2.3. Purification of brain protein kinase activity that phosphorylates
Ser129 of human a-syn

Brains of 6-week-old Wistar rats were homogenized in 4 vol. of buf-
fer A (10 mM Tris–HCl, pH 7.5, 5 mM EGTA, 1 mM PMSF, 20 lg/ml
pepstatin, 20 lg/ml leupeptin, 20 lg/ml aprotinin, 2 mM DTT) and
spun at 386000 · g for 40 min at 4 �C. The supernatant was the brain
extract used in kinase assays. For purification, the brain extracts were
fractionated by ammonium sulfate precipitation. The fractions were
dialyzed against buffer B (10 mM Tris–HCl, pH 7.5, 5 mM EGTA,
1 mM DTT) and tested for protein kinase activity. Active fractions
were applied to a Q-Sepharose column equilibrated in buffer C
(50 mM PIPES, pH 6.9, 1 mM EGTA, 1 mM DTT) and eluted using
increasing concentrations of NaCl. The active fractions were collected,
dialyzed against buffer C, applied to a phosphocellulose column and
eluted using a linear gradient of NaCl.
2.4. In gel digestion and LC/MS/MS analysis of purified proteins
The 45 kDa, 42 kDa and 24 kDa bands from the purified kinase

fractions were excised, cut into 1 · 1 mm cubes, washed twice with
50% acetonitrile in 0.1 M ammonium bicarbonate and dried in a vac-
uum centrifuge. The gel pieces were rehydrated in buffer containing
1 lg/ml trypsin (Promega Inc.) and 0.1 M ammonium bicarbonate,
and incubated for 16 h at 37 �C. The digested peptides were extracted
using 50% acetonitrile and 5% formic acid, and dried. They were dis-
solved in 0.1% trifluoroacetic acid, 2% acetonitrile and an aliquot
was separated on a Develosil ODS-HG-5 column (0.15 · 50 mm,
Nomura Chemical Company) at a flow rate of 300 nl/min using
nano-flow HPLC (Dina, TYK Tech Company) and analyzed ion-trap
mass spectrometry (LCQ Advantage, Thermo).
Fig. 1. (A,B) Dephosphorylation of rat brain a-syn after death. Brains
were removed and frozen on dry ice 0, 0.5, 6, 12 and 24 h after the rats
had been killed by cervical dislocation under deep anesthesia. Tris-
soluble (A) and Triton-soluble (B) fractions were prepared and
analyzed by immunoblotting with Syn102 and PSer129. (C) Detection
of kinase activity generating the PSer129 epitope in rat brain extract.
Recombinant a-syn was incubated with rat brain extract for 30 min at
37 �C in the presence or absence of ATP and analyzed by immuno-
blotting with antibodies Syn102 and PSer129. (D) Wild-type and
S129A a-syn were incubated with rat brain extract for 30 min at 37 �C
in the presence of ATP and analyzed by immunoblotting with Syn102
and PSer129. Note that the PSer129 epitope was generated following
incubation of wild-type a-syn with brain extract in the presence of
ATP.
2.5. Inhibition of CK1, CK2 and GRK5 by heparin
Recombinant a-syn (1 mg/ml) was phosphorylated with CK1

(0.5 lg; 1000 U), CK2 (1 lg; 500 U) or GRK5 (1 lg) in the presence
or absence of heparin (10–100 lg/ml) and analyzed by immunoblotting
with PSer129. Inhibition of the protein kinase activity from brain ex-
tract (2 ll) and the 0–33% ammonium sulfate fraction (1 ll) by heparin
(10–100 lg/ml) was also examined. PSer129 immunoreactivity was
quantified and expressed as % activity in the absence of heparin (taken
as 100%).

2.6. Primary culture of rat brain neurons and immunoblot analysis of
a-syn

Cortical neurons were prepared from 16-day-old rat embryos, as de-
scribed [20], and cultured for up to 28 days. Cells were collected at days
3, 6, 9, 12, 15, 18, 21, 25 and 28, sonicated in 50 mM Tris–HCl, pH 7.5,
1 mM EGTA, 0.5 M NaCl, 1 mM DTT and centrifuged at 20000 · g
for 10 min. Supernatants were boiled for 5 min and cleared by centri-
fugation, followed by SDS–PAGE and immunoblotting. For the anal-
ysis of phosphorylation of a-syn by CK2, cells were treated with
200 lM DRB, 200 lM apigenin and 50 lM emodin or 100 lM CK1-
7 for 6 h at day 19, followed by a 30 min treatment with 1 lM okadaic
acid. Neurons were collected and lysed in SDS-sample buffer. Homog-
enates (20 lg/lane) were analyzed by immunoblotting with Syn102 and
PSer129.

