Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Implicit Mann fixed point iterations for pseudo-contractive mappings

Ljubomir Ćirić^{a,*}, Arif Rafiq^b, Nenad Cakić^c, Jeong Sheok Ume^d

^a Faculty of Mechanical Engineering, Kraljice Marije 16, 11 000 Belgrade, Serbia

^b Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan

^c Faculty of Electrical Engineering, Bul. Kralja Aleksandra 73, 11 000 Belgrade, Serbia

^d Department of Applied Mathematics, Changwon National University, Changwon 641-773, Republic of Korea

ARTICLE INFO

Article history: Received 25 February 2008 Received in revised form 21 April 2008 Accepted 3 June 2008

Keywords: Banach space Hilbert Space Implicit-Mann-type iteration process Pseudo-contractive mapping Fixed point

ABSTRACT

Let *K* be a compact convex subset of a real Hilbert space *H* and $T : K \to K$ a continuous hemi-contractive map. Let $\{a_n\}, \{b_n\}$ and $\{c_n\}$ be real sequences in [0, 1] such that $a_n + b_n + c_n = 1$, and $\{u_n\}$ and $\{v_n\}$ be sequences in *K*. In this paper we prove that, if $\{b_n\}, \{c_n\}$ and $\{v_n\}$ satisfy some appropriate conditions, then for arbitrary $x_0 \in K$, the sequence $\{x_n\}$ defined iteratively by $x_n = a_n x_{n-1} + b_n T v_n + c_n u_n; n \ge 1$, converges strongly to a fixed point of *T*.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Let *E* be a Banach space and *K* be a nonempty subset of *E*. A mapping $T : K \rightarrow E$ is said to be *pseudo-contractive* (see e.g., [1,2,11]) if

$$||Tx - Ty||^{2} \le ||x - y||^{2} + ||(I - T)x - (I - T)y||^{2} \text{ for all } x, y \in K.$$
(1)

A mapping $T : K \to E$ is called *hemi-contractive* if $F(T) := \{x \in K : Tx = x\} \neq \emptyset$ and

$$\|Tx - x^*\|^2 \le \|x - x^*\|^2 + \|x - Tx\|^2 \quad \text{for all } x^* \in F(T) \quad \text{and} \quad \text{for all } x \in K.$$
(2)

It is easy to see that the class of pseudo-contractions with fixed points is a subclass of the class of hemi-contractive maps. There are examples which show that a hemi-contraction is not necessarily a pseudo-contraction (see, for instance, [16,18]). For the importance of fixed points of pseudo-contractions the reader may consult [1].

The class of pseudo-contractive (and correspondingly accretive) operators has been studied extensively by various authors (cf. [3–9,13–20]).

Two effective methods for approximating a fixed point of a pseudo-contractive operator are the well known Mann [12] iterative and Ishikawa [10] iterative processes. These two iterative processes are equivalent in many aspects. In 1998 Xu introduced the following iteration process. For $T : K \rightarrow E$ and $x_0 \in K$, let a sequence $\{x_n\}$ be defined iteratively by

$$\begin{aligned} x_{n+1} &= a_n x_n + b_n I y_n + c_n u_n, \\ y_n &= a'_n x_n + b'_n T x_n + c'_n v_n, \quad n \ge 0, \end{aligned}$$
(3)

. . .

Applied Mathematics Letters Therefore d'and parters

^{*} Corresponding author.

E-mail addresses: lciric@rcub.bg.ac.yu (L. Ćirić), arafiq@comsats.edu.pk (A. Rafiq), cakic@kondor.etf.bg.ac.yu (N. Cakić), jsume@changwon.ac.kr (J.S. Ume).

