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Abstract

The cutwidth of a graph G is the minimum congestion (the number of overlap edges) when
G is embedded into a path. The cutwidth problem has been motivated from both applied and
theoretical points of view. The characterization of forbidden subgraphs or critical graphs is always
interesting in the study of a graph-theoretic parameter. In this paper we characterize the set of
3-cutwidth critical graphs by 5ve speci5ed elements.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The cutwidth problem has been motivated from both applied and theoretical aspects.
Some application areas of the problem include the circuit layout design and the network
communication [2,4]. And its theoretic interest comes up in connection with other
graph-theoretic parameters such as bandwidth, pathwidth and treewidth (see [2,3,6]).
Let G = (V; E) be a simple graph with vertex set V , |V | = n, and edge set E.

A labeling of G is a bijection f :V → {1; 2; : : : ; n}, which can be regarded as an
embedding of G into a path Pn. For a given labeling f of G, the cutwidth of G with
respect to f is

c(G;f) = max
16i¡n

|{uv∈E: f(u)6 i¡f(v)}|;

which represents the congestion of the embedding. The cutwidth of G is de5ned by

c(G) = min
f
c(G;f);
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where the minimum is taken over all labelings f. A labeling f attaining the above
minimum value is called an optimal labeling.
In the embedding version, we may denote ui=f−1(i) (16 i6 n). Then the labeling
f can be regarded as an ordering of vertices u1; u2; : : : ; un arranged on a line. Let
Si = {u1; u2; : : : ; ui} be the set of the 5rst i vertices. The cut ∇(Si) = {ujuk ∈E :
j6 i¡ k} is called the cut at [i; i + 1]. Then the cutwidth c(G;f) is the maximum
size of all these cuts ∇(Si), i = 1; 2; : : : ; n− 1.
The cutwidth problem for general graphs is known to be NP-hard [5], while it has

polynomial algorithms for trees [12]. Some exact results on special graphs, e.g., the
complete graphs Kn, the complete bipartite graphs Km;n, the n-cubes Qn, the complete
k-ary trees, the trees with diameter at most 4, and the meshes Pm×Pn; Pm×Cn; Cm×Cn,
have been obtained in the literature [2,7–10]. The relations between cutwidth and other
graph-theoretic parameters were studied in various aspects [2,3,6].
In a theoretical point of view, the cutwidth has the following basic properties.

Proposition 1.1. (1) If G′ is a subgraph of G, then c(G′)6 c(G). (2) If G′ is home-
omorphic to G (i.e., they can both be obtained from the same graph by inserting
new vertices of degree two into its edges, called a subdivision of the graph), then
c(G′) = c(G).

In fact, the 5rst property is obvious. The second is easy to show by the embedding
version of cutwidth (refer to [13]).
Based on these properties, we may de5ne the cutwidth critical graphs as follows. A

graph G is said to be k-cutwidth critical if

(1) c(G) = k;
(2) for every proper subgraph G′ of G, c(G′)¡k;
(3) G is homeomorphically minimal, that is, G is not a subdivision of any simple

graph.

Proposition 1.2. The unique 1-cutwidth critical graph is K2. The only 2-cutwidth crit-
ical graphs are K3 and K1;3.

In fact, the 5rst assertion is trivial. For the second, let G be 2-cutwidth critical. If
G is acyclic, then it is not a path and thus G is K1;3; otherwise G has a cycle, thus
G is K3.
The main result of this paper is a characterization of the 3-cutwidth critical graphs.

All of them are the 5ve graphs illustrated in Fig. 1 (the numbers in each graph represent
an optimal labeling). Note that H1 is a star K1;5; H2 is a tree with diameter 4; H3 is
obtained from H2 by replacing a claw K1;3 by a triangle K3; H4 is a ‘crown’ made of
a C3 and three pendant edges; H5 is a cycle C4 with a chord.
From this, we obtain the forbidden subgraphs characterization of graphs with cutwidth

two as follows: A graph G has cutwidth 2 if and only if it is not a path and it
does not contain any subgraph homeomorphic to one of H1; H2; H3; H4 and H5 in
Fig. 1.
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Fig. 1. The 3-cutwidth critical graphs.