2.7. Immunoblot analysis of fractionated DLB brain extracts
Frozen cerebral cortex (0.5 g) from control and DLB brains was

homogenized in 4 vol. of buffer D (10 mM Tris–HCl, pH 7.5, 1 mM
EGTA, 10% sucrose, 0.8 M NaCl) and spun at 386000 · g for
20 min at 4 �C. The resulting supernatant was retained (as the Tris-sol-
uble fraction) and the pellet homogenized in 4 vol. of buffer D contain-
ing 1% Triton X-100. After a 20 min spin at 386000 · g, the
supernatant was retained (as the Triton X-100-soluble fraction) and
the pellet homogenized in buffer D containing 1% sarkosyl. The
homogenate was left for 30 min at 37 �C, followed by a 20 min spin
at 386000 · g. The supernatant was retained (as the sarkosyl-soluble
fraction) and the pellet solubilized in one volume of 50 mM Tris–
HCl, pH 7.5, containing 1% SDS, followed by a 20 min spin at
386000 · g. The supernatant was retained (as the sarkosyl-insoluble,
SDS-soluble fraction). Each fraction was run on SDS–PAGE and ana-
lyzed by immunoblotting using Syn102, PSer129 and the anti-CK2a
antibody.
3. Results

3.1. Detection of brain protein kinase activity that

phosphorylates Ser129 of human a-syn

a-Syn phosphorylated at Ser129 was detected in the Tris-sol-

uble and Triton X-100-soluble fractions prepared from 6-

week-old rat brains. The brains had to be processed rapidly,

since reactivity with PSer129 was lost, when the extracts were

prepared more than 30 min after the death of the animal

(Fig. 1A and B). To detect kinase activity that generates the

PSer129 epitope, wild-type and S129A a-syn were incubated

with rat brain extract for 30 min at 37 �C in the presence or ab-

sence of ATP. Reactivity with PSer129 was only detected when

wild-type a-syn was incubated in the presence of ATP (Fig. 1C

and D), indicating that the brain extract contained a kinase

activity able to phosphorylate Ser129. It was enhanced with

increasing MgCl2 (2–20 mM), but was not changed in presence

of CaCl2 or phosphatidylcholine (data not shown). We next

proceeded to purify this activity. Since most of the kinase
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activity was precipitated by 33% ammonium sulphate (data

not shown), the 0–33% ammonium sulphate fraction was ap-

plied to a Q-Sepharose column and the bound kinase activity

eluted with 0.4–0.5 M NaCl (Fig. 2A and B). The activity

was then separated from most other proteins on a phosphocel-
Fig. 2. Purification of kinase activity generating the PSer129 epitope. (A) E
(PSer129 immunoreactivity in presence of ATP) from a Q-Sepharose co
immunoreactivity in the presence of ATP) are shown. (C) Elution profiles of
run on SDS–PAGE and stained with Coomassie Brilliant Blue (CBB). The m
fractions 11 and 12 were analyzed by LC/MS/MS analysis following in-gel
column fractions (the PSer129 immunoreactivity in the presence of ATP
immunoblotted with an anti-CK2a antibody.
lulose column and eluted with 0.5–0.7 M NaCl (Fig. 2C–E).

The purified fractions consisted of one major band of

42 kDa molecular mass and two minor bands of 45 kDa and

24 kDa, respectively (Fig. 2D). These bands were in-gel di-

gested with trypsin and analyzed by mass spectrometry.
lution profiles of proteins (absorbance at 280 nm) and kinase activity
lumn. (B) Kinase activities of the column fractions (the PSer129
proteins from a phosphocellulose column. (D) Column fractions were
ajor band of 42 kDa and two minor bands of 45 kDa and 24 kDa in
digestion with trypsin. (E) Kinase activities of the phosphocellulose

) are shown. (F) Column fractions were run on SDS–PAGE and
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LC/MS/MS analysis revealed that the 42 kDa was the a-sub-

unit and the 24 kDa band the b-subunit of CK2. The 45 kDa

was identified as b-actin. Immunoblot analysis using an anti-

body specific for the a-subunit of CK2 confirmed that CK2a
purified with the kinase activity that phosphorylated Ser129

in human a-syn (Fig. 2E and F).

