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Abstract

A new bijection between ordered trees and 2-Motzkin paths is presented, together with its
numerous consequences regarding ordered trees as well as other combinatorial structures such
as Dyck paths, bushes, {0; 1; 2}-trees, Schr2oder paths, RNA secondary structures, noncrossing
partitions, Fine paths, and Davenport–Schinzel sequences.

R	esum	e
Une nouvelle bijection entre arbres ordonn6es et chemins de Motzkin bicolor6es est pr6esent6ee,

avec ses nombreuses cons6equences en ce qui concerne les arbres ordonn6es ainsi que d’autres
structures combinatoires telles que chemins de Dyck, buissons, arbres de type {0; 1; 2}, chemins
de Schr2oder, structures secondaires de type RNA, partitions non crois6ees, chemins de Fine, et
en8n suites de Davenport–Schinzel. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

An ordered tree is an unlabeled rooted tree where the order of the subtrees of a
vertex is signi8cant. It is well known that the number of all ordered trees with n edges
is the Catalan number Cn= [(1=n + 1)]( 2nn ). The 8rst 10 terms are 1, 1, 2, 5, 14, 42,
132, 429, 1430, 4862; it is sequence M1459 in [26]].

By a 2-Motzkin path we mean paths starting and ending on the horizontal axis but
never going below it, with possible steps (1; 1); (1; 0), and (1;−1), where the level
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steps (1; 0) can be either of two kinds: straight and wavy, say. The length of the path
is de8ned to be the number of its steps.

Ordinary Motzkin paths arise when the level steps are only of one kind. They are
counted by the so-called Motzkin numbers Mn=

∑
k¿0(

n
2k )Ck [10]. The 8rst 10 terms

are 1, 1, 2, 4, 9, 21, 51, 127, 323, 835; it is sequence M1184 in [26].
A Motzkin path with no level steps is called a Dyck path. Obviously, the length of

a Dyck path is an even number. It can be shown in several ways that the number of
Dyck paths of length 2n is the Catalan number Cn.

We return to 2-Motzkin paths. It is easy to show that the number of 2-Motzkin
paths with n steps is given by the Catalan number Cn+1. A standard bijection between
2-Motzkin paths with n steps and Dyck paths of length 2n+2 is as follows, where we
denote an up (down) step of a Dyck path or a 2-Motzkin path by U (D). For a given
2-Motzkin path 	 we replace U by UU , D by DD, a straight level step by UD, and a
wavy level step by DU . Note that the obtained path is a Dyck path except that it can
go down to level −1. We place a U at the front and a D at the end in order to obtain
a valid Dyck path. The Dyck path obtained this way is the image of the 2-Motzkin
path 	 (see, for example [2], p. 179).

In this paper, we present a new bijection between ordered trees and 2-Motzkin paths.
It has numerous consequences regarding ordered trees as well as other combinatorial
structures such as Dyck paths, bushes, {0; 1; 2}-trees, Schr2oder paths, secondary struc-
tures, noncrossing partitions, and Fine paths. In the last section we present a new
simple bijection between bushes and certain Davenport–Schinzel sequences and then,
taking its composition with our main bijection, we obtain a bijection between Motzkin
paths and Davenport–Schinzel sequences.

Remark. There is a basic bijection, B, between full binary trees and Dyck paths.
BrieKy, let T be a full binary tree with T1 and T2 the left and right subtrees at the
root. The bijection B is de8ned recursively by B(T )=UB(T1)DB(T2). A nonrecursive
form of this bijection will follow as a special case of our bijection (see Section 5.1).
At this point the reader could skip ahead to Section to Section 5.1 and develop results
there by using the bijection B.

Consequently, as pointed out by one of the referees, one way to view the results
in this paper is: start with the basic bijection B between full binary trees and Dyck
paths, add some new edges to the binary trees (to be called lonely and redundant),
add some new kind of steps to the Dyck paths (namely level steps of two kinds), and
extend B to these enriched combinatorial structures, i.e. ordered trees and 2-Motzkin
paths.