A similar work has been done for the treewidth. A graph G is said to be k-treewidth
critical if G has treewidth k and there is no proper minor G′ of G having treewidth
k. It is easy to see that for 16 k6 3, the unique k-treewidth critical graph is Kk+1.
Further, [1,11] characterizes all 4-treewidth critical graphs (which are the complete
graph K5, the octahedron K2;2;2, the MJobius ladder M8 and the cyclic ladder C5×K2).
The critical graphs for other parameters are worthy of further study.
The rest of this paper is organized as follows. In Section 2 we present some pre-

liminary results. Section 3 is devoted to the proof of the main result. Section 4 gives
a short summary.

2. Preliminaries

The following is an obvious lower bound.

Proposition 2.1. Let �(G) denote the maximum degree of G. Then c(G)¿ 	�(G)=2
.

The bound is attainable by a caterpillar, a tree which yields a path (the spine) when
all its pendant vertices are removed.

Proposition 2.2. For any caterpillar T , c(T )=	�(T )=2
. In particular, c(K1; n)=	n=2
.

In fact, it is easy to construct an embedding of T along the spine with cutwidth
	�(T )=2
 (see [8] for details). The forbidden subgraph characterization of caterpillars
is useful in the sequel. A well-known result is that a tree is a caterpillar if and only
if it does not contain any “double claw” (the subdivision of K1;3 by inserting a vertex
in each edge). The following is a further result.

Proposition 2.3. A tree T is homeomorphic to a caterpillar if and only if it does not
contain any subgraph homeomorphic to H2 (in Fig. 1).
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Proof. The only if part is due to the fact that H2 is not homeomorphic to a caterpillar.
We next show the if part. If T is not homeomorphic to a caterpillar, let T ′ be the
minimal subtree of T containing all vertices of degree at least 3, then T ′ is not a path.
Hence, T ′ has at least three pendant vertices x1; x2; x3 and the minimal subtree T ′′ of
T ′ containing x1; x2; x3 must be homeomorphic to a star K1;3 (with a center x0). It is
clear that the degree of xi in T is at least three (i= 1; 2; 3). Therefore, the subtree T ′′

together with two neighbors of every xi (i=1; 2; 3) constitute a subgraph homeomorphic
to H2. This completes the proof.

For the sake of simplicity, when no confusion can arise in the context, two graphs
will be regarded as the same if they are homeomorphic. For example, we may refer
to the subdivision of a caterpillar as a caterpillar. Similarly, if G contains a subgraph
homeomorphic to H , we may say that G contains H and write H ⊆ G. By this
convention, Proposition 2.3 can be simpli5ed as: A tree T is a caterpillar if and only
if H2 * T .

Recall that the only 2-cutwidth critical graphs are K3 and K1;3 (Proposition 1.2).
Sometimes, a K1;3-subgraph and a K3-subgraph could play the same role in a cutwidth
embedding scheme. This gives rise to the following equivalent transformations. Suppose
that a K1;3-subgraph S of G is comprised of a vertex x of degree three and its neighbors
a; b; c at least one of which (say, c) is a pendant vertex. Then we can construct a new
graph G′ by replacing S to a K3-subgraph T with vertices a; b; c such that the pendant
vertices in G (namely, c and probably one more) correspond to the vertices of degree
two in G′ and the other(s) are keeping the same incident relation of G (see Fig. 2(a)).
Since S contributes congestion 2 to G while T contributes congestion 2 to G′, we can
see that G and G′ have the same cutwidth. Conversely, if a K3-subgraph has at least
one vertex of degree two, then it can be symmetrically replaced by a K1;3-subgraph
such that the vertices of degree two correspond to the pendant vertices. We will call
these transformations the triangle transformations. A typical example is from H2 to
H3 or conversely.
A graph W is called a triangulated caterpillar of �6 4 if it is obtained from a cater-

pillar T of �(T )6 4 by performing several triangle transformations, provided that the
resultant graph W has �(W )6 4. Some examples are illustrated in Figs. 2(b) and 3.

Fig. 2. Triangle transformation.
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Fig. 3. A cutwidth 2 labeling.

Proposition 2.4. Every triangulated caterpillar W of �6 4 has cutwidth 2.

Proof. Let u1; u2; : : : ; un be the vertices on the spine of W from left to right. For each
ui, let Ti be the star centered at ui (i= 1; 2; : : : ; n). We may de5ne a labeling f of W
in the order of T1; T2; : : : ; Tn such that the label of each center ui is a median in star
Ti (a median of k numbers means the one ranking 	k=2
 or �k=2
+1). An example is
shown in Fig. 3. It is easy to show that the cutwidth with respect to f is 	�=2
= 2.
This completes the proof.

