
Structure

Article
Structure of the Kti11/Kti13 Heterodimer
and Its Double Role in Modifications
of tRNA and Eukaryotic Elongation Factor 2
Sebastian Glatt,1,7 Rene Zabel,2,7 Ivana Vonkova,1 Amit Kumar,3 Daili J. Netz,4 Antonio J. Pierik,4,6 Vladimir Rybin,1

Roland Lill,4,5 Anne-Claude Gavin,1 Jochen Balbach,3 Karin D. Breunig,2,* and Christoph W. Müller1,*
1Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
2Martin-Luther-Universität Halle-Wittenberg, Institut für Biologie, Weinbergweg 10, 06120 Halle (Saale), Germany
3Martin-Luther-Universität Halle-Wittenberg, Institut für Physik, Betty-Heimann-Straße 7, 06120 Halle (Saale), Germany
4Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Straße 6, 35037 Marburg, Germany
5LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Straße, 35043 Marburg, Germany
6Present address: Faculty of Chemistry, University of Kaiserslautern, Erwin-Schrödinger-Straße 54, 67663 Kaiserslautern, Germany
7Co-first author

*Correspondence: karin.breunig@genetik.uni-halle.de (K.D.B.), cmueller@embl.de (C.W.M.)

http://dx.doi.org/10.1016/j.str.2014.11.008
SUMMARY

The small, highly conserved Kti11 alias Dph3 protein
encoded by the Kluyveromyces lactis killer toxin
insensitive gene KTI11/DPH3 is involved in the diph-
thamide modification of eukaryotic elongation factor
2 and, together with Kti13, in Elongator-dependent
tRNA wobble base modifications, thereby affecting
the speed and accuracy of protein biosynthesis
through two distinct mechanisms. We have solved
the crystal structures of Saccharomyces cerevisiae
Kti13 and the Kti11/Kti13 heterodimer at 2.4 and
2.9 Å resolution, respectively, and validated interact-
ing residues through mutational analysis in vitro and
in vivo.We show thatmetal coordination by Kti11 and
its heterodimerization with Kti13 are essential for
both translational control mechanisms. Our struc-
tural and functional analyses identify Kti13 as an
additional component of the diphthamide modifica-
tion pathway and provide insight into the molecular
mechanisms that allow the Kti11/Kti13 heterodimer
to coregulate two consecutive steps in ribosomal
protein synthesis.

INTRODUCTION

Novel regulatory mechanisms of the translation process

involving synonymous codon variants but also tRNA modifica-

tions have recently gained particular attention (Cannarozzi

et al., 2010; Laxman et al., 2013; Novoa et al., 2012; Tuller

et al., 2010). Modifications of uridines in the wobble position of

tRNA anticodons have been shown to influence ribosomal A-

site binding and translation rates of specific proteins (Bauer

et al., 2012; Rezgui et al., 2013). Thiolation at the wobble position

was recently described in yeast as a sensor for sulfur availability

and as a link between translation regulation and metabolism

(Laxman et al., 2013).
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In yeast, 5-methoxycarbonylmethyl-thio-uridines (mcm5s2Us)

found at the wobble position of tRNAK
UUU, tRNAQ

UUG, and

tRNAE
UUC represent an ‘‘Achilles heel’’ exploited by fungal spe-

cies producing so-called killer toxins. The Kluyveromyces lactis

killer toxin (also named zymocin) contains a tRNA endonuclease,

the g-toxin, that specifically cleaves these modified tRNAs, re-

sulting in cell-cycle arrest (Lu et al., 2005). As yeast strains lack-

ing the modified tRNAs become resistant to the toxin, several

independent mutational screens based on this phenotype have

identified genes that are involved in the underlying modification

cascade (Butler et al., 1994; Frohloff et al., 2001; Huang et al.,

2008; Kishida et al., 1996). Complementation analysis of the kti

class of mutants identified the six core subunits of the highly

conserved eukaryotic Elongator complex (Elp1/Kti7, Elp2/Kti3,

Elp3/Kti8, Elp4/Kti9, Elp5, and Elp6/Kti4) and four additional fac-

tors, Kti11, Kti12, Kti13, and Kti14, all of which are involved in

tRNA modification (Bär et al., 2008; Frohloff et al., 2001; Mehl-

garten and Schaffrath, 2003; Zabel et al., 2008).