2. Tree terminology

As mentioned above, an ordered tree is an unlabeled rooted tree where the order
of the subtrees of a vertex is signi8cant. The subtrees of the root (having as roots
the children of the root) are called the principal subtrees of the tree. The outdegree
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of a vertex will be called its degree. A vertex of degree zero is called a leaf. By a
planted tree we mean a tree having degree of the root equal to 1. In this case, the
edge emanating from the root is sometimes referred to as the planting stalk. Contrary
to common usage, by a node we mean a vertex that is neither the root nor a leaf.
Thus the vertices of a tree are partitioned into three sets: the root, the nodes, and the
leaves. The nodes of a tree are of two kind: (i) branch node if its degree is at least 2
and (ii) lonely node if its degree is equal to 1. By a branch of a tree we mean a path
connecting either the root and a nearest branch node, or two nearest branch nodes, or
a leaf and the nearest branch node. The branches form a partition of the set of edges.
As far as edges are concerned, we introduce the following de8nitions:

• By a lonely edge we mean an edge emanating from a lonely node (edges 1, 3, 10,
15, 18, 19, 21, 24, 26 in Fig. 1).

• By a redundant edge we mean either an edge that is emanating from the root, with
the exception of the leftmost edge, or an edge emanating from a branch node, with
the exception of the leftmost and rightmost edges (edges 7, 9, 12, 16, 17, 22, 25 in
Fig. 1).

• By a left edge we mean the leftmost edge emanating from a branch node (edges 2,
4, 5, 13, 20 in Fig. 1).

• By a right edge we mean the rightmost edge emanating from a branch node (edges
6, 8, 11, 14, 23 in Fig. 1).

• By a right lonely edge we mean a lonely edge that is on the rightmost path of some
principal subtree of the tree (edges 1, 15, 18, 19, 24, 26 in Fig. 1).

We have the following relation involving some of the newly de8ned terms:

# leaves= 1 + # redundant edges + # branch nodes: (1)

To see this, we use the obvious identity

# leaves + # nodes= root degree +
∑

node degree;

from which we obtain

# leaves = root degree +
∑

(node degree− 1)

= root degree +
∑

(branch node degree− 1)

= root degree +
∑

(branch node degree− 2) + # branch nodes

= 1 + # redundant edges + # branch nodes:

3. The bijection

We describe our bijection between ordered trees and 2-Motzkin paths. Let  be any
nonempty ordered tree. Traverse  in preorder and for each edge encountered for the
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Fig. 1. The bijection �.

8rst time

(i) do nothing for the 8rst edge;
(ii) draw an up step for a left edge;
(iii) draw a down step for a right edge;
(iv) draw a straight level step for a lonely edge;
(v) draw a wavy level step for a redundant edge.

It is easy to see that we have obtained a 2-Motzkin path. More precisely, to an ordered
tree with n edges there corresponds a 2-Motzkin path of length n − 1. The described
mapping will be denoted by �.

Now we de8ne the inverse mapping. Given a 2-Motzkin path, we draw a tree in
preorder by the following rule: we start with an edge and then, traversing the 2-Motzkin
path from left to right, for each up step we draw a left edge, for each straight level step
we draw a lonely edge, for each wavy level step we draw a redundant edge emanating
from the appropriate vertex, and for each down step we draw a right edge emanating
from the appropriate node. For an example see Fig. 1.
Bijective correspondences. The following correspondences under the bijection � follow
more or less immediately from the de8nition of the bijection, excepting the last which
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follows from equality (1):

ordered tree 2−Motzkin path
left edge up step

right edge down step
lonely edge straight level step

right lonely edge straight level step at level 0
redundant edge wavy level step

redundant edge emanating from the root wavy level step at level 0
redundant edge emanating from a node wavy level step at level ¿0

node of degree 2 whose left child is a leaf peak
left edge ending in a branch node doublerise; i:e: 2 consecutive up

steps
right edge ending in a branch node valley

# leaves 1 + # wavy level steps + # up
steps

4. An involution on ordered trees

There is a trivial involution �→ �′ on the 2-Motzkin paths: interchange the straight
and wavy level steps. This involution and the bijection � from ordered trees onto
2-Motzkin paths induce in a straightforward manner an involution → ′ on ordered
trees. An example is given in Fig. 2.

This involution on ordered trees can be de8ned directly, without going through the
2-Motzkin paths. Roughly speaking, traverse the tree in preorder and replace lonely
(redundant) edges by redundant (lonely) edges. For trees with 1, 2, and 3 edges the
involution is shown in Fig. 3.