3. 3-Cutwidth critical graphs

We consider the graphs H1; H2; H3; H4 and H5 in turn.

Lemma 3.1. A tree T is 3-cutwidth critical if and only if T is either H1 or H2.

Proof. Note that H1 is a star. By Proposition 2.2, we have c(H1) = 3. Since H2 is a
tree with diameter 4, we can easily obtain that c(H2)=3 by the formula in [7]. In fact,
the labeling in Fig. 1 implies that c(H2)6 3 and the reverse inequality can be shown
by the same method for H3 in the next lemma. And any proper subgraph of H1 or H2

is homeomorphic to a caterpillar of �6 4 whose cutwidth is at most 2. Also, they are
homeomorphically minimal. Hence H1 and H2 are both 3-cutwidth critical.

Conversely, let T be a 3-cutwidth critical tree. If �(T )¿ 5, then H1 ⊆ T and thus
T=H1 by the minimality of T . If �(T )6 4, then T is not homeomorphic to a caterpillar
(otherwise c(T )6 2 by Proposition 2.2); and thus H2 ⊆ T due to the characterization
of caterpillars in Proposition 2.3. Again, by the minimality of T , we have T =H2. This
completes the proof.

Lemma 3.2. Graphs H3 and H4 are 3-cutwidth critical.

Proof. The labeling of H3 in Fig. 1 asserts that c(H3)6 3. We next show that
c(H3)¿ 3. Denote the vertex of degree 4 in H3 by x and denote its neighbors by
a; b; y; z where xyz forms the triangle. In addition, let a1 and a2 be adjacent to a; and
let b1 and b2 be adjacent to b (see Fig. 4).
For a given labeling f of H3, if f(x) is not the median of {f(x); f(a); f(y); f(z);
f(b)}, then it is clear that c(H3; f)¿ 3. So, there are essentially two cases to consider:

Case 1: max{f(a); f(y)}¡f(x)¡min{f(z); f(b)}. Let i=f(x). Then {xz; xb; yz}
⊆ ∇(Si), thus c(H3; f)¿ |∇(Si)|¿ 3.
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Fig. 4. Graph H3.

Case 2: f(a)¡f(b)¡f(x)¡f(y)¡f(z). Let i=f(b). If max{f(b1); f(b2)}¿i,
say f(b1)¿i, then {ax; bx; bb1} ⊆ ∇(Si), thus c(H3; f)¿ |∇(Si)|¿ 3; otherwise
f(b1); f(b2)¡i and {ax; b1b; b2b} ⊆ ∇(Si−1), thus c(H3; f)¿ |∇(Si−1)|¿ 3.
In this way, we show that c(H3) = 3. On the other hand, any proper subgraph G′

of H3 is homeomorphic to either a caterpillar of �6 4 or a triangulated caterpillar
of �6 4. It follows from Proposition 2.4 that c(G′)6 2. Therefore H3 is 3-cutwidth
critical.
The labeling of H4 in Fig. 1 also asserts that c(H4)6 3. In order to show the lower

bound c(H4)¿ 3, we may examine the set S3 =f−1({1; 2; 3}). It is easy to check that
|∇(S3)|¿ 3 for any labeling f in H4. Hence c(H4; f)¿ |∇(S3)|¿ 3. Thus we have
c(H4) = 3. On the other hand, any proper subgraph G′ of H4 is either a caterpillar or
a triangulated caterpillar of �6 3, so c(G′)6 2. Therefore H4 is 3-cutwidth critical.
The result follows.

Lemma 3.3. A unicyclic graph G is 3-cutwidth critical if and only if G is either H3

or H4.

Proof. The ‘if’ part has been shown in Lemma 3.2. We need only show the ‘only
if’ part. Let G be a 3-cutwidth critical unicyclic graph, in which the unique cycle is
denoted by C. Since it is impossible that H1 ⊆ G, we have �(G)6 4. If C has three
vertices of degree greater than 2, then G has a subgraph homeomorphic to H4; and
by the minimality of G, G =H4. So, it is suPcient to consider the case that C has at
most two vertices of degree 3 or 4. In this case, the cycle C can be homeomorphically
contracted into a triangle. If H3 ⊆ G, then G = H3 by the minimality of G. Now, all
we have left to show is the case that G satis5es the following conditions:

(a) �(G)6 4;
(b) G contains a triangle C which has at least one vertex of degree two;
(c) H2 * G (due to the minimality of G);
(d) H3 * G.