The eukaryotic Elongator complex was originally described as

a transcription elongation factor (Otero et al., 1999), but later was

also shown to be required for formation of 5-carbamoylmethyl-

uridine and 5-methoxycarbonylmethyl-uridine (mcm5U) (Huang

et al., 2005). HoloElongator contains two copies of each of its

six subunits (Glatt et al., 2012a), and each of the subunits is

required for the modification reaction. Although the genuine

role of Elongator is still under debate (Glatt et al., 2012b) and

the details of the tRNA modification reaction carried out by the

catalytic Elp3 subunit are not fully understood yet (Chen et al.,

2011; Selvadurai et al., 2014), structural and functional analyses

of the different Elongator subunits provided support for a direct

role of Elongator in wobble uridine modification (Di Santo et al.,

2014; Glatt et al., 2012a). Kti11, Kti12, Kti13, and Kti14 appear

to fulfill regulatory functions and are only transiently associated

with Elongator. The roles of these regulatory factors and at which

step of the modification reaction they are required are still

unclear.

Kti11, also known as Dph3, is not only involved in Elongator

function but also in the biosynthesis of diphthamide, a posttrans-

lational modification of the eukaryotic translation elongation fac-

tor 2 (eEF2) (Liu and Leppla, 2003). The formation of this unique
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Figure 1. Crystal Structures of Kti13 and the

Kti11/Kti13 Heterodimer

(A) Schematic overview of secondary structure

elements in the seven-bladed b-propeller protein

Kti13 and the Kti13-(GS)5-Kti11 fusion protein.

(B) Crystal structure of Kti13 shown in cartoon and

surface representation in two orthogonal views. b

sheets are numbered and colored as in (A) and N

termini and C termini are labeled.

(C) Crystal structure of Kti11 (green) in complex

with Kti13 (dark salmon) shown in cartoon and

surface representation in two orthogonal views.

Orientation of Kti13 is identical as in (B), and metal

binding cysteines (yellow), bound iron or zinc

(orange), and bound sulfates (red) are shown in

ball-and-stick representation.

See also Figures S1–S3.
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histidine modification involves seven so-called diphthamide

biosynthesis proteins (Dph1–Dph7) (Abdel-Fattah et al., 2013)

and depends on the formation of iron-sulfur clusters in Dph1

and Dph2 (Dong et al., 2014). Although eEF2 is essential for

translation (Jørgensen et al., 2006), the genuine role of the diph-

thamide modification is not fully understood yet. The modified

histidine in eEF2 itself, similar to mcm5s2U-modified tRNAs, rep-

resents a target site for toxins, namely, the ADP-ribosylating

diphtheria toxin (Pappenheimer, 1977), the Pseudonomas aeru-

ginosa exotoxin A (Zhang et al., 2008), and cholix toxin from

Vibrio cholera (Jørgensen et al., 2008).

The atomic structure of the small and highly conserved Kti11

protein has been solved by nuclear magnetic resonance

(NMR). It uses two zinc knuckles to coordinate a single zinc ion

by four cysteine residues, which categorized it into a group of

zinc binding proteins with a zinc ribbon fold (Proudfoot et al.,

2008; Sun et al., 2005). Kti13, also known as Ats1 (a-tubulin sup-

pressor 1), was originally identified as a suppressor of class 2

a-tubulin mutations (Kirkpatrick and Solomon, 1994). However,

as for Kti11, the genuine function of Kti13 in the cell remains

elusive. Kti11 and Kti13 interact with each other and stay asso-

ciated with each other even in the absence of properly assem-

bled Elongator (Zabel et al., 2008). In contrast, the molecular

details of Kti11/Kti13 heterodimer formation as well as the mo-

lecular function of the Kti11/Kti13 heterodimer are poorly under-

stood. Interestingly, the human Kti13-related protein DelGEF

(deafness locus related putative guanine nucleotide exchange
150 Structure 23, 149–160, January 6, 2015 ª2015 Elsevier Ltd All rights reserved
factor) and DelGIP, a Kti11 homolog, are

both implicated in the development of he-

reditary deafness in human (Uhlmann

et al., 1999). Human DelGIP and DelGEF

share 45% and 29% identical amino

acid residues with Saccharomyces cere-

visiae Kti11 and Kti13, respectively, and

both proteins also form a heterodimer

(Sjölinder et al., 2004). Here, we present

the crystal structures of S. cerevisiae

Kti13 in complex with Kti11 and Kti13 in

its unbound form.We validate our crystal-

lographic studies by NMR chemical shift

analysis of the heterodimeric Kti11/Kti13
complex in solution and analyze the contribution of individual

residues to the interaction surface by mutational studies. We

show that Kti11 is binding iron in living yeast cells and provide

evidence that heterodimerization itself, and the direct binding

of metals to the Kti11/Kti13 heterodimer, influences downstream

activation of diphthamide biosynthesis and Elongator-mediated

tRNA modification.