660 E. Deutsch, L.W. Shapiro /Discrete Mathematics 256 (2002) 655–670

Fig. 3.

If  is a tree and ′ is its image under the tree involution, then

# leaves() + # leaves(′)= n+ 1; (2)

where n is the number of edges.
To prove this, let � be the 2-Motzkin path corresponding to  under the bijection �

and let �′ be the 2-Motzkin path obtained from � by means of the trivial involution.
Then

# leaves()= 1 + # wavy level steps(�) + # up steps(�);

# leaves(′)= 1 + # straight level steps(�) + # down steps(�):

Adding the last two equalities, we obtain (2). From (2) we have a bijective proof that
the number of trees with n edges and k leaves is equal to the number of trees with n
edges and n+ 1− k leaves (see [3]).

An immediate consequence of (2) is

# leaves()= # internal nodes(′); (3)

where, the term “internal node” has the usual meaning (root or node). Thus, we have
a bijective proof, of the known fact, that the statistics “number of leaves” and “number
of internal nodes” are equidistributed, implying, in particular, that the total number of
leaves in all ordered trees with n edges is equal to the total number of internal nodes
in all ordered trees with n edges. This gives a new solution to a problem proposed by
one of the authors [25].

From trivially equidistributed statistics on 2-Motzkin paths (obtained by interchang-
ing the straight and wavy level steps) we obtain the following nontrivial equidistribu-
tions on ordered trees (see the list of correspondences in Section 3):

(i) the statistics “number of lonely edges” and “number of redundant edges” are
equidistributed;

(ii) the statistics “number of right lonely edges” and “number of redundant edges at
root level” are equidistributed.

Moreover, the number of ordered trees with n edges and k lonely edges (or k
redundant edges) is ( n−1

k )Mn−1−k , where Mi is the Motzkin number, de8ned in the
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introduction. Indeed, if an ordered tree with n edges has k redundant edges, then the
corresponding 2-Motzkin path has length n − 1 and k wavy level steps. However, it
is easy to see that the number of these is ( n−1

k )Mn−1−k (choose the k positions of
the wavy level steps and 8ll out the remaining positions by the steps of a possibly
“interrupted” Motzkin path of length n− 1− k).

Remark. Making use of various known bijections, we can obtain combinatorial proofs
that ( n−1

k )Mn−1−k also counts

(i) the number of Dyck paths of length 2n with k peaks at even level;
(ii) the number of Dyck paths of length 2n with k DUD’s (i.e. noninitial ascents of

length 1);
(iii) the number of noncrossing partitions of {1; 2; 3; : : : ; n} with k singleton blocks

other than {1}; we recall that a partition of {1; 2; 3; : : : ; n} is said to be a non-
crossing partition if for every four elements 16a¡b¡c¡d6n, the following
condition is satis8ed: if a and c lie in the same block, and b and d lie in the
same block, then all four elements lie in the same block (see [27, p. 226]).

(iv) the number of noncrossing partitions of {1; 2; 3; : : : ; n} with k adjacent point pairs
in the same block.

As far as the statistics “number of right lonely edges” and “number of redundant
edges at root level” are concerned, clearly, they have the same distribution as the
statistic “degree of root −1”.

5. Special cases

5.1. Planted full binary trees

A full binary tree is a tree in which the root and the nodes have degree equal to 0
or 2. A planted full binary tree is obtained from a full binary tree by adding a planting
stalk (the reader will note that a planted full binary tree is not a full binary tree). Thus,
a planted full binary tree has neither lonely nor redundant edges. Consequently, their
images under the bijection � are Dyck paths. The following correspondences between
full binary trees and Dyck paths are immediate:

full binary tree Dyck path
left node doublerise

right node valley
left leaf peak

right leaf (except the last) doubledescent; i:e: 2 consecutive down steps
level of leftmost leaf height of 8rst peak

level of rightmost leaf number of returns (to the horizontal axis)

From the obvious equidistribution of left and right statistics on full binary trees we
obtain at once the nonobvious but well-known (see for example [5–7] also [1,11,17–19],
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Fig. 4. Bijection bushes ↔ Motzkin paths.