^{0893-9659/\$ –} see front matter s 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2008.06.034

where $\{u_n\}, \{v_n\}$ are bounded sequences in K and $\{a_n\}, \{b_n\}, \{c_n\}, \{a'_n\}, \{b'_n\}$ and $\{c'_n\}$ are sequences in [0, 1] such that $a_n + b_n + c_n = a'_n + b'_n + c'_n = 1$ for all $n \ge 0$. If in (3), $b'_n = 0 = c'_n$, then we obtain the Mann iteration sequence in the sense of Xu. If in (3), $c_n = 0 = c'_n$, then we obtain the usual Ishikawa iteration sequence.

In [15], the second author proved the following theorem.

Theorem 1. Let K be a compact convex subset of a real Hilbert space H and T : $K \to K$ a hemi-contractive mapping. Let $\{\alpha_n\}$ be a real sequence in [0, 1] satisfying $\{\alpha_n\} \subset [\delta, 1-\delta]$ for some $\delta \in (0, 1/2]$. For arbitrary $x_0 \in K$, let the sequence $\{x_n\}$ be defined by $x_0 \in K$.

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T x_n, \quad n \ge 1.$$
 (4)

Then $\{x_n\}$ converges strongly to a fixed point of T.

The purpose of this paper is to introduce and investigate the following modified Mann implicit iteration process. Let K be a closed convex subset of a real normed space H and T : $K \to K$ be a mapping. Define $\{x_n\}$ in K in the following way:

$$x_0 \in K,$$

 $x_n = a_n x_{n-1} + b_n T v_n + c_n u_n, \quad n \ge 1,$
(5)

where $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ are real sequences in [0, 1] such that $a_n + b_n + c_n = 1$ for each $n \in N$, and $\{u_n\}$ and $\{v_n\}$ are sequences in K.

We point out that the iterative processes, defined by (5), in which it is not necessary to compute a value of the given operator at x_n , but compute at an approximate point of x_n , are particularly useful in the numerical analysis.

In this paper we prove that, if K is a convex compact subset of a real Hilbert space $H, T : K \to K$ is a continuous hemicontractive mapping and $\{b_n\}$, $\{c_n\}$ and $\{v_n\}$ satisfy some appropriate conditions, then the sequence $\{x_n\}$, defined by (5), converges strongly to some fixed point of T.

2. Mann-type iteration process for pseudo-contractive mappings in Hilbert spaces

We shall make use of the following results.

Lemma 2 ([19]). Suppose that $\{\rho_n\}, \{\sigma_n\}$ are two sequences of nonnegative numbers such that for some real number $N_0 \geq 1$,

$$\rho_{n+1} \leq \rho_n + \sigma_n \quad \forall n \geq N_0.$$

(a) If Σ_{n=1}[∞] σ_n < ∞, then lim ρ_n exists.
(b) If Σ_{n=1}[∞] σ_n < ∞ and {ρ_n} has a subsequence converging to zero, then lim ρ_n = 0.

Lemma 3 ([13]). Let H be a Hilbert space, then for all $x, y, z \in H$

$$\|ax + by + cz\|^{2} = a \|x\|^{2} + b \|y\|^{2} + c \|z\|^{2} - ab \|x - y\|^{2} - bc \|y - z\|^{2} - ca \|z - x\|^{2},$$

where $a, b, c \in [0, 1]$ and a + b + c = 1.

Now we prove our main results.

Theorem 4. Let K be a compact convex subset of a real Hilbert space H and $T: K \to K$ a continuous hemi-contractive map. Let $\{a_n\}, \{b_n\}$ and $\{c_n\}$ be real sequences in [0, 1] such that $a_n + b_n + c_n = 1$ for each $n \in N$ and satisfying:

(i) $\{b_n\} \subset [\delta, 1-\delta]$ for some $\delta \in (0, \frac{1}{2}]$,

(ii)
$$\sum_{n=1}^{\infty} c_n < \infty$$
.