RESULTS

Kti13 Is a WD40 Protein
We expressed full-length S. cerevisiae Kti13 protein in Escheri-

chia coli, purified it using affinity and size exclusion chromatog-

raphy (Figure 1A and Figure S1A available online), and subse-

quently carried out crystallization trials. Crystals were obtained

after 2 days by the vapor diffusion method and continued

growing to sizes suitable for diffraction data collection until day

7. We were able to collect diffraction data up to 2.4 Å resolution.

The crystal structure of Kti13 was determined using selenome-

thionine-substituted protein in a single anomalous dispersion

experiment and subsequently refined to Rwork/Rfree values of

23.5%/26.1% (Table 1). Kti13 shows a typical WD40 domain

fold with seven antiparallel b stranded blades. In detail, blades

1, 2, 3, 6, and 7 are built up by four b strands, whereas blades

4 and 5 contain only three b strands. The three b strands of blade

4 and 5 are complemented by the presence of a short helix and

an extended loop, respectively. Blade 7 is stabilized by b strand



Table 1. Data Collection and Refinement Statistics

Kti13 SeMet Kti11/Kti13 P64 Kti11/Kti13 P64 (Fe Edge) Kti11/Kti13 P65

Data Collection

Beamline ID14-4 (ESRF) P14 (PETRAIII) P14 (PETRAIII) P14 (PETRAIII)

Space group P21 P64 P64 P65

Cell dimensions

a, b, c (Å) 35.75, 96.6, 97.35 151.27, 151.27, 107.14 152.46, 152.46, 107.46 152.06, 152.06, 203.85

a, b, g (�) 90, 95.62, 90 90, 90, 120 90, 90, 120 90, 90, 120

Wavelength (Å) 0.97914 0.97626 1.69696 0.97626

Resolution (Å)a,b 50–2.4 (2.46–2.4) 50–2.9 (2.97–2.9) 50–3.5 (3.58–3.5) 50–3.0 (3.08–3.0)

CC(1/2) 0.99 (0.49) 0.99 (0.55) 0.99 (0.68) 0.99 (0.47)

Rmerge (%) 10.3 (268.6) 9.8 (155.3) 13.9 (107.7) 11.3 (195.3)

I/sI 11.88 (0.75) 20.33 (1.5) 16.17 (1.79) 17.05 (1.23)

Completeness (%) 99.8 (98.1) 99.4 (94.1) 99.5 (93.2) 99.6 (94.9)

Redundancy 9.3 (8.9) 11.0 (10.0) 10.0 (6.9) 11.4 (11.1)

Sites 12 Se 2 Fe

Refinement

Resolution (Å) 50–2.4 50–2.9 50–3.0

No. of reflections 25,852 30,906 53,186

Rwork/Rfree (%) 23.55/26.06 19.99/21.9 20.86/23.47

No. of atoms

Protein 4,970 6,329 12,686

Ligand 0 17 29

Water 0 0 0

B-factors (Å2)

Protein 61.08 50.5 95.35

Ligand 95.0 134.7

rmsd

Bond lengths (Å) 0.002 0.003 0.002

Bond angles (�) 0.492 0.605 0.509
aValues in parentheses correspond to the highest resolution shell.
bResolution cutoff criteria according to (Karplus and Diederichs, 2012). Resolution limits according to an I/s(I) of 2 are 2.6 Å for Kti13, 2.95 Å for Kti11/

Kti13 in P64, and 3.1 Å for Kti11/Kti13 in P65.
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completion, where the most C-terminal strand (residues 330–

334) and the most N-terminal strand (residues 5–10) form a

‘‘Velcro-like’’ closure completing the last blade (Figure 1B).

Structural comparisons revealed that among the WD40 protein

family, Kti13 showed highest similarity to regulator of chromo-

some condensation 1 (RCC1) and other RCC1-like domains.