[29–31]) equidistributions of the following pairs of statistics on Dyck paths:

(i) “number of doublerises” and “number of valleys”;
(ii) “number of peaks” and “1 + number of doublerises”;
(iii) “height of 8rst peak” and “number of returns”.

5.2. Bushes

A bush is an ordered tree whose nodes have degree at least two (see [9,10]). In other
words, a bush is a tree with no lonely edges. It follows from here that the restriction
of the bijection � to bushes yields a bijection between bushes and Motzkin paths.
Namely, traverse the bush in preorder, do nothing for the 8rst edge, draw an up step
for each left edge, draw a level step for each redundant edge, and draw a down step
for each right edge. The fact that the number of bushes with a given number of edges
is a Motzkin number is well known (see [9,10]); this particular bijection may be new
(see Fig. 4).

If, before we apply the bijection �, we add a planting stalk to the bushes, then we
obtain the following new manifestation of the Motzkin numbers: 2-Motzkin paths with
no straight level steps, except possibly from (0; 0) to (1; 0), and no wavy level steps
at level 0. The M4 = 9 such paths with 8ve steps are given in Fig. 5.

5.3. {0; 1; 2}-Trees

A {0; 1; 2}-tree is an ordered tree all of whose vertices have degree not exceeding
two (see [9,10,14,24]). In other words, a {0; 1; 2}-tree is a tree which, after a planting
stalk is added, has no redundant edges. It follows from here that the restriction of
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Fig. 5. 2-Motzkin paths with no straight level steps, except possibly from (0; 0) to (1; 0), and no wavy level
steps at level 0.

Fig. 6. Bijection {0; 1; 2}-trees ↔ Motzkin paths (The planting stalk, added to the trees before the bijection,
is not shown; nothing corresponds to it under the bijection).

Fig. 7. At most one wavy level step which, moreover, is at level zero.

the bijection � to {0; 1; 2}-trees to which a planting stalk has been added, yields a
bijection between {0; 1; 2}-trees and Motzkin paths. Namely, traverse the {0; 1; 2}-tree
in preorder, draw an up step for each left edge, draw a level step for each lonely edge,
and draw a down step for each right edge. The fact that the number of {0; 1; 2}-trees
with a given number of edges is a Motzkin number is well known (see [9,10]); this
particular bijection may be new (see Fig. 6).

If we apply the bijection � directly to the {0; 1; 2}-trees, without adding 8rst planting
stalks, then we obtain the following new manifestation of the Motzkin numbers: 2-
Motzkin paths with at most one wavy level step which, moreover, is at level zero. The
M4 = 9 such paths with three steps are given in Fig. 7.

Remark. The tree involution from Section 4, restricted to bushes and followed by the
removal of the edge emanating from the root, yields a bijection between bushes and
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Fig. 8. Bijection bushes ↔{0; 1; 2}-trees.

{0; 1; 2}-trees. Namely, given a bush, traverse it in preorder, replace each redundant
edge by a lonely edge, and remove the edge emanating from the root (see Fig. 8).

5.4. Schr9oder paths

A Schr9oder path of length 2n is a lattice path in the plane from (0; 0) to (2n; 0) with
steps (1; 1); (2; 0), and (1;−1), that never go below the horizontal axis. We assume
that the level steps of the Schr2oder paths, viewed as 2-Motzkin paths, are straight and
we apply to them the bijection �−1. We obtain planted trees with nodes of degree
at most two and having all branches of odd length. We will call these Schr9oder
trees. The Schr2oder trees with 1, 3, and 5 edges are shown in Fig. 9. Now, after this
new manifestation of the large Schr2oder numbers has been discovered, we sketch two
proofs via generating functions. Let G(z) be the generating function of the Schr2oder
trees according to number of edges. Each Schr2oder tree is either a path consisting of
an odd number of edges or it is such a path with two Schr2oder trees hanging at its end.
Consequently, G=P+PG2, where P= z+z3+z5+· · · = z=(1−z2). This equation leads
to the known generating function of the Schr2oder numbers. Alternatively, the Schr2oder
trees can be obtained from the planted full binary trees by replacing edges by paths
of odd length. Since the generating function of planted full binary trees is zC(z2),
where C(z)= (1−√

1− 4z)=2z, it follows that the generating function of the Schr2oder
trees is PC(P2), leading again to the desired result. (For a systematic treatment of the
derivation of generating functions from set-theoretic operations, see [12,24].)
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Fig. 9. Schr2oder trees (planted, all nodes have degree 62, and branches have odd length).