For arbitrary $x_0 \in K$, let a sequence $\{x_n\}$ in K be iteratively defined by

$$x_n = a_n x_{n-1} + b_n T v_n + c_n u_n, \quad n \ge 1,$$
(6)

where $v_n \in K$ are chosen such that $\sum_{n=1}^{\infty} \|v_n - x_n\| < \infty$ and $\{u_n\}_{n=1}^{\infty}$ is an arbitrary sequence in K. Then $\{x_n\}_{n=1}^{\infty}$ converges strongly to some fixed point of T.

Proof. Let $x^* \in K$ be a fixed point of *T* and M = diam(K). Since *T* is hemi-contractive, then

$$\|Tv_n - x^*\|^2 \le \|v_n - x^*\|^2 + \|v_n - Tv_n\|^2$$
(7)

for each $n \in N$. By virtue of (6), Lemma 3 and (7), we obtain the following estimates:

$$\begin{aligned} \|x_{n} - x^{*}\|^{2} &= \|a_{n}x_{n-1} + b_{n}Tv_{n} + c_{n}u_{n} - x^{*}\|^{2} \\ &= \|a_{n}(x_{n-1} - x^{*}) + b_{n}(Tv_{n} - x^{*}) + c_{n}(u_{n} - x^{*})\|^{2} \\ &= a_{n} \|x_{n-1} - x^{*}\|^{2} + b_{n} \|Tv_{n} - x^{*}\|^{2} + c_{n} \|u_{n} - x^{*}\|^{2} - a_{n}b_{n} \|x_{n-1} - Tv_{n}\|^{2} \\ &\quad - b_{n}c_{n} \|Tv_{n} - u_{n}\|^{2} - a_{n}c_{n} \|x_{n-1} - u_{n}\|^{2} \\ &\leq a_{n} \|x_{n-1} - x^{*}\|^{2} + b_{n} \|Tv_{n} - x^{*}\|^{2} + c_{n} \|u_{n} - x^{*}\|^{2} - a_{n}b_{n} \|x_{n-1} - Tv_{n}\|^{2} \\ &\leq (1 - b_{n}) \|x_{n-1} - x^{*}\|^{2} + b_{n} \|Tv_{n} - x^{*}\|^{2} + M^{2}c_{n} - a_{n}b_{n} \|x_{n-1} - Tv_{n}\|^{2} \\ &\leq (1 - b_{n}) \|x_{n-1} - x^{*}\|^{2} + b_{n} (\|v_{n} - x^{*}\|^{2} + \|v_{n} - Tv_{n}\|^{2}) + M^{2}c_{n} - a_{n}b_{n} \|x_{n-1} - Tv_{n}\|^{2}. \end{aligned}$$

We also have

$$\|v_n - x^*\|^2 \le \|v_n - x_n\|^2 + \|x_n - x^*\|^2 + 2 \|x_n - x^*\| \|v_n - x_n\|$$

$$\le \|v_n - x_n\|^2 + \|x_n - x^*\|^2 + 2M \|v_n - x_n\|,$$
 (9)

$$\|v_n - Tv_n\|^2 \le \|v_n - x_n\|^2 + \|x_n - Tv_n\|^2 + 2 \|x_n - Tv_n\| \|v_n - x_n\| \le \|v_n - x_n\|^2 + \|x_n - Tv_n\|^2 + 2M \|v_n - x_n\|,$$
(10)

and

$$\begin{aligned} \|x_{n} - Tv_{n}\|^{2} &= \|a_{n}x_{n-1} + b_{n}Tv_{n} + c_{n}u_{n} - Tv_{n}\|^{2} \\ &= \|(1 - b_{n})(x_{n-1} - Tv_{n}) + c_{n}(u_{n} - x_{n-1})\|^{2} \\ &\leq [(1 - b_{n})\|x_{n-1} - Tv_{n}\| + c_{n}\|u_{n} - x_{n-1}\|]^{2} \\ &\leq [(1 - b_{n})\|x_{n-1} - Tv_{n}\| + Mc_{n}]^{2} \\ &\leq (1 - b_{n})^{2}\|x_{n-1} - Tv_{n}\|^{2} + 3M^{2}c_{n}. \end{aligned}$$
(11)

