Genetic Susceptibility to Atopic Dermatitis

Chikako Kiyohara¹, Keiko Tanaka² and Yoshihiro Miyake²

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disorder with an increasing prevalence in industrialized countries. AD belongs to the group of allergic disorders that includes food allergy, allergic rhinitis, and asthma. A multifactorial background for AD has been suggested, with genetic as well as environmental factors influencing disease development. Recent breakthroughs in genetic methodology have greatly augmented our understanding of the contribution of genetics to susceptibility to AD. A candidate gene association study is a general approach to identify susceptibility genes. Fifty three candidate gene studies (50 genes) have identified 19 genes associated with AD risk in at least one study. Significant associations between single nucleotide polymorphisms (SNPs) in chemokines (chymase 1–1903A > G), cytokines (interleukin13 Arg144Gln), cytokine receptors (interleukin 4 receptor 1727 G > A) and SPINK 1258 G > A have been replicated in more than one studies. These SNPs may be promising for identifying at-risk individuals. SNPs, even those not strongly associated with AD, should be considered potentially important because AD is a common disease. Even a small increase in risk can translate to a large number of AD cases. Consortia and international collaborative studies, which may maximize study efficacy and overcome the limitations of individual studies, are needed to help further illuminate the complex landscape of AD risk and genetic variations.

KEY WORDS
atopic dermatitis, epidemiology, genetic polymorphism

INTRODUCTION

The atopic diseases, particularly atopic dermatitis, food allergy, asthma and hay fever, are among the most common chronic diseases. The prevalence of atopic diseases has increased to epidemic dimensions over the past decades. In industrialized countries, 25–30% of the population is affected. Atopic diseases are a major cause of illness and disability and represent an important public health issue accounting for a large proportion of health care spending. Atopic dermatitis (eczema) is a chronic inflammatory skin disease with onset typically in early childhood and is the most common chronic inflammatory skin disease in children in industrialized countries.¹ For example, the prevalence of atopic dermatitis among schoolchildren is 21.1% in Japan,² 17.2% in the US³ and 15.6% in Northern European countries.⁴ It is commonly the initial clinical manifestation of allergic disease, often preceding the onset of respiratory allergies.⁵ Along with asthma and allergic rhinitis, atopic dermatitis is an important manifestation of atopy that is characterized by the formation of allergy antibodies (IgE) to environmental allergens. In developed countries, the prevalence of atopic dermatitis is approximately 15%, with a steady increase over the past decades.⁶,⁷ While many environmental components have been studied for years, significant progress has been made only recently in identifying the genes responsible for susceptibility of atopic diseases. In order to identify susceptibility genes for AD, two general approaches, genome-wide screens and candidate gene association studies, have been used. In candidate gene association studies, variations in known genes whose biological functions implicate them in the pathophysiology are compared between unrelated cases and controls. Significantly higher frequencies of alleles at candidate loci in cases compared with controls may indicate a causal relationship between the marker allele and the disease. In general, association studies are easier to
Table 1 Candidate Genes for Atopic Dermatitis

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>Locus</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARD4 (NOD1)</td>
<td>caspase recruitment domain-containing protein 4</td>
<td>7p15-p14</td>
</tr>
<tr>
<td>CARD15 (NOD2)</td>
<td>caspase recruitment domain-containing protein 15</td>
<td>16q21</td>
</tr>
<tr>
<td>CD14</td>
<td>monocyte differentiation antigen CD14</td>
<td>5q31.1</td>
</tr>
<tr>
<td>MBL2</td>
<td>lectin, mannose-binding antigen CD14</td>
<td>10q11.2-q21</td>
</tr>
<tr>
<td>TLR2</td>
<td>Toll-like receptor 2</td>
<td>4q32</td>
</tr>
<tr>
<td>TLR4</td>
<td>Toll-like receptor 4</td>
<td>9q32-q33</td>
</tr>
<tr>
<td>TLR6</td>
<td>Toll-like receptor 6</td>
<td>4p14</td>
</tr>
<tr>
<td>CCL2 (MCP-1)</td>
<td>chemokine (C-C motif) ligand 2</td>
<td>17q11.2-q12</td>
</tr>
<tr>
<td>CCL5 (RANTES)</td>
<td>chemokine (C-C motif) ligand 5</td>
<td>17q11.2-q12</td>
</tr>
<tr>
<td>CCL11 (Eotaxin)</td>
<td>chemokine (C-C motif) ligand 11</td>
<td>17q21.1-q21.2</td>
</tr>
<tr>
<td>CCL17 (TARC)</td>
<td>chemokine (C-C motif) ligand 17</td>
<td>16q13</td>
</tr>
<tr>
<td>CCR3</td>
<td>chemokine (C-C motif) receptor 3</td>
<td>3p21.3</td>
</tr>
<tr>
<td>CCR4</td>
<td>chemokine (C-C motif) receptor 4</td>
<td>3p24</td>
</tr>
<tr>
<td>CMA1</td>
<td>chymase 1</td>
<td>14q11.2</td>
</tr>
<tr>
<td>IL1RN</td>
<td>interleukin 1 receptor antagonist</td>
<td>2q14.2</td>
</tr>
<tr>
<td>IL1RL1 (ST2)</td>
<td>interleukin 1 receptor-like 1</td>
<td>2q11.2</td>
</tr>
<tr>
<td>IL1A</td>
<td>interleukin 1, alpha</td>
<td>2q14</td>
</tr>
<tr>
<td>IL1B</td>
<td>interleukin 1, beta</td>
<td>2q14</td>
</tr>
<tr>
<td>IL4</td>
<td>interleukin 4</td>
<td>5q31.1</td>
</tr>
<tr>
<td>IL4R</td>
<td>interleukin 4 receptor</td>
<td>16p12.1-p11.2</td>
</tr>
<tr>
<td>IL5</td>
<td>interleukin 5</td>
<td>5q31.1</td>
</tr>
<tr>
<td>IL6</td>
<td>interleukin 6</td>
<td>7q21</td>
</tr>
<tr>
<td>IL10</td>
<td>interleukin 10</td>
<td>1q31-q32</td>
</tr>
<tr>
<td>IL12B</td>
<td>interleukin 12, beta</td>
<td>5q31.1-q33.1</td>
</tr>
<tr>
<td>IL12RB1</td>
<td>interleukin 12 receptor, beta-1</td>
<td>19p13.1</td>
</tr>
<tr>
<td>IL13</td>
<td>interleukin 13</td>
<td>5q31</td>
</tr>
<tr>
<td>IL18</td>
<td>interleukin 18</td>
<td>11q22.2-q22.3</td>
</tr>
<tr>
<td>TGFβ1</td>
<td>transforming growth factor, beta-1</td>
<td>19q13.1</td>
</tr>
<tr>
<td>TNFα</td>
<td>tumor necrosis factor, alpha</td>
<td>6p21.3</td>
</tr>
<tr>
<td>GM-CSF (CSF2)</td>
<td>granulocyte-macrophage colony-stimulating factor 2</td>
<td>5q31.1</td>
</tr>
<tr>
<td>STAT6</td>
<td>signal transducer and activator of transcription 6</td>
<td>12q13</td>
</tr>
<tr>
<td>IFNγ</td>
<td>interferon, gamma</td>
<td>12q14</td>
</tr>
<tr>
<td>HLA-A</td>
<td>major histocompatibility complex, class I, A</td>
<td>6p21.3</td>
</tr>
<tr>
<td>HLA-B</td>
<td>major histocompatibility complex, class I, B</td>
<td>6p21.3</td>
</tr>
<tr>
<td>HLA-DMA</td>
<td>major histocompatibility complex, class II, DM alpha</td>
<td>6p21.3</td>
</tr>
<tr>
<td>HLA-DMB</td>
<td>major histocompatibility complex, class II, DM beta</td>
<td>6p21.3</td>
</tr>
<tr>
<td>PSMB8 (LMP7)</td>
<td>proteasome subunit, beta-type, 8</td>
<td>6p21.3</td>
</tr>
<tr>
<td>PSMB9 (LMP2)</td>
<td>proteasome subunit, beta-type, 9</td>
<td>6p21.3</td>
</tr>
<tr>
<td>TAP1</td>
<td>transporter, ATP-binding cassette, major histocompatibility complex, 1</td>
<td>6p21.3</td>
</tr>
<tr>
<td>TAP2</td>
<td>transporter, ATP-binding cassette, major histocompatibility complex, 2</td>
<td>6p21.3</td>
</tr>
<tr>
<td>CTLA4</td>
<td>cytotoxic T lymphocyte-associated 4</td>
<td>2q33</td>
</tr>
<tr>
<td>KLK7 (SCCE)</td>
<td>kallikrein 7</td>
<td>19q13.33</td>
</tr>
<tr>
<td>RUNX1 binding site between SLC9A3R1- NAT9</td>
<td>runt-related transcription factor1 binding site between solute carrier family 9, isoform 3 regulatory factor 1 and N-acetyltransferase 9</td>
<td>17q25</td>
</tr>
<tr>
<td>SLC9A3R1</td>
<td>serine protease inhibitor, Kazal-type, 5</td>
<td>5q32</td>
</tr>
</tbody>
</table>