The central cavity of theWD40 domain is wide, and the individual

strands of the propeller are connected by large loops that never-

theless can be nicely traced in the density. Using gel filtration and

analytical ultracentrifugation analyses, we show that Kti13 is pre-

sent as a monomer in solution (Figures S1A and S1B). Surface

conservation analyses revealed a highly conserved surface

patch at the top side of the propeller, which is known from other

WD40 proteins as a ‘‘super-site’’ for protein-protein interactions

(Stirnimann et al., 2010). This region in Kti13 contains several sol-

vent-exposed hydrophobic residues, which also indicates a suit-

able interaction site for binding a protein partner (Figures S1C

and S1D).

WD40 domain proteins, such as Kti13, are not only well-known

protein binding domains but also some of them are known to
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specifically interact with lipids. We therefore tested purified

Kti13 in a physiological and quantitative lipid binding assay

that is based on the use of artificial, surrogate membranes (lipo-

somes) and allows protein-lipid interactions to be studied in the

context of a membrane bilayer (Table S3) (Saliba et al., 2014).

Strikingly, GFP-tagged Kti13 was efficiently and specifically re-

cruited to liposomes containing either phosphatidylinositol 3,4-

bisphosphate [PI(3,4)P2] or phosphatidylinositol 4,5-bisphos-

phate [PI(4,5)P2] in this assay that approximates the in vivo

situation (Figures S2A and S2B). Its binding specificity was

similar to that of the pleckstrin homology domain of Plcd, known

to recognize PI(4,5)P2 (Figures S2A and S2C).

Structure of the Kti11/Kti13 Heterodimer
Kti13 interacts with Kti11 in vivo (Zabel et al., 2008), and here we

show that both purified proteins also interact in vitro with high

affinity (see below). Because initial crystallization trials of the re-

constituted heterodimeric complex did not yield crystals, we ex-

pressed a fusion protein [Kti13-(GS)5-Kti11], in which the two

proteins were connected using a ten-amino-acid (53 Gly-Ser)
9–160, January 6, 2015 ª2015 Elsevier Ltd All rights reserved 151



Figure 2. Mutants of the Kti11/Kti13 Dimer

Interface

(A) Left: GST-pull-down assays of purified GST-

tagged Kti11 variants with untagged Kti13. A

mixture of purified GST and untagged Kti13 was

used as control. Lower gel shows 5% of the input

and upper gel shows bound fractions. Right: GST-

pull-down assays of purified untagged Kti13 vari-

ants with GST-tagged Kti11. Lower gel shows 5%

of the input and upper gel shows bound fractions.

(B) ITCmeasurement using purified Kti13 (10 mM in

the cell) and Kti11 (100 mM in the syringe). Calcu-

lated KD values and stoichiometry (N) are indi-

cated.

(C) Summary of ITC measurement using indicated

Kti11 and Kti13 single point mutants.

See also Figure S4.
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linker (Figure 1A). This strategy has been successfully applied to

a variety of protein complexes in crystallography and electron

microscopy in order to ensure precise 1:1 stoichiometry or to

stabilize protein complexes (Reddy Chichili et al., 2013). We ob-

tained crystals in two different space groups (P64 and P65) that

allowed collecting diffraction data up to 2.9 and 3.0 Å resolution,

respectively. The complex structures could be solved by molec-

ular replacement using the Kti13 structure as a searchmodel and

subsequently refined to Rwork/Rfree values of 20.0%/21.9% and

20.9%/23.5% (Table 1). In the complex structure, Kti11 indeed

binds to Kti13 through the conserved hydrophobic region on

top of the WD40 propeller (Figure 1C). Comparison of the un-

bound Kti13 structure with the Kti11-bound form of Kti13 shows

that there are no overall structural rearrangements in Kti13 upon

complex formation (root-mean-square deviation [rmsd]326Ca =

0.78 Å). Somehow unexpected, in the crystals Kti11 binds to a

neighboring Kti13 molecule, but not the covalently linked Kti13

molecule of the fusion construct (Figure S3). Although the linker

regions themselves are in different conformations, the six
152 Structure 23, 149–160, January 6, 2015 ª2015 Elsevier Ltd All rights reserved
different Kti11/Kti13 complexes present

in the asymmetric units of the two crystal

forms show an almost identical arrange-

ment of the two proteins (Figure S3). We

therefore conclude that the observed

Kti11/Kti13 heterodimer is reflecting the

native relative orientation.