Substituting (11) in (10), and then (10) and (9) in (8), we get

$$\|x_{n} - x^{*}\|^{2} \leq (1 - b_{n}) \|x_{n-1} - x^{*}\|^{2} + b_{n} \|x_{n} - x^{*}\|^{2} + 2b_{n} \|v_{n} - x_{n}\|^{2} + 4Mb_{n} \|v_{n} - x_{n}\| + 4M^{2}c_{n} - b_{n} [a_{n} - (1 - b_{n})^{2}] \|x_{n-1} - Tv_{n}\|^{2}.$$
(12)

From (i) we get

$$a_{n} - (1 - b_{n})^{2} = 1 - b_{n} - c_{n} - (1 - b_{n})^{2}$$

= $b_{n}(1 - b_{n}) - c_{n}$
 $\geq \delta^{2} - c_{n}.$ (13)

From (ii) it follows that there exists a positive integer $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, we have $c_n \leq \delta^3$, that is, $\delta^2 - c_n \geq \delta^2 (1 - \delta)$. Thus from (12) and (13), for all $n \geq n_0$ we have:

$$(1-b_n)\|x_n-x^*\|^2 \le (1-b_n)\|x_{n-1}-x^*\|^2 + 2\|v_n-x_n\|^2 + 4M\|v_n-x_n\| + 4M^2c_n - \delta^3(1-\delta)\|x_{n-1}-Tv_n\|^2.$$

Hence

$$\|x_n - x^*\|^2 \le \|x_{n-1} - x^*\|^2 + \frac{2}{1 - b_n} \|v_n - x_n\|^2 + 4M \frac{1}{1 - b_n} \|v_n - x_n\| + 4M^2 \frac{1}{1 - b_n} c_n - \frac{\delta^3 (1 - \delta)}{1 - b_n} \|x_{n-1} - Tv_n\|^2.$$

Since $1/(1 - b_n) \le 1/\delta$ and $-1/(1 - b_n) \le -1/(1 - \delta)$, we have

$$\|x_n - x^*\|^2 \le \|x_{n-1} - x^*\|^2 - \delta^3 \|x_{n-1} - Tv_n\|^2 + \sigma_n$$
(14)

for all $n \ge n_0$, where $\sigma_n = (1/\delta)[2 \|v_n - x_n\|^2 + 4M \|v_n - x_n\| + 4M^2c_n]$. Under the hypotheses of Theorem 4, one obtains:

$$\sum_{j=n_0}^{\infty} \sigma_n < +\infty.$$
⁽¹⁵⁾

From (14) we get

$$\delta^{3} \|x_{n-1} - Tv_{n}\|^{2} \leq \|x_{n-1} - x^{*}\|^{2} - \|x_{n} - x^{*}\|^{2} + \sigma_{n}$$

and hence

$$\delta^{3} \sum_{j=n_{0}}^{\infty} \left\| x_{j-1} - Tv_{j} \right\|^{2} \leq \sum_{j=n_{0}}^{\infty} \sigma_{j} + \| x_{n_{0}-1} - x^{*} \|^{2}.$$

Hence by (15) we get $\sum_{j=1}^{\infty} \|x_{j-1} - Tv_j\|^2 < +\infty$. This implies that $\lim_{n\to\infty} \|x_{n-1} - Tv_n\| = 0$. From (11) and condition (ii) it further implies that $\lim_{n\to\infty} \|x_n - Tv_n\| = 0$. Also the condition $\sum_{n=1}^{\infty} \|v_n - x_n\| < \infty$ implies $\lim_{n\to\infty} \|v_n - x_n\| = 0$. Thus, from (10),