Drug-Metabolizing Enzymes

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>Locus</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSTP1</td>
<td>glutathione s-transferase, pi</td>
<td>11q13</td>
</tr>
<tr>
<td>GSTM1</td>
<td>glutathione s-transferase, mu-1</td>
<td>1p13.3</td>
</tr>
<tr>
<td>GSTT1</td>
<td>glutathione s-transferase, theta-1</td>
<td>22q11.2</td>
</tr>
<tr>
<td>NAT2</td>
<td>N-acetyltransferase 2</td>
<td>8p23.1-p21.3</td>
</tr>
</tbody>
</table>
Genetic Susceptibility to Atopic Dermatitis

perform than genome-wide screens because they do not require the collection of family material. Genetic and environmental factors determine disease susceptibility\(^4\) and twin studies indicate that the genetic contribution is substantial.\(^9\) Research on genetic and environmental relationships is necessary for better understanding AD susceptibility.

The objective of this review paper is to review disease genes and to contribute to our understanding of how genetic variation causes atopic dermatitis.

METHODS

To evaluate candidate genes, we conducted MEDLINE, Current Contents and Web of Science searches of papers published before August 2006 using “atopic dermatitis (eczema)” and “polymorphism” as keywords. Additional articles were identified through the references cited in the first series of articles. Using the MEDLINE database, we identified 48 studies that provided information on atopic dermatitis occurrence associated with genetic polymorphisms. No additional articles through other databases were identified.

SNP ANALYSIS AND ATOPIC DERMATITIS (Tables 1, 2)

PATTERN-RECOGNITION RECEPTORS

The specificity of the adaptive immune response, which is mediated by T and B cells, occurs through somatic mutation and the selection of receptors that best recognize microbial antigens. In contrast, the innate immune response relies on evolutionary ancient germline-encoded receptors, pattern-recognition receptors. These receptors recognize highly conserved microbial structures, enabling the host to recognize a broad range of pathogens quickly, without the need for time-consuming somatic mutation.\(^10\) These microbial structures, known as pathogen-associated molecular patterns, are generally essential for the survival of the microorganism and, as such, are immutable.

The ability of the innate immune system to distinguish between pathogens has been of considerable interest in the past few years, and recent discoveries have led to some fundamental breakthroughs, although much is still not understood. The discovery of the Toll-like receptors (TLRs), in particular, has given an insight into the mechanisms of intracellular signaling after microbial sensing and initiation of protective immune responses. Recent progress has revealed that innate immune responses are initiated by various TLRs.\(^11\) TLRs comprise a family of proteins that enhance certain cytokine gene transcription in response to various pathogenic ligands and control acquired immune responses such as Th1 responses.\(^12,13\) TLR4 is a receptor for lipopolysaccharide (LPS).\(^14,15\) Recent studies on mouse\(^16,18\) and human\(^19\) mast cells suggest that LPS-induced activation is mediated through TLR4 expressed on mast cells. A protective role for mast cells in bacterial infection was first addressed in a bacterial peritonitis animal model, and infection is suggested to be mediated by the production of TNF\(\alpha\) as a consequence of TLR4 activation.\(^20,22\) More recently, LPS-induced production of inflammatory cytokines (IL-1\(\beta\), TNF-\(\alpha\), IL-6, and IL-13) from mast cells in the peritoneal cavity and the resulting neutrophil recruitment have been suggested to be important for protection in septic peritonitis.\(^22\) In addition, TNF\(\alpha\) produced by mast cells is involved in hypertrophy of draining lymph nodes during intradermal bacterial infection.\(^23\) However, the consequences of LPS-induced mast-cell activation in allergic airway inflammation are not well elucidated. Although the role of the non-TLR pattern-recognition receptors (CARD4, CARD15, CD14, MBL2) is generally less well-appreciated, it is becoming increasingly clear that these receptors also play key roles in initiating an innate immune response.

CARD4 (NOD1) maps on chromosome 7p15–p14. It covers 54.49 kb on the reverse strand. Eleven CARD4 (NOD1) SNPs, such as rs2736726 (A > G), rs2075817 (A > G), rs2975632 (C > T), rs3030207 (A > G), rs2075818 (C > G), rs2235099 (C > T), rs2075821 (A > G), rs2075822 (C > T), rs2907749 (A > G), rs2907718 (C > T), rs5743368 (A > G), were investigated in a German population. Genotypes AA at rs2736726 and GG at rs2075817 were weakly protective for AD, with odds ratios (ORs) of 0.41 (95% CI = 0.18–0.94) and 0.43 (95% CI = 0.18–0.99), respectively.\(^24\) It has been also observed that haplotype rs2736726 A- rs2075817 G - rs2975632 T: rs3030207 A- rs2075821 C- rs2235099 C- rs2075822 G - rs2075822 T- rs2907749 A- rs2907718 C- rs5743368 G is weakly associated with atopic eczema (OR = 0.260, 95% CI = 0.07–0.92).\(^24\)

CARD15 (NOD2) maps on chromosome 16q21. It covers 39.45 kb on the reverse strand. No significant associations between AD and any SNP (2104C > T, 2722 G > C, 802T > C, 534 G > C, rs1077861 (intron 10A > T), 2722 G > C, 802T > C, 534 G > C, rs1077861 (intron 10A > T), 2863 G > A, 4278A > G, -60A > G) or haplotype of CARD15 were observed.\(^25\) Associations of three SNPs (2104C > T, 2722 G > C and 3026C) with AD in children have been reported. Children with the C allele of 2722 G > C SNP had a 1.85-fold risk (95% confidence interval (CI) = 1.10–3.13) of developing AD.\(^26\)

CD14 maps on chromosome 5q22–q32. It covers 39.45 kb on the reverse strand. In a small study, children with the CT genotype of the CD14–159C > T SNP had a significantly lower prevalence (\(p = 0.017\)) of AD at three years of age compared with those with the genotypes CC and TT combined,\(^27\) although the CD14-159C > T SNP was not associated with an increased risk of AD in German children.\(^28\) No significant difference was found in the genotype frequencies of -159C > T, -1145 G > A, -1359 G > T and
Table 2 Polymorphisms of Candidate Genes for Atopic Dermatitis