Let G′ be obtained from G by replacing the triangle C by a star K1;3 (performing
a triangle transformation). Since G does not contain either H2 or H3, it follows that
G′ does not contain H2. By Proposition 2.3, G′ is homeomorphic to a caterpillar of
�6 4, thus G is in fact a triangulated caterpillar of �6 4. Hence by Propositions 2.2
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and 2.4, c(G) = c(G′) = 2, which contradicts the assumption of G. Thus the desired
result holds.

By the cyclic rank (or cyclomatic number) of a graph G, we mean the number of
independent cycles in G (i.e., m − n + k for a graph with n vertices, m edges and k
components).

Lemma 3.4. A graph G with cyclic rank at least two is 3-cutwidth critical if and
only if G is H5.

Proof. The labeling of H5 in Fig. 1 shows that c(H5)6 3. On the other hand, there are
two vertices in H5 which are connected by three internally-disjoint paths. This implies
that c(H5)¿ 3. So, we have c(H5)=3. Moreover, it is clear that every proper subgraph
of H5 has cutwidth less than 3. Therefore, H5 is 3-cutwidth critical.
Conversely, let G be a 3-cutwidth critical graph with cyclic rank at least two. That

is to say, G has two or more independent cycles. If there are two cycles with common
edges, then G has a subgraph homeomorphic to H5, namely, H5 ⊆ G. By the minimality
of G, we see that G=H5. Otherwise, all cycles in G are edge-disjoint. As argued before,
G does not contain any subgraph homeomorphic to H1; H2; H3 or H4. This implies that
G satis5es the following conditions:

(a) �(G)6 4;
(b) for each cycle C in G, C has at most two vertices of degree greater than 2;
(c) in each cycle C in G, there is no vertex adjacent to two vertices outside C of

degree greater than 2;
(d) in a path P connecting two cycles C1 and C2, there is no internal vertex adjacent

to a vertex of degree greater than 2.

By (b), each cycle of G can be homeomorphically contracted into a triangle. By (c)
and (d), all triangles (cycles) of G can be arranged in a sequence such that two
consecutive triangles are connected by a caterpillar. Let G′ be obtained from G by
replacing each triangle by a star K1;3. Then G′ is a caterpillar of �6 4, thus G is a
triangulated caterpillar of �6 4. Hence c(G) = c(G′) = 2, a contradiction. Thus the
lemma follows.

To summarize Lemmas 3.1–3.4, we obtain the main result:

Theorem 3.5. All 3-cutwidth critical graphs are H1; H2; H3; H4 and H5.

Corollary 3.6. A graph G has cutwidth 6 2 if and only if it does not contain any
subgraph homeomorphic to H1; H2; H3; H4 or H5.

Corollary 3.7. A graph G has cutwidth 2 if and only if it is homeomorphic to a
caterpillar (other than a path) of �6 4 or a triangulated caterpillar of �6 4.
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4. Concluding remarks

In the foregoing discussion we characterize the set of 3-cutwidth critical graphs. As
a result, it turns out that all graphs of cutwidth 2 can be generated from the caterpillars
of �6 4 via the triangle transformations. This suggests an algorithmic approach for
determining the graphs of cutwidth 2. In fact, for a given graph G, we may 5rst contract
every vertex of degree two (unless it is in a triangle). Then, to decide if c(G)6 2, we
need only check the following conditions one by one: (1) �(G)6 4; (2) all vertices
of degree greater than two induce a path P; (3) every pendant vertex is adjacent to a
vertex in P; (4) every vertex of degree two is in a triangle with the other two vertices
in P; (5) no two triangles have an edge in common. It is clear that each of these steps,
and thus the algorithm, can be implemented in linear time.
A further task is to characterize the set of 4-cutwidth critical graphs. It is known

that this set includes K4; K1;7, and some trees with diameter 4. More general properties
of critical graphs are expected.
The counterpart for the bandwidth problem is worthwhile to study. However, the

results are not as neat as those for the cutwidth.
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