$$\lim_{n \to \infty} \|v_n - Tv_n\| = 0.$$
⁽¹⁶⁾

By compactness of *K* there is a convergent subsequence $\{v_{n_j}\}$ of $\{v_n\}$, such that it converges to some point $z \in K$. By continuity of *T*, $\{Tv_{n_j}\}$ converges to *Tz*. Therefore, from (16) we conclude that Tz = z. Further, $\lim_{n\to\infty} ||v_n - x_n|| = 0$ implies

$$\lim_{j \to \infty} \|x_{n_j} - z\| = 0.$$
⁽¹⁷⁾

Since (14) holds for any fixed points of *T*, we have

$$\|x_n - z\|^2 \le \|x_{n-1} - z\|^2 - \delta^3 \|x_{n-1} - Tv_n\|^2 + \sigma_n,$$

and in view of (15), (17) and Lemma 2 we conclude that $||x_n - z|| \to 0$ as $n \to \infty$, i.e., $x_n \to z$ as $n \to \infty$. Thus we proved that $\{x_n\}$ converges strongly to some fixed point of *T*.

Corollary 5. Let *K* be a compact convex subset of a real Hilbert space *H* and $T : K \to K$ a Lipschitz pseudo-contractive map. Let $\{a_n\}, \{b_n\}, \{c_n\}, \{u_n\}, \{v_n\}$ and the sequence $\{x_n\}$ be as in Theorem 4. Then $\{x_n\}$ converges strongly to a fixed point of *T*.

Proof. From the Schauder fixed point theorem [17], *T* has a fixed point. Since any pseudo-contractive map with fixed points is hemi-contractive, we can apply Theorem 4.

Acknowledgements

The third author thanks the Ministry of Science and Environmental Protection of Serbia for their support. This research is financially supported by Changwon National University in 2008.

References

- [1] F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, in: Proc. Symposia Pure Math., vol. XVIII, part 2, 1976.
- [2] F.E. Browder, W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967) 197–228.
- [3] C.E. Chidume, Chika Moore, Fixed point iteration for pseudocontractive maps, Proc. Amer. Math. Soc. 127 (4) (1999) 1163–1170.
- [4] C.E. Chidume, S.A. Mutangadura, An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc. 129 (8) (2001) 2359–2363.
- [5] L.B. Ciric, S.N. Jesic, M.M. Milovanovic, J.S. Ume, On the steepest descent approximation method for the zeros of generalized accretive operators, Nonlinear Anal. 69 (2008) 763–769.
- [6] L.B. Ćirić, J.S. Ume, Ishikawa process with errors for nonlinear equations of generalized monotone type in Banach spaces, Math. Nachr. 278 (10) (2005) 1137–1146.
- [7] L. Deng, Iteration process for nonlinear Lipschitzian strongly accretive mappings in L_p spaces, J. Math. Anal. Appl. 188 (1994) 128–140.
- [8] T.L. Hicks, J.R. Kubicek, On the Mann iteration process in Hilbert space, J. Math. Anal. Appl. 59 (1977) 498-504.
- [9] Z.Y. Huang, Weak stability of Mann and Ishikawa iterations with errors for phi-hemicontractive operators, Appl. Math. Lett. 20 (4) (2007) 470-475.
- [10] S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 4 (1) (1974) 147–150.
- [11] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967) 508–520.
- [12] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-610.
- [13] M.O. Osilike, D.I. Igbokwe, Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations, Comput. Math. Appl. 40 (2000) 559-567.
- [14] J.W. Peng, Set-valued variational inclusions with T-accretive operators in Banach spaces, App. Math. Lett. 19 (3) (2006) 273-282.
- [15] A. Rafiq, On Mann iteration in Hilbert spaces, Nonlinear Anal. 66 (10) (2007) 2230-2236.
- [16] B.E. Rhoades, Comments on two fixed point iteration procedures, J. Math. Anal. Appl. 56 (1976) 741-750.
- [17] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930) 171–180.
- [18] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991) 407–413.
- [19] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993) 301–308.
- [20] Y. Xu, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224 (1998) 91–101.