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>SNP</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern-Recognition Receptors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARD4 (NOD1)</td>
<td>haplotype (rs2736726 >A>G, rs2075817 >A>G, rs2975632 >C>T, rs3030207 >A>G, rs2075818 >C>G, rs22053099 >C>T, rs2075821 >A>G, rs2075822 >C>T, rs2907749 >A>G, rs2907718 >C>T, rs5743368 >A>G)</td>
<td></td>
</tr>
<tr>
<td>CD14</td>
<td>− 1145G > A, − 1359G > T, − 550C > T, − 159C > T</td>
<td>27, 28, 29</td>
</tr>
<tr>
<td>MBL2</td>
<td>Gly54Asp</td>
<td>30</td>
</tr>
<tr>
<td>TLR2</td>
<td>rs5743708 (A > G), rs4696480 (T > A), rs3804099 (T > C), rs3804100 (T > C)</td>
<td>31, 32</td>
</tr>
<tr>
<td>TLR4</td>
<td>rs4986790 (A > G), rs4986791 (C > T), rs2770150 (T > C), rs6478317 (A > G), rs1927911 (C > T), rs2149356 (C > T), rs7873874 (G > C), rs1927906 (A > G)</td>
<td>31, 32</td>
</tr>
<tr>
<td>TLR6</td>
<td>rs5743810 (T > C)</td>
<td>33</td>
</tr>
<tr>
<td>Chemokines and Associated Molecules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL2 (MCP-1)</td>
<td>− 2518A > G</td>
<td>63</td>
</tr>
<tr>
<td>CCL5 (RANTES)</td>
<td>− 403G > A, − 401G > A, − 28C > G</td>
<td>63, 64</td>
</tr>
<tr>
<td>CCL11 (Eotaxin)</td>
<td>− 426C > T, − 384A > G, 67G > A</td>
<td>67</td>
</tr>
<tr>
<td>CCL17 (TARC)</td>
<td>− 431C > T</td>
<td>71</td>
</tr>
<tr>
<td>CCR3</td>
<td>51T > C</td>
<td>75</td>
</tr>
<tr>
<td>CCR4</td>
<td>1014C > T</td>
<td>76</td>
</tr>
<tr>
<td>CMA1</td>
<td>− 1903A > G</td>
<td>77, 78, 79, 80, 81, 82</td>
</tr>
<tr>
<td>Cytokines and Associated Molecules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL1RN</td>
<td>penta-allelic 86-bp tandem repeat in intron 2</td>
<td>100</td>
</tr>
<tr>
<td>IL1RL1 (ST2)</td>
<td>− 26999G > A, − 27639A > G, 744C > A, 11147C > T, 2992C > T, 5283G > A, 5860C > A</td>
<td>101</td>
</tr>
<tr>
<td>IL1A</td>
<td>− 899T > C</td>
<td>102</td>
</tr>
<tr>
<td>IL1B</td>
<td>− 1418T > C, − 511T > C, 315T > C, 3953T > C</td>
<td>100, 102, 103</td>
</tr>
<tr>
<td>IL4</td>
<td>− 590T > C, − 589C > T, 33T > C</td>
<td>104, 105, 106</td>
</tr>
<tr>
<td>IL5</td>
<td>− 703C > T</td>
<td>110</td>
</tr>
<tr>
<td>IL6</td>
<td>− 922A > G, − 174C > G</td>
<td>100, 102</td>
</tr>
<tr>
<td>IL10</td>
<td>− 1117G > A, − 1082G > A, − 854C > T, − 819T > C, − 592A > C, − 571C > A</td>
<td>100, 102, 106</td>
</tr>
<tr>
<td>IL12RB1</td>
<td>− 111A > T, − 2C > T, 4443C > T, 5970G > C, 17183T > C, 17369C > T, 25748T > C, 27637A > T</td>
<td>112</td>
</tr>
<tr>
<td>IL13</td>
<td>− 1111C > T, − 1024C > T, 704A > C, 1103C > T, Arg144Gln, 1293C > T</td>
<td>102, 105, 106, 113, 114, 115</td>
</tr>
<tr>
<td>TGFB1</td>
<td>− 590C > T, 869C > T, 915G > C</td>
<td>102, 117</td>
</tr>
<tr>
<td>TNFa</td>
<td>− 1031T > C, − 863C > A, − 857C > T, − 308G > A, − 238G > A</td>
<td>100, 102, 103, 106</td>
</tr>
<tr>
<td>GM-CSF (CSF2)</td>
<td>− 1916T > C, − 677C > A, 3606T > C, 3928C > T</td>
<td>103, 119</td>
</tr>
<tr>
<td>STAT6</td>
<td>2964G > A, 13/14/15/16 GT repeat in exon 1, short tandem repeat in exon 1</td>
<td>106, 120</td>
</tr>
<tr>
<td>IFNγ</td>
<td>short tandem repeat in intron 1</td>
<td>106</td>
</tr>
</tbody>
</table>

(Continued)
-550C > T SNPs between AD patients and controls.29

MBL2 maps on chromosome 10q11.2–q21. It covers 6.32 kb on the reverse strand. Recently, three variants at codons 52, 54, and 57 of exon 1 of the MBL2 gene have been identified. The MBL2 Gly54 Asp SNP was not associated with an increased risk of AD in a Japanese population.30

Table 2 (Continued)

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>SNP</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-A</td>
<td>1, 2, 3, 11, 24, 26, 29, 30, 31, 33, 66</td>
<td>130</td>
</tr>
<tr>
<td>HLA-B</td>
<td>7, 8, 13, 14, 16, 27, 35, 37, 38, 39, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 67, 71, 75</td>
<td>130</td>
</tr>
<tr>
<td>HLA-DMA</td>
<td>Val140Ile, Gly155Ala, Ile179Thr, 184Arg-His-Cys</td>
<td>131</td>
</tr>
<tr>
<td>HLA-DMB</td>
<td>144Ala-Glu-Val</td>
<td>131</td>
</tr>
<tr>
<td>PSM8B (LMP7)</td>
<td>3911G > T, 3912C > T, 4069C > T</td>
<td>130</td>
</tr>
<tr>
<td>PSM8B (LMP2)</td>
<td>Arg60His</td>
<td>130</td>
</tr>
<tr>
<td>TAP1</td>
<td>Val333Ile, Gly637Asp</td>
<td>130, 136</td>
</tr>
<tr>
<td>TAP2</td>
<td>Ile379Val, Thr565Ala, Ala665Thr, Gln687Stop</td>
<td>130</td>
</tr>
</tbody>
</table>

Others

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>SNP</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTLA4</td>
<td>49A > G</td>
<td>159</td>
</tr>
<tr>
<td>KLK7 (SCCE)</td>
<td>AACC insertion</td>
<td>170</td>
</tr>
<tr>
<td>RUNX1 binding site between SLC9A3R1- NAT9</td>
<td>rs734232 (G > A)</td>
<td>171</td>
</tr>
</tbody>
</table>

Drug-Metabolizing Enzymes

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>SNP</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSTP1</td>
<td>1404A > G, 2294C > T</td>
<td>189</td>
</tr>
<tr>
<td>GSTM1</td>
<td>Deletion polymorphism (non-null or null genotype)</td>
<td>189</td>
</tr>
<tr>
<td>GSTT1</td>
<td>Deletion polymorphism (non-null or null genotype)</td>
<td>189</td>
</tr>
<tr>
<td>NAT2</td>
<td>481C > T, 590G > A, 857G > A</td>
<td>195, 196</td>
</tr>
</tbody>
</table>

Chemokines and Related Molecules

Chemokines are a group of chemotactic cytokines that induce inflammatory cell mobilization through a concentration gradient.34 Chemokines are relevant in allergy and asthma not only for their role in regulating leukocyte recruitment, but also for other activities, such as cellular activation, inflammatory mediator release, promotion of Th2 inflammatory responses, and regulation of IgE synthesis.35 Chemokines are divided into four classes on the basis of their protein structure (specifically the location of cysteine motifs conserved within the N-terminal domain): CXC, CC, C, and CX3C chemokines. To date, over 50 chemokines have been identified, of which 28 are CC chemokines, 16 are CXC chemokines, two are C chemokines (XCL1 and XCL2) and one is a CX3C (CX3CL1) chemokine.36 The CC and CXC chemokines are inflammatory chemokines while the C and CX3C chemokines are immune chemokines. The chemokines discussed in the remainder of the paper are CC chemokines. Some chemokines, such as CCL5 (RANTES), CCL11 (eotaxin), CCL2 (MCP-1),
CCL8 (MCP-2), CCL7 (MCP-3), CCL13 (MCP-4) and macrophage inflammatory protein (MIP)-1α. CCL1, cause cellular activation and inflammatory mediator release by basophils and eosinophils. Receptors CCR1 through CCR10 bind the CC chemokine; receptors CXCR1 through CXCR6 bind CXC chemokines; and C and CX3C chemokines bind to XCR1 and CX3CR1, respectively. At least three chemokine receptors have been shown to mediate the recruitment of Th2 cells: CCR3, the receptor for CCL5 (RANTES), CCL11 (eotaxin), CCL2 (MCP-1), and CCL13 (MCP-4), which is also expressed on eosinophils and basophils. CCR4, the receptor for CCL17 (TARC) and CCL22 (MDC); and CCR8, the receptor for CCL1 (I-309). CCL5 (RANTES) has several functions, including the stimulation of histamine secretion from basophils, the activation of eosinophils, and the mobilization of monocytes, eosinophils, and memory Th1 cells (with a preference for CD45RO+ and CD4+ subtypes). Although virtually all nucleated blood and tissue cells produce chemokines, the primary source of cutaneous CCL5 (RANTES) appears to be dermal fibroblasts. CCL11 (eotaxin 1) is a selective chemoattractant and activator of both eosinophils and TH2 lymphocytes, and it might also operate as an indirect negative regulator of neutrophil recruitment. Enhanced levels of both CCL5 (RANTES) and CCL11 (eotaxin 1) have been identified in the sera of patients with AD, with CCL5 (RANTES) demonstrating a significant positive correlation with both total serum IgE levels and eosinophil numbers. Eotaxin 1 also demonstrates a significantly increased pattern of gene expression in lesional skin biopsy specimens taken from patients with AD compared with those from nonatopic control subjects. Consistent with a role for these CC chemokines in the pathology of AD, tacrolimus (FK506) ointment, a clinically effective macrolide lactone AD treatment, has been shown to suppress the expression of both CCL5 (RANTES) and CCL11 (eotaxin 1) in lesional AD skin. UV-B irradiation, used in phototherapy, also inhibits cytokine-stimulated CCL5 (RANTES) expression in cultured epidermal keratinocytes. Together these data indicate that CC chemokines, particularly CCL5 (RANTES) and CCL11 (eotaxin 1), might represent useful future targets for the genetic dissection of AD.