Fig. 10.

5.5. Secondary structures

A secondary (RNA) structure is a graph (without loops and multiple edges) on
the vertex set [n] such that (i) {i; i + 1} is an edge for all 16i6n− 1; (ii) for all i,
there is at most one j such that {i; j} is an edge and |j − i| 	=1, and (iii) if {i; j}
and {k; l} are edges with i¡k¡j, then i¡l¡j [27] (see also [23,28]). For the sake
of simplicity, in the graphical representation of a secondary structure we shall delete
all the edges required by condition (i). The obtained graph is a noncrossing partition
satisfying requirement (ii) from the de8nition of a secondary structure.

Secondary structures are in a simple bijection with Motzkin paths without peaks
[21]. Indeed, given a secondary structure, we traverse it from left to right and for each
isolated vertex we draw a level step, for each vertex where an edge starts we draw
an up step, and for each vertex where an edge ends we draw a down step. For an
example, see Fig. 10.

Now we apply the bijection �−1 to these Motzkin paths. We can consider two cases.
(i) The level steps of the Motzkin paths, viewed as 2-Motzkin paths, are considered

to be straight. In this case we obtain planted trees with nodes of degree at most two
and such that the left child of a branch node is not a leaf. Alternatively, removing the
planting stalk, we have trees with vertices of degree at most two and such that the left
child of a vertex of degree two is not a leaf. The eight such trees with 8ve edges are
given in Fig. 11. We remark that this result can be obtained also via a bijection due
to Dershowitz and Zaks [4].

(ii) The level steps of the Motzkin paths, viewed as 2-Motzkin paths, are considered
to be wavy. In this case we obtain bushes such that the left child of a node of degree 2
is not a leaf. The eight such trees with six edges are given in Fig. 12.

If we apply the Dershowitz–Zaks bijection [4] to these bushes, then we obtain non-
crossing partitions satisfying the following two conditions: (a) there are no singletons,



666 E. Deutsch, L.W. Shapiro /Discrete Mathematics 256 (2002) 655–670

Fig. 11. {0; 1; 2}-trees in which the left child of a vertex of degree two is not a leaf.

Fig. 12. Bushes in which the left child of a node of degree two is not a leaf.

Fig. 13. No singletons, except possibly {1}; no {i; i + 1}, except possibly {1; 2}.

except possibly the block {1} and (b) there are no blocks of two consecutive integers,
except possibly {1; 2}. The eight such noncrossing partitions on six points are given
in Fig. 13.

5.6. Fine paths

By a Fine path we mean a Dyck path without peaks of height 1. They are counted
by the Fine numbers, having generating function F(z)= (1−√

1− 4z)=z(3−√
1− 4z)

(F(z)= 1+ z2 + 2z3 + 6z4 + 18z5 + 57z6 + 186z7 + · · ·). A survey of the Fine numbers
can be found in [8]. Applying the bijection �−1 to the Fine paths, we obtain planted
full binary trees. Removing the planting stalk, we obtain full binary trees. However,
the absence of peaks of height one in the Fine paths implies that the full binary tree
has no leaf as the left child of a node on the rightmost path. The six such trees with
eight edges are given in Fig. 14.

Making use of a well-known bijection between Dyck paths and ordered trees, it
follows at once that the Fine numbers count also the ordered trees with no leaves at
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Fig. 14. No leaf is the left child of a vertex on the rightmost path.

Fig. 15. 2-Motzkin paths do not start or end with a wavy level step and do not have two consecutive wavy
level steps at level zero.

Fig. 16. 2-Motzkin paths with an odd number of wavy level steps at level zero.

level 1. In order to see which 2-Motzkin paths correspond to these trees under the
bijection �, we prefer to look at the 2-Motzkin paths obtained when we do have a leaf
at level 1. If a leaf at level 1 is the endpoint of the leftmost edge emanating from the
root, then the corresponding 2-Motzkin path is either empty or it starts with a wavy
level step. If a leaf at level 1 is the endpoint of the rightmost edge emanating from
the root, then the corresponding 2-Motzkin path ends with a wavy level step. Finally,
if a leaf at level one is the endpoint of an edge strictly between the leftmost edge and
the rightmost edge emanating from the root, then the corresponding 2-Motzkin path
contains two consecutive wavy level steps at level zero. Consequently, 2-Motzkin paths
that do not start or end with a wavy level step and do not have two consecutive wavy
level steps at level zero are counted by the Fine numbers. The six such 2-Motzkin
paths with three edges are given in Fig. 15.