Validation of the Kti11/Kti13
Heterodimer Interface
We further assessed the Kti11/Kti13

interface by using structure-guided single

point mutations in different biochemical

interaction assays using individually puri-

fied Kti11 and Kti13 proteins. We

observed a strong decrease in affinity to-

ward Kti13 using N-terminally truncated

Kti11 (8–82), Kti11-Y4A, or Kti11-D5A in

glutathione S-transferase (GST)-pull-

down assays, whereas the Kti11-E8A

mutation had a less severe effect on the

interaction (Figure 2A, left). These results
clearly confirmed the involvement of conserved residues in the N

terminus of Kti11 in the interface with Kti13, as seen in our crystal

structures. In addition, we tested several highly conserved Kti13

residues (Figure 2A, right) that, based on the structures, are

thought to contribute to the interaction surface (Figure S4A).

Mutating the most central hydrophobic tryptophan residue of

Kti13 (W229A/C) in the interface almost abolished binding, while

the variant Kti13-W96A only showed reduced affinity to Kti11.

The side-chain orientation of residue W294 of Kti13 is consider-

ably different in the binding interface of Kti11/Kti13 compared to

unbound Kti13. Accordingly, replacingW294with alanine slightly

reduced the affinity of Kti13 toward Kti11 (Figure 2A). Mutating

other residues in the proximity of the interaction site (Kti13-

E296A and Kti13-H297A) had no detectable negative effect on

binding, or even enhanced the interaction (Figure 2A). As E296

andH297A are in close proximity toW294 (Figure S4A), we spec-

ulate that mutating these residues to alanine enhances the de-

gree of freedom for the W294 side chain, allowing it more easily

to adapt the conformation observed in the complex structure



Figure 3. NMR Analysis of the Kti11/Kti13

Heterodimer

(A) 1H-15N HSQC spectra of N15-labeled Kti11 in

the absence (black) and presence of 15 mM Kti13

(red). Residue numbers are indicated for peaks

that show strong (red) and clear (orange) differ-

ences.

(B) Quantified NMR intensities blotted for all Kti11

residues. Selected residues are highlighted and

colored according to (A).

(C) Close-up view of Kti11 bound to Kti13 with

interacting residues of Kti13 residues labeled and

displayed in ball-and-stick representation. Con-

formations of the residues in the unbound Kti13

structure are colored gray.

(D) Close-up view of Kti11 (green, cartoon) bound

to Kti13 (dark salmon, surface) with residues

labeled and colored as indicated in (A) and (B).

See also Figure S5.
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and thereby increasing the affinity of these mutants for Kti11. We

could not detect severe changes in the integrity or stability of

Kti11 and Kti13 as judged by size exclusion chromatography

and thermostability analyses (Figures S4B and S4C), consistent

with the view that the Kti11 and Kti13 mutations only affect the

interaction with each other, but not the integrity of Kti11 and

Kti13 themselves.

To analyze the binding affinity between Kti11 and Kti13 more

quantitatively, we also used isothermal titration calorimetry

(ITC) and analytical ultracentrifugation. Using ITC, we found

that the untagged Kti11 (Figure S5A) and Kti13 (Figure S1A) pro-

teins bind each other with high affinity (KD = 220 nM) in a 1:1 stoi-

chiometry (Figure 2B), which agrees with results from analytical

ultracentrifugation where Kti11 and Kti13 also form a 1:1 com-

plex (Figure S5B). Subsequently, we analyzed the consequences

of the above-described mutants on heterodimer formation using

ITC. Thereby, we confirmed the results from the GST pull-down

assays, i.e., that residues in the N terminus of Kti11 (Y4 and D5)

and the most central tryptophan residue (W229) of Kti13 are

most critical for heterodimer formation. Mutant proteins Kti11-

Y4A and Kti11-D5A showmore than 450-fold lower affinity, while

for mutant protein Kti13-W229A, the affinity is decreased by a
Structure 23, 149–160, January 6, 2015
factor of 21 (Figure 2C). More peripheral

residues (e.g., E6, E8, W96, and W294)

contribute less to the complex affinity,

and substituting E296 or H297 in Kti13

even increased the affinity of Kti11 to

Kti13 (Figure 2C).