CCL17 (TARC) is predominantly expressed on Th2 lymphocytes, basophils, and natural killer cells. Thus, CCL17 is likely to play an important role in Th2-type immune responses by selectively recruiting CCR+ Th2-polarized memory/effecter T cells into inflamed tissues. Cutaneous lymphocyte-associated antigen (CLA) is expressed by the vast majority of skin-infiltrating T cells and is involved in the recruitment of skin-associated T cells to inflammatory sites by interacting with the endothelial cell ligand E-selectin, which is highly expressed in inflamed skin. Essentially all CLA+ skin-seeking memory effector T cells express CCR4.

Mast cell chymase (CMA1) is a glycosylated chymotryptic-like serine proteinase that is found at high levels in the secretory granules of mast cells and appears to operate in concert with histamine and tryptase to confer a range of proinflammatory effects upon release from activated cells. It activates several biological mediators, including angiotensin I, IL-1β, and endothelin-1, by the cleavage of precursor forms of these molecules. The mechanism of chemokine production by endothelial cells stimulated with mast cell tryptase is unclear. One possible mechanism involves activation of protease-activated receptors (PARs). Tryptase or thrombin cleaves the amino-terminal extracellular extension of the intact and inactivated receptor, exposing the amino terminus, which then functions as a receptor agonist, binding to a region of the receptor and activating it. Four subtypes of PAR have been cloned. The thrombin receptor-1 (PAR-1) is expressed on endothelial cells but does not appear to be activated by tryptase. PAR-2 is also expressed on endothelial cells, and it may be activated by tryptase. The effect of human mast cell tryptase on endothelial cells inducing the production of chemokine may be mediated by this receptor. PAR-3 and PAR-4 can also be cleaved by thrombin. However, little is known about the relationship between tryptase and these receptors.

CC cytokine genes cluster on the q-arm of chromosome 17. The CCL2 (MCP-1) -2518A > G SNP has not been shown to be associated with AD in a Hungarian cohort. CCL5 (RANTES) maps on chromosome 17q11.2-q12. It covers 9.01 kb on the reverse strand. Two polymorphisms in the CCL5 (RANTES) promoter region (-28C/G and -403 G/A) affect the transcription of the CCL5 (RANTES) gene. In human cell lines, the -28 G allele of -28C/G SNP and the -403 A allele of -403 G > A SNP increase promoter activity of CCL5 (RANTES) compared to the more frequent -28C allele and the -403 G allele, respectively, suggesting that these polymorphisms increase CCL5 (RANTES) expression in humans. In fact, these variations result in the generation of a novel consensus binding site for the GATA transcription factor family and has been associated with enhanced CCL5 (RANTES) production in patients with AD. The -401A allele of the -401 G > A SNP was more frequent in AD patients compared with control subjects in a German population (p < 0.037). There was no association between -28C/G SNP and -403 G > A SNPs in the RANTES promoter, and -2518A > G SNP in the distal regulatory region of the gene and AD in a Hungarian population.

CCL11 (eotaxin 1) maps on chromosome 17q21.1-q21.2. It covers 2.66 kb on the direct strand. A number of polymorphisms have been identified in the gene. Although the two SNPs (-426C > T, -384A > G)
in the promoter region of the CCL17 gene were associated with serum IgE levels in AD patients, the two and 67 G > A SNPs were not shown to be associated with susceptibility to AD.\(^7^9\) This apparent specificity of this effect might be related to the diminutive size of the genotyped sample of this single study.\(^6^7\) the low magnitude of the underlying genetic effect, and the power advantage associated with the use of quantitative traits. Consequently, these data require replication, as well as further study in a more substantial cohort of subjects. An orally available antagonist of the eotaxin 1 receptor (YM-344031) does, however, lend some support to the genetic findings because it has recently been shown to inhibit both immediate and late-phase antigen-induced cutaneous inflammation in a mouse model of allergy.\(^6^8\) Significant linkage disequilibrium was observed between positions -426 and -384, and also between -384 and 67.\(^6^9\)

The CCL17 (TARC) maps on chromosome at 16q13. It covers 11.30 kb on the direct strand. The serum TARC levels of patients with AD were significantly elevated and correlated with disease activity, and immunoreactive TARC levels were detected in epidermal keratinocytes (KCs), dermal infiltrating cells, and endothelial cells in acute and chronic lesional skin.\(^7^0\) These observations strongly suggest that KCs can be a source of TARC in the lesional skin of patients with AD and that KCs producing TARC may be involved in the pathogenesis of AD. Although some SNPs of TARC are candidates as a genetic factor in AD, no association between AD and the -431C > T SNP of the TARC gene was observed in a Japanese population.\(^7^1\) The results of the study, however, should be considered very preliminary due to the small number of AD patients.

CCR3 maps on chromosome 3p21.3. It covers 143.70 kb on the direct strand. As stated earlier, CCR3 is a receptor for various chemokines which are important in the pathogenesis of AD. Therefore, the biological activities of CCR3 suggest that polymorphisms of CCR3 may impart an increased risk for AD. Several SNPs in CCR3 have been reported, including silent mutations (51T > C\(^7^2\), 240C > T\(^7^3\)) and missense mutations (652T > A, 824 G > A,\(^7^2\) 971T > C,\(^7^2\) 1052T > C\(^7^3\)). There was no significant difference in genotype frequencies of 51T > C SNP of the CCR3 gene between AD patients and controls.\(^7^5\)

CCR4 maps on chromosome 3p24. It covers 3.36 kb on the direct strand. There was no significant association with the 1014C > T SNP of the CCR4 gene.\(^7^6\)

CMA1 maps on chromosome 14q11.2. It covers 2.91 kb on the reverse strand. There have been several reports of a significant association between a CMA1 promoter polymorphism (-1903A > G) and atopic eczema in Japanese adults and schoolchildren.\(^7^7\) These results could not be confirmed in another Japanese study with 100 patients and 69 patient-parents-trios\(^7^8\) and an Italian study with 70 patients.\(^7^9\) There was also no association between CMA1-1903A > G genotype and AD risk in Japanese but there was a significant association between the CMA1 genotype and AD patients with a serum IgE concentration of < 500 IU/mL.\(^8^0\) Recently, a family-based association study in Caucasians revealed a significant association of this polymorphism with total IgE levels in patients with self-reported AD.\(^8^1\) As in the study of Mao et al.,\(^7^7\) a significant association between the CMA1-1903A > G polymorphism and AD was observed by Weidinger et al.\(^8^2\) It may be speculated whether this DNA variant alters the expression of chymase. Recently, it has been shown that CMA1 is increased in chronic atopic eczema skin lesions,\(^8^3\) and a potential role of chymase in the promotion of skin barrier defects and cutaneous neovascularization has been suggested.\(^8^4\) Preliminary studies in animal models have indicated a therapeutic potential of chymase inhibitors in AD.\(^8^5\),\(^8^6\)

Ma et al.,\(^7^7\) suggested that variants of CMA1 may have been one source of genetic risk for AD in a Japanese population while other Japanese studies\(^7^2,\(^8^0\) failed to confirm this association. Functional studies and analyses of other loci are needed to clarify the consequences of the -1903A > G polymorphism in the CMA1 gene and might determine whether chymase will qualify as a target for therapeutic interventions in AD.