3.2. Inhibition of kinase activity by heparin

To further examine the nature of the kinase activity phos-

phorylating Ser129, we used heparin, a known inhibitor of

CK2 [21]. First, the ability of recombinant CK1, CK2 and

GRK5 to phosphorylate Ser129 in the presence of heparin

was investigated. Phosphorylation by CK1 and GRK5 was

partially inhibited by 1–100 lg/ml heparin, retaining approxi-
Fig. 3. (A) Inhibition of the phosphorylation of Ser129 of a-syn by heparin.
the absence or presence of heparin (10, 20, 50, 80 or 100 lg/ml) and analyzed b
kinase activity that generates the PSer129 epitope in crude brain extract by
activity in the 0–33% ammonium sulphate fraction by 10, 20, 50 or 100 lg/ml
(taken as 100%) of heparin. (D) Effects of A30P and A53T mutations of a-s
phosphorylation of wild-type (WT), A30P and A53T a-syn by recombinan
expressed as means ± S.E.M. (n = 3) (*P < 0.05).
mately 40% of activity at 100 lg/ml heparin (Fig. 3A). This

contrasted with the phosphorylation of Ser129 by CK2, which

was completely inhibited at 10–100 lg/ml heparin. We next

added heparin (0.1–10 lg/ml) to the fractions with kinase

activity purified from brain and found that this activity was al-

most completely inhibited, with an IC50 value of 0.6 lg/ml hep-

arin (data not shown). The inhibition of kinase activities in

crude brain extract and the 0–33% ammonium sulphate frac-

tion by heparin was also investigated. In the presence of

10 lg/ml heparin, these activities were reduced to �40% and

�20% of control values with crude extracts and 0–33% ammo-

nium sulphate fraction, respectively (Fig. 3B and C). These re-

sults suggested that at least 60% of the kinase activity in crude

brain extract was due to CK2. However, heparin may have
Recombinant a-syn was phosphorylated with CK1, CK2 and GRK5 in
y immunoblotting with antibody PSer129. (B) Inhibition of the protein
10, 20, 50 or 100 lg/ml heparin. (C) Inhibition of the protein kinase

heparin. Quantitation of the kinase activity in the presence and absence
yn on the phosphorylation of Ser129 by CK2. Time course of Ser129
t CK2. Intensities of Pser129 immunoreactivity were quantitated and
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bound a number of additional proteins, reducing the amount

available to inhibit CK2. In the presence of 100 lg/ml heparin,

the kinase activities present in crude brain extract and the

0–33% ammonium sulphate fraction were reduced by over

95% (Fig. 3B and C), consistent with CK2 being the major

kinase able to phosphorylate Ser129 in a-syn.

3.3. Effects of a-syn mutations A30P and A53T on the

phosphorylation of Ser129 by CK2

Recombinant wild-type a-syn, A30P a-syn and A53T a-syn

(1 mg/ml) were phosphorylated with CK2 (500 U) for 1, 5, 10

and 30 min. Reactions were terminated as described above and

Ser129 phosphorylation analyzed by immunoblotting with

PSer129. As shown in Fig. 3, generation of the PSer129 epitope

was slower for A30P and A53T a-syn than for the wild-type

protein. Immunoreactivities were quantified and expressed as

means ± S.E.M. (n = 3) (Fig. 3D). Statistical analysis was car-

ried out by unpaired t-test using Kai plot software.

3.4. Phosphorylation of Ser129 of human a-syn in primary

cultures of rat brain neurons

Primary cultures were prepared from cerebral cortex of rat

embryos. They were cultured for 3–28 days and immunoblot-

ted with Syn102 and PSer129 (Fig. 4A). Immunoreactivity

with Syn102 was first detected at day 15 in vitro and was pres-

ent at high levels until day 28. Reactivity with PSer129 was

also present at days 15–28. The cultured neurons were exposed

to the CK2 inhibitors DRB, apigenin and emodin or the CK1

inhibitor CKI-7 for 6 h, followed by a 30 min exposure to oka-

daic acid (Fig. 4B). In the presence of DRB, apigenin and emo-

din, immunoreactivity with PSer129 was markedly reduced, in
Fig. 4. (A) Immunoblot analysis of a-syn in cultured cortical neurons. Prima
analyzed by immunoblotting with Syn102, PSer129 and anti-CK2a. (B) Prim
100 lM CK1-7 or 50 lM emodin for 6 h, treated with okadaic acid for 30
Immunoblot analysis of a-syn and CK2a extracted from control and DLB
Triton-X100 (Tx), Sarkosyl (Sar) and SDS from cerebral cortex of six pati
Syn102, PSer129 and anti-CK2a.
the absence of a reduction in total a-syn. In contrast, CKI-7

only slightly reduced the production of PSer129 immunoreac-

tivity. Exposure to okadaic acid increased phosphorylation of

Ser129.