To further validate the interaction of

Kti11 and Kti13 in solution, we used

NMR spectroscopy. 15N-labeled Kti11

was prepared in the presence of iron,

and the cross-peaks in the 2D 1H-15N

heteronuclear single quantum coherence

(HSQC) spectrum (Figure 3A) were as-

signed according to the NMR structure

of zinc-bound Kti11 (Sun et al., 2005, Fig-

ure S5C). Subsequent titration with non-

labeled Kti13 caused changes of the
NMR resonances of a number of Kti11 residues (Figures 3A

and 3B). In addition to several Kti11 residues close to the iron

binding site (C25, C27, G28, R30, S49, C50, S51, andM53), high-

ly conserved Kti11 residues of the N terminus, namely, Y4 and

D5, were affected by the interaction with Kti13. In conclusion,

all residues showing significant changes in affinity or NMR reso-

nances upon complex formation are in close proximity to the

interaction surface observed in the crystal structure of the com-

plex, thereby confirming that Kti11 interacts with Kti13 in solution

as observed in the crystal structure (Figures 3C and 3D).

Kti11/Kti13 Heterodimer Formation Is Required for
Modifications of tRNAs and eEF2
As Kti11 and Kti13 are both essential for the proper modification

of tRNAs by Elongator, and Kti11 is a known component of the

diphthamide modification pathway, we were curious whether

the direct interaction of these two proteins is required for

the activation of these two translational control mechanisms.

First, we could confirm that residues in the N terminus of Kti11

and Kti13-W229 are also essential for proper complex formation

in vivo by coimmunoprecipitation assays (Figures 4A and

4B). Yeast strains lacking Elongator-dependent mcm5s2U
ª2015 Elsevier Ltd All rights reserved 153



Figure 4. Phenotypical Characterization of

Dimer Interface Mutants

(A) The indicated yeast strains expressing HA-

tagged variants of Kti11 and myc-tagged Kti13

were subjected to immunoprecipitations (IP) using

anti-HA antibody. The upper blot was probed with

an anti-c-myc antibody to detect coimmunopre-

cipitated Kti13 protein levels. The middle blot was

probed with an anti-HA antibody to control for

precipitation of HA-tagged Kti11 protein. The

lower blot was probed with anti-c-myc antibody to

detect input levels of Kti13 protein in the used

extracts. The combination of myc-tagged Kti13

with an empty vector (YCplac111) served as

background control.

(B) Same as (A) with HA-tagged variants of Kti13

and myc-tagged Kti11. The combination of wild-

type HA-tagged Kti13 with an empty vector [(HA)3-

KTI13 + YCplac111] served as background con-

trol.

(C) Phenotypes of the respective Kti11 mutant

strains from (A) tested in the g-toxin and D-toxin

assays in a kti11 deletion background.

(D) Phenotypes of the respective kti13 mutant

strains from (B) tested in the g-toxin and D-toxin

assays in a kti13 deletion background.

See also Figure S6.
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modifications in tRNA anticodons or the eEF2-diphthamide

modification synthesized by the DPH complex develop resis-

tances against g-toxin or diphtheria toxin and grow under condi-

tions where strains carrying these modifications cannot survive.

Therefore, we used established toxin assays (Frohloff et al.,

2001; Mattheakis et al., 1992) to ask whether the above-

described mutants affect the activity of the downstream modifi-

cation pathways (Figures 4C, 4D and S6). Consistent with the

interaction data (Figure 4A), the deletion of the N-terminal seven

amino acids (kti11-8_82) as well as the kti11-Y4A allele conferred

g-toxin and diphtheria toxin resistance. Likewise, the kti13-

W229C mutant was resistant and impaired in Kti11 interaction.

Although Kti11-D5A showed a strong reduction of affinity in

our in vitro interaction assays, we could not detect any reduction

in vivo, also explaining its weak toxin phenotype. The reason for

this apparent discrepancy is unclear to us. Nevertheless, D5

seems to contribute to the interaction with Kti13 also in vivo,

as the combination of Y4A andD5A (Y4A/D5A) further decreased

the affinity of the Y4A mutant toward Kti13 in vivo. None of the

described amino acid substitutions appear to affect the integrity
154 Structure 23, 149–160, January 6, 2015 ª2015 Elsevier Ltd All rights reserved
of the proteins. Hence, we conclude that

the ability to form the Kti11/Kti13 dimer

directly affects the activity of Elongator

and the DPH complex.