CYTOKINES

Cytokines have been functionally divided into two subgroups: Th1 cytokines, mainly interleukin (IL) 2, IL12, interferon (IFN)\(\gamma\), and tumor necrosis factor (TNF)\(\alpha\), which activate the cellular machinery of the immune system; and Th2 (IL4, IL5, IL6, IL10 and IL13) cytokines, which activate the humoral machinery.\(^8^7\)\(^-\)\(^9^0\) Unusual deviation of the balance between Th1 and Th2 results in many immune diseases such as allergy and autoimmune diseases. Excessive Th1 immune response has been implicated in autoimmune diseases such as rheumatoid arthritis and multiple sclerosis, liver injury and graft versus host disease while unusual deviation in Th2 immunity causes allergic diseases and systemic lupus erythematosus.

For example, IL2, mainly secreted by Th1 cells, is an autocrine stimulator of Th1 cell differentiation and proliferation resulting in a T cell shift towards the Th1 immune phenotype. IL12 is a proinflammatory interleukin mainly produced by macrophages, B cells, and DCs. It promotes Th1 cell function while suppressing Th2 cell function. IFN\(\gamma\) can down-regulate allergic airway inflammation and mucus production,\(^9^1\) further supporting the critical importance of Th2 cells in allergy and asthma. Of note, airway hyperresponsiveness (AHR) is induced by the transfer of IL4-deficient Th2 cells, with a concomitant marked reduction of eosinophilia. This suggests that Th2 cells can induce AHR.
even via IL4-independent mechanisms, but not by transfer of Th1 cells. In contrast, Th1 cells induced neutrophilic inflammation without AHR.\(^\text{92}\) In another murine model of acute eosinophilic airway inflammation, however, Th1 cells were required in addition to Th2 cells for endogenous eosinophil recruitment, suggesting that Th2 cells may need Th1-derived signals for effective recruitment to airways.\(^\text{93}\) Finally, engineering of Th2 cells to produce latent transforming growth factor (TGF) \(\beta\) 1 reverted allergen-induced AHR and inflammation, which supports the concept that TGF\(\beta\)-producing T cells play an important regulatory role in asthma,\(^\text{94}\) and also that airway fibrosis and remodelling may be the final consequence of chronic or repeated TGF-\(\beta\) production. TNF\(\alpha\) is expressed on the cell membrane and is then hydrolyzed to release the soluble form, which forms homotrimers. TNF\(\beta\) (LT-\(\alpha\)) has no cell membrane attachment domain but can form either membrane-anchored heterotrimer with LT-\(\beta\) or soluble homotrimers.

It is of note that Th2 cytokines can account directly or indirectly for the great majority of pathophysiological manifestations of allergic patients. IL4 is potentially pro-inflammatory and pro-atherogenic and induces circulating eosinophils to roll on and adhere to endothelial cells.\(^\text{95}\) These eosinophils can then be attracted to target tissues by both IL-5 and chemokines. IL10 is a prototype anti-inflammatory interleukin produced mainly by activated T cells, B cells, and macrophages. It was described in mice as a Th2 cytokine that selectively inhibits IFN\(\gamma\) and granulocyte-macrophage colony-stimulating factor 2 (GM-CSF or CSF2) production by the Th1 cells. IL13 is responsible for mucus hypersecretion by mucus cells, and induces metaplasia of mucus cells.\(^\text{96}\) IL4 and IL13 stimulate fibroblast growth and chemotaxis, as well as the synthesis of extracellular matrix proteins.\(^\text{97,98}\) However, subepithelial fibrosis in asthma also results from the activity of TGF\(\beta\), produced by T cells, eosinophils and fibroblasts, as well as of IL-6 produced by several cell types, including Th2 cells themselves.\(^\text{99}\) Taken together, these findings indicate that Th2 cytokines, either directly or indirectly, can account for the hallmarks of allergic inflammation.

IL1RN maps on chromosome 2q14.2. It covers 34.70 kb on the direct strand. The polymorphism in intron 2 of the **IL1RN** gene is caused by a variable copy number of an 86-bp sequence. The 4-repeat (**IL1RN** 1) and 2-repeat (**IL1RN** 2) alleles are most common, while the other alleles occur at a combined frequency of less than 5%. No association was found between the variable number of tandem repeat polymorphisms in intron 2 of the **IL1RN** gene and AD.\(^\text{100}\)

IL1RL1 (ST2) maps on chromosome 2q12. It covers 40.54 kb on the direct strand. A significant association between AD and the -26999G > A SNP of the ST2 gene was found in a Japanese population (OR = 1.86, 95% CI = 1.42–2.45).\(^\text{101}\) On the other hand, 2992C > T, 5283G > A, 5860C > A, 11147C > T, 744C > A and -27639A > G SNPs were not associated with AD risk.\(^\text{101}\)

IL1A and **IL1B** map on chromosome 2q14. The former covers 11.48 kb on the reverse strand and the latter covers 7.16 kb on the reverse strand. The -899T > C SNP of the **IL1A** gene was not associated with AD risk.\(^\text{102}\) No association was found between either the -511C > T, 3953T > C, 3953T > C, -1418T > C or the 315T > C SNPs of the **IL1B** gene and AD.\(^\text{100,102}\)

IL4 maps on chromosome 5q31.1. It covers 9.01 kb on the direct strand. The T allele of -590T > C SNP was associated with an increased risk of AD in a Japanese population.\(^\text{104}\) In Caucasians the T allele of **IL4** -589C > T SNP was significantly associated with the development of AD at 24 months of age.\(^\text{105}\) No association between SNPs (-590T > C and 33T > C) of **IL4** and AD was found in a Chinese population.\(^\text{106}\)

ILAR maps on chromosome 16p11.2–12.1. It covers 50.86 kb on the direct strand. Many SNPs (3112C > T, -1803T > C, -3272C > A, -326A > C and -186G > A) or haplotypes (\(\alpha\)) of the **ILAR** gene are associated with AD.\(^\text{107}\) Seven SNPs (223C > G > T > A, 1199C > A, 1291C > T, 1307T > C, 1727G > A, 2356C > T) and a silent 1242T > G have been demonstrated to have functional significance. Caucasian children with the rare homozygous 1727G > A polymorphism had a higher prevalence of flexural eczema in the first 6 months compared with the heterozygote and the wild type homozygote genotypes combined.\(^\text{108}\) It has been demonstrated that the 1727G > A SNP was significantly associated with AD in another Japanese population.\(^\text{109}\) No association between SNPs (1199C > A, 1242T > G, 1507C > T and 1727G > A) of **ILAR** and AD was found in a Chinese population, however.\(^\text{106}\)

IL5 maps on chromosome 5q31.1. It covers 2.08 kb on the reverse strand. The -703C > T SNP of **IL5** was not significantly associated with AD in Japanese.\(^\text{110}\)

IL6 maps on chromosome 7p21. It covers 6.12 kb on the direct strand. No association was found between the -174C > G SNP of the **IL6** gene and AD.\(^\text{100}\) Similarly, the -174C > G and -922A > G SNPs were not linked to AD.\(^\text{102}\)

IL10 maps on chromosome 1q31–q32. It covers 4.89 kb on the reverse strand. The -1082A > G, -819T > C and -592A > C SNPs of the **IL10** gene did not contribute to the development of AD.\(^\text{106}\) No association was found between AD and the -1082A > G SNP of the **IL10** gene.\(^\text{100}\) Also, -571C > A, -854C > T and -1117G > A SNPs of the **IL10** gene were not associated with AD.\(^\text{102}\)

IL12B maps on chromosome 5q31.1–q33.1. It covers 15.69 kb on the reverse strand. The AA genotype of **IL12B** 1188A > C SNP was associated with decreased risk of AD in a Japanese population (OR = 0.44, 95% CI = 0.20–0.95).\(^\text{111}\) The 4237G > A, 4496A > G and 4510G > A SNPs of the **IL12B** gene did not
contribute to the development of AD. 106