3.5. Distribution of CK2a in fractionated DLB brains

Cerebral cortex from controls and DLB patients was

homogenized differentially using Tris–HCl, Triton X-100,

sarkosyl and SDS, followed by immunoblotting of the soluble

fraction from each extraction step with Syn102, PSer129 and

anti-CK2a antibodies. In control brain, a-syn and CK2a
immunoreactivities were recovered only in the Tris-soluble

and Triton-soluble fractions (Fig. 4C). In fractions extracted

from DLB brain, a-syn immunoreactivity was detected in the

sarkosyl-insoluble, SDS-soluble fraction, as described [12,22].

In some of these cases, CK2a immunoreactivity was detected

in the insoluble fraction (Fig. 4C).
4. Discussion

We previously showed that a-syn is phosphorylated at

Ser129 in the filamentous deposits of Lewy body diseases

and MSA [12]. The C-terminal region of a-syn is negatively

charged and contains several potential phosphorylation sites.

CK1, CK2, GRK2 and GRK5 are known to phosphorylate

Ser129 of a-syn in vitro [15,16]. The related proteins b-syn

and c-syn are also phosphorylated by some of these kinases

in their negatively charged C-termini [16]. However, nothing

is known about the protein kinases that phosphorylate a-syn

in brain.
ry neurons of rat cortex were cultured for 3–28 days and the cell lysates
ary cultures (day 19) were exposed to 200 lM DRB, 200 lM apigenin,
min and analyzed by immunoblotting with Syn102 and PSer129. (C)
brains. a-Syn and CK2a were serially extracted with Tris–HCl (Ts),
ents with DLB and two controls. They were probed with antibodies
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We report here that the a- and b-subunits of CK2 were the

major proteins purified from rat brain capable of phosphory-

lating Ser129 of human a-syn. CK2 is a constitutively active

protein kinase that exists mainly as a holoenzyme composed

of two catalytic a-subunits of 42–44 kDa and two regulatory

b-subunits of 24–26 kDa molecular mass [23,24]. To further

examine the involvement of CK2 in the phosphorylation of

Ser129, we incubated crude rat brain extract in the presence

of low concentrations of heparin. At these concentrations, hep-

arin is a potent and relatively specific inhibitor of CK2 [21].

Consistent with the above, heparin inhibited phosphorylation

of Ser129 by the brain extract. Furthermore, phosphorylation

of Ser129 in primary cultures of cortical neurons was inhibited

by the CK2 inhibitors DRB, apigenin and emodin. These find-

ings establish that CK2 is the major protein kinase in brain

that phosphorylates Ser129 of a-syn. Much less is known

about the protein phosphatases that dephosphorylate a-syn

phosphorylated at Ser129. In primary cultures of rat cortical

neurons, exposure to okadaic acid resulted in increased phos-

phorylation of Ser129, suggesting that protein phosphatases 1

and/or 2A may be involved.

Pathogenic mutations A30P and A53T reduced the ability of

CK2 to phosphorylate a-syn in vitro, suggesting that the pre-

viously described [25,26] conformational changes resulting

from these single amino acid changes reduced the phosphory-

lation of a-syn. It remains to be determined whether the same

is true in cases with familial PD and DLB. These findings are

reminiscent of work on tau protein, where the presence of

pathogenic mutations P301L, P301S and R406W resulted in

lower levels of phosphorylation by cyclin-dependent kinase-5

[27].

The relevance of CK2 and phosphorylation of Ser129 for the

pathogenic process in a-synucleinopathies is only incompletely

understood. We found that in some cases of DLB, CK2 was

present in the sarkosyl-insoluble fraction, indicating reduced

solubility and a possible interaction with filamentous a-syn.

It remains to be determined whether CK2 levels and activity

are abnormal in human Lewy body diseases. It is interesting

to note that activating mutations in another protein kinase,

LRRK2, are a relatively common cause of inherited PD

[28–31]. Currently, the in vivo substrates of LRRK2 are

unknown; it will be interesting to see whether phosphorylation

of Ser129 of a-syn lies downstream of the activation of

LRRK2. In a Drosophila model of PD, phosphorylation or

pseudophosphorylation of Ser129 of soluble a-syn species

was an essential determinant of neurotoxicity, while correlat-

ing negatively with inclusion body formation [32]. This nega-

tive correlation stands in apparent contrast to PD, DLB and

MSA, where the filamentous a-syn deposits are hyperphos-

phorylated at Ser129 relative to the soluble protein [12]. Phos-

phorylation of Ser129 by CK2 has been shown to increase

filament formation of a-syn both in vitro and in transfected

cells, consistent with a disease-promoting role [12,33].

Although the major deleterious species of a-syn in human

diseases remain to be identified, current evidence suggests that

inhibition of CK2 to reduce the phosphorylation of Ser129

may represent a promising therapeutic target in a-synucleinop-

athies.
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