Whereas heterodimer formation is

necessary to support both modification

reactions, it does not seem to be suffi-

cient. Interestingly, the Kti13-H297A

mutant, which shows higher affinity to-

ward Kti11 in vitro, conferred g-toxin

and diphtheria toxin resistance. Similarly,

the kti13-W294 mutant was toxin resis-
tant but Kti11 binding proficient in vivo (although it showed

slightly reduced affinity for Kti11 in vitro; Figure 2C). There is

also evidence that Elongator-dependent tRNA modification

and diphthamide biosynthesis functions can be separated by

mutations. The Kti11-E6A/E8A variant gave g-toxin resistance

and diphtheria toxin sensitivity (Figure S6C), indicating that

some residues in the N terminus of Kti11 are important for Elon-

gator activity, but not for DPH activity. In summary, we have used

our structural and biochemical insights to identify several single

point mutations in Kti11 and Kti13 that lead to reduced levels of

mcm5s2U-modified tRNAs and diphthamide in living yeast cells.

Zinc- and Iron-Bound Forms of Kti11 Are Able to Interact
with Kti13
We further tried to understand the prerequisites of metal ion co-

ordination in Kti11 and its consequences for Kti11/Kti13 hetero-

dimerization and downstream signaling. First, we compared the

two independently determined NMR structures of Kti11 bound to

zinc (Protein Data Bank [PDB] ID codes 1YWS and 1YOP) with

the crystal structure of Kti11 in complex with Kti13. There are



Figure 5. Metal Binding Is Essential for Kti11 Function

(A) Structural comparison of zinc-bound Kti11 (gray, PDB ID code 1YWS) and Kti13-bound Kti11 (green), both shown in cartoon representation. Metal binding

residues and conserved residues in the N terminus are labeled and shown in ball-and-stick representations. Heatmap of structural variance is shown on the right.

(B) Close-up of themetal binding sites in zinc-bound Kti11 (top representation) and Kti13-bound Kti11 (bottom representation). Anomalous difference Fourier map

(l = 1.6969 Å) is shown at 5 s for the Kti13-bound Kti11.

(C) Incorporation of radioactively labeled iron (55Fe) into Kti11 was tested in wild-type yeast (W303; left), Gal-NFS1 yeast strains, and Gal-NAR1 yeast strains.

Kti11 protein carrying mutations in the metal binding site (C27S and C50S) does not show any residual iron incorporation. Depletions of iron-sulfur protein

biogenesis factors (Nfs1 and Nar1) by growth of the Gal strains on glucose-containing medium do not affect 55Fe incorporation into Kti11 in vivo. Error bars

represent SDs of the replicates (n = 4 except for Nar1 and no plasmid where n = 2).

(D) Influence of mutations in the metal binding site (C25S, C27S, C47S, and C50S) on g-toxin and diphtheria toxin sensitivity. KTI11 alleles were introduced on a

YCplac111 based centromeric plasmid in a W303-derived kti11 deletion strain.

See also Figure S7.
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no obvious structural rearrangements in Kti11 upon Kti13 bind-

ing. The overall rmsd between the Kti11 X-ray and the two known

NMR structures is lower (rmsd71Ca = 1.51 Å [1YWS]/rmsd71Ca =

1.81 Å [1YOP]) than the difference between the two NMR struc-

tures themselves (rmsd71Ca = 2.19 Å). Slight structural differ-

ences are observed in the region of the zinc binding motif and

in the N-terminal residues 1–5 involved in heterodimerization

with Kti13 (Figure 5A). Purified Kti11, the Kti11/Kti13 complex,

and the crystals of Kti13-(GS)5-Kti11 showed a reddish color,

an indicator for the presence of iron.We used X-ray fluorescence

spectroscopy to analyze the chemical content of the Kti11/

Kti13 crystals. We could observe X-ray fluorescence emission

peaks at similar height for zinc and iron in the crystals (Fig-

ure S7A), suggesting that zinc and iron are present in compara-

ble amounts in Kti11. To locate the iron binding site in the protein,

we collected a full data set close to the absorption edge of iron

(l = 1.6969 Å). At this wavelength the f0 0/f0 values for iron and

zinc are 3.73/�2.74 e and 0.84/�1.22 e, respectively, demon-
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strating that zinc contributes little to the anomalous signal. After