IL2RB1 maps on chromosome 19p13.1. It covers 39.94 kb on the reverse strand. Among eight SNPs (-111A > T, -2C > T, 4443C > T, 5970 G > C, 17183T > C, 17369C > T, 25748T > C and 27637A > T), the TT genotype of the -111A > T SNP (OR = 2.39, 95% CI = 1.41–4.04) and the TT genotype of the -2C > T SNP (OR = 2.55, 95% CI = 1.43–4.57) were significantly associated with an increased risk of AD in a Japanese population. 112

IL13 maps on chromosome 5q31. It covers 4.85 k on the direct strand. No association between the -1111C > T SNP of **IL13** and AD was found in a Chinese population. 106 The statistically significant association between the -1024C > T SNP of the **IL13** gene and AD was confirmed. 113 In the Japanese population there was no significant association between two SNPs of 704A > C and 1103C > T while the Arg allele of Arg144Gln SNP was significantly associated with an increased risk of AD. 114 A significant association was noted for the A allele of the Arg144Gln SNP and AD (OR = 1.77, 95% CI = 1.06–2.96). 115 In Caucasians, haplotypes consisting of **IL13** Arg144Gln with AD (P = 0.006) were associated with AD. 105 None of the three SNPs (-1111C > T, 1293C > T, and Arg144Gln) were associated with AD during the first year. 102

IL18 maps on chromosome 11q22.2–q22.3. It covers 21.61 kb on the reverse strand. Among five SNPs (-132A > G, -133C > G, -137G > C, -113T > G and 127C > T), the C allele of the -137G > C SNP was associated with an increased risk of AD (OR = 4.28, 95% CI = 1.24–14.77). 116

TGFβ1 maps on chromosome 19q13.2. It covers 52.34 kb on the reverse strand. The C allele (a low TGFβ1 producer allele) of the TGFβ1 915 G > C SNP was associated with an increased risk of AD (OR = 4.8, 95% CI = 2.4–9.7) while there was no statistical significant difference in the frequencies of the 869T > C genotype. 117 No association between AD and the -590C > T SNP was observed. 102

TNFα and **TNFβ** share a common receptor on tumor cells whose expression is upregulated by gamma-interferon. 118 **TNF** maps on chromosome 6p21.3. No significant association was found between -308 G > A SNP of the **TNFα** gene and AD. 103 Neither -1031T > C, -863C > A, -857C > T, -308G > A nor -238G > A SNPs of the **TNFα** gene was associated with AD in a Chinese population. 106 No association was found between AD and -238G > A and -308G > A SNPs of the **TNFβ** gene in a German population. 100 Also, the two SNPs were not linked to AD risk in Americans. 102

GM-CSF maps on chromosome 5q31.1. It covers 2.38 kb on the direct strand. The A allele of the -677A > C SNP in the promoter region of the **GM-CSF** gene was associated with an increased risk of AD in the United Kingdom (OR = 2.3, 95% CI = 1.4–3.6). 103 Although -1916T > C SNP was significantly associated with an increased risk of AD (OR = 1.9, 95% CI = 1.2–3.1), there was a strong linkage disequilibrium existed between the -677A > C and -1916T > C SNPs. 103

The 3606T > C and 3928C > T SNPs of the **GM-CSF** gene was not associated with susceptibility to AD in Japanese. 119 There was strong linkage disequilibrium between the two polymorphisms.

STAT6 maps on chromosome 12q13. It covers 16.79 kb on the reverse strand. There was no association between AD risk and the 2964 G > A SNP of the **STAT6** gene while the 13/15-GT repeat allele heterozygosity of the dinucleotide repeat in exon 1 (13-, 14-, 15- and 16-GT repeat alleles) was significantly associated with allergic disease including AD in Japanese. 120 However, the short tandem repeat in exon 1 was not associated with AD risk. 106

IFNγ maps on chromosome 12q14. It covers 16.25 kb on the reverse strand. In a Chinese population, there was no association between short tandem repeats at the first intron of **IFNγ** gene and AD. 106

ANTIGEN PRESENTATION MOLECULES

The human major histocompatibility complex (MHC, also called the human leukocyte antigen (HLA) complex) class I molecules are expressed on all human cells except erythrocytes and trophoblasts. HLA molecules are peptide-binding proteins on the surfaces of antigen-presenting cells. The complex of an HLA molecule and bound antigenic peptide forms a specific target for T cell recognition. HLA-A and HLA-B belong to the HLA class I heavy chain paralogues. This class I molecule is a heterodimer consisting of a heavy chain and a light chain. The heavy chain is anchored in the membrane. Class I molecules play a central role in the immune system by presenting peptides derived from the endoplasmic reticulum lumen. The class I molecules generally present antigens to CD8+ T cells, and class II molecules present antigens to CD4+ T cells. They are expressed in nearly all cells. On the other hand, HLA-DM belongs to the HLA class II beta chain paralogues. This class II molecule is a heterodimer consisting of an alpha (DMA) and a beta (DMB) chain, both anchored in the membrane. It is located in intracellular vesicles. HLA-DM plays a central role in the peptide loading of HLA class II molecules by helping to release the class II-associated invariant chain peptide molecule from the peptide binding site. Class II molecules are expressed in antigen presenting cells such as B lymphocytes, dendritic cells and macrophages. Both HLA class I and class II antigens contribute to the pathogenesis of AD. 121 In antigen presentation to cytotoxic T cells with HLA class I molecules, the antigen-processing pathway is controlled by the products of genes that are mapped within the HLA class I region, including low-molecular-weight polypeptide (LMP) and transporters associated with transporter for antigen presentation (TAP). TAP delivers cytosol-derived peptides to HLA class I molecules for presentation to T cells. TAP is a heterodimer of TAP1 and TAP2, which are encoded by the **TAP1** and **TAP2** genes, respectively. TAP molecules are expressed on all human cells except erythrocytes and trophoblasts. TAP molecules are peptide-binding proteins on the surfaces of antigen-presenting cells. The complex of an HLA molecule and bound antigenic peptide forms a specific target for T cell recognition. HLA-A and HLA-B belong to the HLA class I heavy chain paralogues. This class I molecule is a heterodimer consisting of a heavy chain and a light chain. The heavy chain is anchored in the membrane. Class I molecules play a central role in the immune system by presenting peptides derived from the endoplasmic reticulum lumen. The class I molecules generally present antigens to CD8+ T cells, and class II molecules present antigens to CD4+ T cells. They are expressed in nearly all cells. On the other hand, HLA-DM belongs to the HLA class II beta chain paralogues. This class II molecule is a heterodimer consisting of an alpha (DMA) and a beta (DMB) chain, both anchored in the membrane. It is located in intracellular vesicles. HLA-DM plays a central role in the peptide loading of HLA class II molecules by helping to release the class II-associated invariant chain peptide molecule from the peptide binding site. Class II molecules are expressed in antigen presenting cells such as B lymphocytes, dendritic cells and macrophages. Both HLA class I and class II antigens contribute to the pathogenesis of AD. In antigen presentation to cytotoxic T cells with HLA class I molecules, the antigen-processing pathway is controlled by the products of genes that are mapped within the HLA class I region, including low-molecular-weight polypeptide (LMP) and transporters associated with transporter for antigen presentation (TAP). TAP delivers cytosol-derived peptides to HLA class I molecules for presentation to T cells.
peptides into the endoplasmic reticulum, where they bind to nascent HLA class I molecules. TAP is composed of two subunits, TAP1 and TAP2; deficiency of either subunit inhibits TAP function, reducing the supply and repertoire of peptides available for binding to HLA class I molecules. Many diseases associated with HLA have been investigated for the influence of TAP. LMP products also have an important role in antigen presentation by class I HLA molecules. LMP subunit 2 (LMP2) and LMP7 are proteasome components, which enhance the proteolytic production of certain peptides.

The HLA group of genes resides on chromosome 6p21.3. Eleven HLA-A (1, 2, 3, 11, 24, 26, 29, 30, 31, 33 and 66) and 27 HLA-B (7, 8, 13, 14, 16, 27, 35, 37, 38, 39, 46, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 67, 71 and 75) alleles are frequently observed in Koreans. Among these, only the A24 allele of HLA was significantly associated with AD. No HLA-DMA (Val140Ile, Gly155Ala, Ile179Thr, 184Arg-His-Cys) and HLA-DMB (144Ala-Glu-Val) alleles were associated with an increased risk of AD.