It is known [8] that ordered trees having root of even degree are counted by the
Fine numbers. Applying to these the bijection �, we obtain immediately that 2-Motzkin
paths with an odd number of wavy level steps at level zero are counted by the Fine
numbers. The six such 2-Motzkin paths with three edges are given in Fig. 16.

It is also known [8] that 2-Motzkin paths with no level steps at level zero are counted
by the Fine numbers. Let us apply the bijection �−1 to these paths. The absence of
straight level steps at level zero implies that the corresponding tree has no right lonely
edge, while the absence of wavy steps at level zero implies that the corresponding tree
is planted. After removing the planting stalks, the obtained trees are characterized by
the absence of lonely edges on the rightmost path. Consequently, trees with no vertices
(root or node) of degree one on the rightmost path are counted by the Fine numbers.
The six such trees with four edges are given in Fig. 17.
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Fig. 17. Trees with no vertices of degree one on the rightmost path.

6. A bijection between Davenport–Schinzel sequences and bushes

In this paper by a Davenport–Schinzel sequence (more brieKy, a DS sequence) of

rank n we shall mean a 8nite sequence selected from the set [n] def={1; 2; : : : ; n} and
satisfying the following conditions: (a) each integer i∈[n] occurs in the sequence; (b)
for each pair i; j∈[n]; i¡j, the 8rst appearance of i in the sequence precedes that of j;
(c) no two adjacent symbols in the sequence are identical; (d) for each pair i; j∈[n],
the sequence contains no subsequence of the form ijij. The number of symbols in a
DS sequence is called the length of the sequence.

Given a bush, using the sequence of positive integers, we label the nodes and the
leaves in preorder, except that each node and its youngest child (i.e. the rightmost child)
have the same label. It is immediate that the sequence of labels is a DS sequence.
Indeed, (i) there are no immediate repetitions in the sequence since a bush has no
nodes of outdegree 1 and (ii) the preorder rule precludes subsequences of the form
ijij. The inverse mapping can be easily de8ned. An example illustrating the bijection
is given in Fig. 18.

Obviously, the length of the DS sequence is equal to the number of edges. The rank
of the DS sequence is equal to the number of leaves since each label occurs at exactly
one leaf. From here it follows that DS sequences, grouped by length, are counted by
the Motzkin numbers and, if grouped by rank, then they are counted by the Schr2oder
numbers [13,15,16,20,22]. From relation (1) we can easily 8nd that in a bush

# edges= 2× # leaves− # redundant edges− 1:

From here it follows that if the number of leaves is prescribed, then the number of
edges is maximum if and only if the number of redundant edges is equal to zero, i.e.
if and only if the bush is a planted full binary tree. We obtain, applying the above
bijection, that the number of DS sequences with a prescribed rank and having maximal
length is given by a Catalan number [20].

Now, if we take the composition of this bijection with the bijection of Section 3
or, more precisely, with its restriction to bushes (see Section 5.2), then we obtain a
bijection between Motzkin paths and DS sequences. This can be described directly:
given a Motzkin path, using the sequence of positive integers, label the step endpoints
in sequence from left to right, except that points that can be connected by a horizontal
line lying strictly under the path have the same label. It is immediate that the sequence
of labels, read from left to right, is a DS sequence. The inverse mapping can be easily
de8ned. An example illustrating the bijection is given in Fig. 19.
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Obviously, the length of the obtained DS sequence is equal to the length of the
Motzkin path increased by one unit and one can show that the rank of the DS sequence
is equal to 1 + (length of Motzkin path + number of level steps)/2.

Remark. This last bijection from Motzkin paths to DS sequences can be trivially
modi8ed to a bijection from Schr2oder paths to DS sequences, in which the rank of the
DS sequence is equal to the length of the Schr2oder path increased by one unit.
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