LMP2 (PSMB9) and LMP7 (PSMB8) map on chromosome 6p21.3. LMP2 and LMP7 genes encode two subunits of the proteasome, a cytoplasmic catalytic complex involved in the generation of antigenic peptides that are loaded on class I molecules within the endoplasmic reticulum. LMP2/7 subunits may directly affect peptide cleavage specificity. One dimorphic site within LMP2, Arg60His, and three dimorphic sites within LMP7, 3911 G > T, 3912 C > T, 4069 C > T, have been identified. SNPs of LMP2 and LMP7 genes were not significantly different for AD patients and controls.

TAP1 and TAP2 map on chromosome 6p21.3. TAP genes encode a heterodimer involved in the translocation of intracellular peptides across the endoplasmic reticulum membrane where they bind to class I molecules. Genes encoding the two TAP subunits, TAP1 and TAP2, are located within the MHC class II region between the DPB1 and DQB1 loci and variations in rat TAP genes have been reported to be associated with differences in the spectrum of MHC class I-binding peptides. TAP1 and TAP2 genes are located at 6p21.3. Two dimorphic sites within TAP1, Val333Ile and Gly637Asp, and four dimorphic sites within TAP2, Ile379Val, Thr565Ala, Ala665Thr and Gln687Stop, have been widely investigated. The 333Val and 637Gly alleles of the TAP1 gene were significantly associated with an increased risk of AD in Tunisians while allelic frequencies of the TAP1 gene polymorphisms were similar in AD patients and controls. The 565Ala and 665Thr alleles of the TAP2 gene may be associated with increased risk of AD in a Korean population.

OTHER MOLECULES
Cytoxic T-lymphocyte-associated antigen-4 (CTLA4, also known as CD152) is a member of the Ig gene superfamily along with its homologue, CD28, a B7 binding protein. CTLA4 is an inhibitory molecule that downregulates T-cell activation. Thus, ligation of CTLA4 on the T-cell surface initiates a cascade of biochemical events that attenuate an ongoing immune response. Allergic diseases are characterized by a defective peripheral T cell tolerance to allergens, suggesting possible CTLA4 dysfunction.

Kallikrein (KLK, stratum corneum chymotryptic enzyme (SCCE)) localizes to the extracellular space of the stratum corneum and is specific for keratinizing cells undergoing desquamation. KLK (SCCE) is secreted as an inactive zymogen that is activated by cleavage of an N-terminal peptide. Physiological activators of zymogens remain unknown but in vitro studies indicate that some kallikreins can undergo autoactivation while others may be activated by other kallikreins or endoproteases. Apart from its tissue localization, KLK (SCCE) has several properties and characteristics, including the pH and inhibitor profile of catalytic activity, matching the basic prerequisites for a crucial involvement in desquamation under in vivo conditions. Transgenic mice overexpressing human KLK (SCCE) develop changes in their skin similar to those seen in chronic atopic dermatitis. The overexpression of KLK (SCCE) initially may lead to a premature breakdown of the epidermal barrier. This would allow the penetration of irritants and allergens, triggering an inflammatory response, and subsequently a reactive hyperplasia. Therefore KLK (SCCE) is considered to be important in the pathogenesis of AD.

SLC9AR1 (solute carrier family 9, isofrom 3 regulatory factor 1) is found in keratinocytes within the granular layer of the epidermis in normal skin and in T-cells and has been implicated in diverse aspects of epithelial membrane biology and immune synapse formation in cells. The downregulation of SLC9A3R1 after T-cell activation is consistent with its role as a negative regulator. SLC9A3R1 could have a similar role in the normal epidermis by modulating the keratinocyte response to a similar immune signal. NAT9 is also found in keratinocytes and T-cells and may play a role in glycosylation. Loss of RUNX1 binding has been shown to be associated with susceptibility to autoimmune diseases such as systemic lupus erythematosus. RUNX1 is involved in CD4 silencing. CD4 repression attributed to a RUNX1 mutation was found in only 18–30% of mature CD8+ T lymphocytes. SNPs lying between SLC9A3R1 and NAT9 result in the loss of a RUNX1 binding site. The loss of RUNX1 sites in alleles associated with autoimmune diseases suggest an important role for RUNX1 in tolerance. It may also suggest defective regulation of SLC9A3R1 or NAT9 by RUNX1 as a susceptibility factor for AD.

Serine protease inhibitor, Kazal-type, 5 (SPINK5) is
thought to be cleaved by furin to yield at least 14 independently working serine protease inhibitory domains.152,153 Since SPINK5 and many tissue KLKs co-localize in the skin (in lamellar bodies of the uppermost epidermis and the pilosebaceous units of normal human skin tissue),154 it has been hypothesized that these proteins may be part of a proteolytic enzyme-inhibitor system that controls skin desquamation and shedding.152,154

\(CTLA4\) maps on chromosome 2q33. It covers 5.55 kbp on the direct strand. \(CTLA4\) is linked to an increased incidence of autoimmune diseases.155 A SNP at position 49 in exon 1 (49A > G) of \(CTLA4\) exerts differential functional effects on \(CTLA4\) driven down-regulation of T-cell activation.156-158 The 49A > G SNP leads to a threonine to alanine change in the lead peptide. The 49A > G SNP of \(CTLA4\) gene was not correlated with AD, however.159

\(KLK7\) gene maps on chromosome 19q13.33. It covers 7.57 kb on the reverse strand. Among all serine proteases within the human genome, the tissue \(KLK\) (SCCE) cluster is the largest. This cluster includes fifteen genes tandemly located on chromosome 19q13.4. KLKs generally share 30–50% sequence identity at the nucleotide and amino-acid levels.160 The \(KLK5\) and \(KLK7\) genes were originally identified from a keratinocyte library and their products were first named human stratum corneum trypsin enzyme (hK5),161 and human stratum corneum chymotryptic enzyme (hK7).162 These KLKs seem to catalyze the degradation of intercellular structures in the most cornified layer of the skin and contribute to the normal cell shedding process at the skin surface.163,164 \(KLK5\) and \(KLK7\) have been implicated in skin and brain diseases.160,165,166 Recent studies have also revealed alterations of their expression in hormone-dependent cancers.167-169 A 4-bp insertion was identified in the 3’ untranslated region of the \(KLK7\) (SCCE) gene. The common allele was AAC, and the rare allele was AACCAACC. A significant genetic association was found between the rare AACCAACC variant of the \(KLK5\) (SCCE) gene and AD.170

Both \(SLC9A3R1\) and \(NAT9\) map on chromosome 17q25.1. The RUNX1 gene maps on chromosome 21q22.3. A SNP is located between the \(SLC9A3R1\) and \(NAT9\) genes in chromosome segment 17q25. This SNP occurs within a consensus binding site motif for RUNX1, a factor required for both differentiation and proliferation of haematopoietic cells. There was no significant allelic association between the \(RUNX1\) polymorphism (rs734232) and AD in a small Japanese adult population.171

The serine protease inhibitor Kazal type 5 gene (\(SPINK5\)) expresses the 15 domain serine protease inhibitor lymphoepithelial Kazal-type-related inhibitor, named LEKTI.172 \(SPINK5\) is located on chromosome 5q32 within a genomic region that has previously been linked to AD by a genome-wide linkage study and, consequently, \(SPINK5\) has been implicated as a putative susceptibility gene for common, nonsyndromic AD.173 Subsequently, Walley et al. reported a significant association of a nonsynonymous SNP located in exon 14 of \(SPINK5\), consisting of a G- to A transition (1258G > A) that leads to a Glu420Lys substitution in the encoded protein. In individuals affected by AD, a significant maternal over-transmission of the risk allele to their children was demonstrated.173 Fölster-Holst et al.174 studied 8 SNPs in different regions of the \(SPINK5\) gene, including 4 nonsynonymous SNPs leading to an amino acid change (Asp106Asn, Asn368Ser (1103A > G) and Asp386Asn (1156G > A), and Glu420Lys (1258G > A), Gly463Gly, Val553Val, Leu756Leu and Gly804Gly). None of the SNPs were associated with an increased risk of AD. Kato et al. examined associations between 8 SNPs (IV12-26C > T, IVS12-10A > G, IVS14 + 19 G > A, IVS13-50 G > A, 1103A > G, 1156 G > A, 1188T > C, 1258G > A) of the \(SPINK5\) gene and AD in a Japanese population and found a positive association of 7 \(SPINK5\) SNPs (except for 1156G > A) with AD.175 Nishio et al.176 also reported a significant association between \(SPINK5\) 1258G > A and AD risk. No statistically significant association between \(SPINK5\) 1258G > A genotypes and AD was observed in a large German population.177

\textbf{DRUG-METABOLIZING ENZYMES}

The picture of drug-metabolizing enzymes is complicated, because AD is polygenic in nature, and susceptibility is also influenced markedly by environmental factors. In addition, evidence is emerging that certain metabolic polymorphisms may influence the pathogenesis of allergy. The metabolism of xenobiotics includes oxidation, reduction, and hydrolysis (phase I) and conjugation (phase II) reactions.178,179 Glutathione S-transferase (GST) enzymes belong to the phase II detoxification system and are responsible for biotransformation and degradation of certain electrophilic compounds. Oxidative stress, with the formation of reactive oxygen species (ROS), is a key component of inflammation.180 Members of the GST supergene family are critical for protecting cells from ROS because they can utilize a wide variety of products of oxidative stress as substrates and also influence the synthesis of eicosanoid-like mediators via modulation of ROS levels.181,182

\(N\)-acetyltransferase (NAT) is one of the conjugation enzymes and transfers acetate from acetyl coenzyme A to the functional groups of primary amylene and hydrazine to form acetamides and hydrazides, in xenobiotics, containing amylene and hydrazine groups.178,179,183 NAT enzymes, NAT1 and NAT2, are involved in the metabolism of these carcinogens via O- and N- acetylation.184 Therefore, NAT2 and NAT1 are involved in the detoxification and bioactivation of carcinogens.185,186 Individuals in a population are
either rapid or slow acetylators, depending on their ability to acetylate certain NAT substrates. Generally, acetylation is bimodally distributed in different populations. An association between NAT2 slow acetylation and allergic diseases and extrinsic asthma in patients with atopic characteristic has been reported.187,188

Certain genes within the GSTM, GSTT and GSTP subfamilies (GSTM1, GSTT1 and GSTP1) are polymorphic in humans and the levels of individual enzymes expressed can be influenced by induction and genetic polymorphism. The GSTM1, GSTT1 and GSTP1 genes are located on chromosomes 1p13.3, 22q11.23 and 11q13, respectively. Lack of GSTM1 and GSTT1 activity is caused by the homozygous deletion of these intact genes (the null genotype). The non-null genotype is the wild type or heterozygote. The 1404A > G (Ile105Val) and 2294C > T (Ala114 Val) SNPs of the GSTP1 gene confers lower levels of enzyme activity toward a variety of carcinogens and anticancer agents. As compared with the combined GSTM1 non-null genotype (GSTT1 non-null genotype and GSTP1 AG), the combined GSTM1 null genotype (GSTT1 null genotype and GSTP1 AA) was associated with a significantly increased risk of AD (OR = 4.38, 95% CI = 1.06–438.6).189

NAT2 gene maps on chromosome 8p23.1–p21.3. It covers 9.97 kb on the direct strand. N-acetylation is an important genetic polymorphic pathway in the biotransformation of one or more single-based mutations in the NAT2 gene known to cause low expression levels of functional NAT2 enzyme.190,191 Individuals who carry two slow NAT2 SNPs are slow acetylators, whereas those who are homozygous or heterozygous for wild-type NAT2 alleles are rapid acetylators.192,193 The presence of 481C > T, 590 G > A and 857G > A SNPs would lead to slow acetylation.194 481C > T (synonymous mutation) and 590G > A SNPs were not related to an increased risk of AD.195 Moreover, 481C > T, 590 G > A and 857G > A, were not associated with an increased risk of AD.196

DISCUSSION AND CONCLUSION

The most important problems facing AD research are identifying “at-risk” individuals and implementing clinical surveillance, prevention practices, and follow-up care. The immune system plays an important role in AD. Although the increased/decreased risk associated with individual immune system SNPs may be small compared to that conferred by high-penetrance cancer genes, their public health implications may be large because of their high frequency in the general population. It is thus essential that epidemiological investigations of immune system polymorphisms are adequately designed. Unfortunately a fairly large number of studies are limited by their sample size and subsequently suffer from lack of power to detect effects that may truly exist. Also, given the borderline significance of previously reported associations and multiple comparisons, it is possible that one or more finds are false-positives.197 Large and combined analyses may be preferred to minimize the likelihood of both false-positive and false-negative results. In addition, controls should be chosen in such a way that, if they were cases, they would be included in the case group; when controls are matched to cases, it is essential to account for matching in the analysis. When appropriate, confounding factors should be controlled for, with particular consideration of race and ethnicity.

Continued advances in SNP maps and in high-throughput genotyping methods will facilitate the analyses of multiple polymorphisms within genes and the analysis of multiple genes within pathways. The effects of polymorphisms are best represented by their haplotypes. Data from multiple polymorphisms within a gene can be combined to create haplotypes, the set of multiple alleles on a single chromosome. A few studies reviewed here reported haplotype associations, although several studies analyzed multiple polymorphisms within a gene, sometimes with inconsistent results. Haplotype analysis can increase the power to detect disease associations because of higher heterozygosity and tighter linkage disequilibrium with disease-causing mutations. In addition, haplotype analysis offers the advantage of not assuming that any of the genotyped polymorphisms is functional; rather, it allows for the possibility of an ungenotyped functional variant to be in linkage disequilibrium with the genotyped polymorphisms.198 An analysis of data from multiple genes within the same pathway can provide more comprehensive insight into the studied associations. Such an analysis may shed light on the complexities of the many pathways involved in the immune system and AD development, providing hypotheses for future functional studies. Because of concerns over inflated type I error rates in pathway-wide or genome-wide association studies, methods of statistical analysis seeking to obviate this problem are under development.199 The ability to include haplotype information and data from multiple genes, and to model their interactions, will provide more powerful and more comprehensive assessments of the immune system.

Although the summary risk for developing AD in individuals of each genotype may not be large, AD is such a common disease that even a small increase in risk can translate to a large number of AD cases. Therefore, polymorphisms, even those not strongly associated with AD, should be considered as potentially important public health issues. In addition, it is important to keep in mind that a susceptibility factor in one population may not be a factor in another. There are differences in the prevalence of immune system polymorphisms across populations. In a population where the prevalence of an “at-risk” genotype
in a given polymorphism is very low, the “at-risk” allele or “at-risk” genotype may be too infrequent to assess its associated risk. At a population level, the attributable risk must be small simply because it is an infrequent allele. Finally, the major burden of AD in the population probably results from the complex interaction between many genetic and environmental factors over time. Many harmful substances in the environment first require metabolic activation by Phase I enzymes to their ultimate forms and then the activated forms are detoxified by Phase II enzymes. Thus, genetically determined susceptibility to AD may depend on the balance between drug-metabolizing enzyme activity and immune capacity. Further investigations of the combined effects of polymorphisms between immune response genes and drug-metabolizing genes may also help to clarify the influence of genetic variation in the AD development. Consortia and international collaborative studies, which may be a way to maximize study efficacy and overcome the limitations of individual studies, are needed to help further illuminate the complex landscape of AD risk and genetic variations.

The characterization of the genetic factors involved in this common, chronic disorder may provide important clues to its relationship to other diseases, such as asthma and allergic rhinitis, and is ultimately hoped to lead to more effective interventional strategies.

ACKNOWLEDGEMENTS

This study was funded in part by Health and Labour Sciences Research Grants, Research on Allergic Disease and Immunology from the Ministry of Health, Labour, and Welfare, Japan.

REFERENCES

Allergology International Vol 57, No1, 2008 www.jsaweb.jp

Genetic Susceptibility to Atopic Dermatitis

67. Tsunemi Y, Saeki H, Nakamura K et al. Eotaxin gene single nucleotide polymorphisms in the promoter and exon regions are not associated with susceptibility to atopic dermatitis, but two of them in the promoter region are associated with serum IgE levels in patients with atopic dermatitis. J. Dermatol. Sci. 2002;29:222-228.

136. Ismail A, Boussaffara R, Kaziz J et al. Polymorphism in transporter antigen peptides gene (TAP1) associated with
Genetic Susceptibility to Atopic Dermatitis