calculating an anomalous difference Fourier map, using phases

from the refined model, we could detect clear anomalous differ-

ence peaks in the center of the proposed ‘‘zinc knuckles,’’ con-

firming that iron binds in the same site as zinc (Figure 5B). A char-

acteristic rubredoxin-like UV-visible absorption spectrum was

observed with our purified Kti11 preparations and was absent

in purified Kti11 variants lacking one of the cysteine residues

(Figure S7B). In conclusion, we show that the previously identi-

fied zinc binding site is identical with the iron binding site, that

coordination of different metals does not influence Kti11/Kti13

heterodimerization, and vice versa that Kti11/Kti13 heterodime-

rization does not influence the metal specificity of Kti11 in vitro.

Kti11 Is Able to Bind Iron in Yeast Cells
We further addressed the question of whether Kti11 is able to

bind iron not only in vitro but also in vivo. Therefore, we incu-

bated yeast strains transformed with a plasmid encoding a
9–160, January 6, 2015 ª2015 Elsevier Ltd All rights reserved 155



Figure 6. Metal Binding Is Important for

Kti11 Downstream Signaling

(A) Same as in Figure 5D, but plasmids were

introduced into a KTI11 wild-type strain.

(B) Influence of KTI11 overexpression (oe) on g-

toxin sensitivity. Multicopy YEplac195-based

KTI11 plasmid was introduced into the kti11

mutant strain carrying centromeric kti11-C27S

plasmid or empty vector (YCplac111) control.

(C) Coimmunoprecipitation of Elp3-(c-myc)3 (up-

per blot) with (HA)3-Kti11 (middle blot). Yeast strain

containing a c-myc-tagged ELP3 allele was

transformed with plasmids carrying (HA)3-KTI11

alleles. Cell lysates were immunoprecipitated with

a-HA antibodies and pellet fractions (IP) or total

lysates (Extract; lower blot) were analyzed by

western blotting (WB).

(D) Same as in (C) using Dph1-(c-myc)3 with (HA)3-

KTI11 alleles.

See also Figure S8.
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hemagglutinin (HA)-tagged version of wild-type Kti11 with radio-

active iron (55Fe) and analyzed the incorporation of iron into Kti11

in vivo by measuring the radioactivity of Kti11 by immunoprecip-

itation via its affinity tag. Nontransformed wild-type yeast cells,

and two strains expressing tagged versions of Kti11 carrying

point mutations in cysteine residues C27S andC50S responsible

for the metal binding in vitro (Figure 5B), served as controls. We

detected radioactive labeling of wild-type Kti11, whereas only

background signals were detected in the precipitates of Kti11

cysteine mutants (Figure 5C). The Kti11 iron levels remained

almost unchanged after the depletion of proteins involved in

iron-sulfur protein biogenesis, namely, Nfs1 and Nar1 (Fig-

ure 5C). Therefore, we conclude that Kti11 is able to incorporate

iron in living yeast cells and does not require the iron-sulfur pro-

tein biosynthesis machinery for this incorporation.

We subsequently testedmutants lacking any one of the crucial

cysteine residues for iron coordination (C25S, C27S, C47S, and

C50S) in g-toxin and diphtheria toxin resistance assays. None of

the four mutated versions of Kti11 could rescue the g-toxin and

diphtheria toxin resistance of a kti11 deletion strain (Figure 5D),

indicating that iron coordination by Kti11 is equally important

for tRNA modification and diphthamide biosynthesis. We further

tested the influence of the four cysteine mutations in a KTI11

wild-type background by g-toxin and diphtheria toxin resistance

assays. All four mutants were sensitive in the D-toxin assay, indi-

cating that the wild-type allele of KTI11 is able to compensate for

loss of function conferred by the kti11 alleles (Figure S7C). In

contrast, the C25S, C27S, and C47S mutations resembled the

KTI5 allele (Huang et al., 2008), showing a dominant-negative

phenotype in the g-toxin assays, whereas the C50S mutant is

recessive (Figure 6A). In agreement with the idea of a concentra-

tion-dependent competition for a binding site, we show that the

overexpression of wild-type Kti11 is able to partially rescue the

dominant-negative phenotype induced by the introduction of

C27S into a kti11 background (Figure 6B). This observation indi-

cates that while the coordinated metal is essential for the func-

tion of Kti11 for both modification reactions, a metal-free version

of Kti11 is able to functionally compete with the metal-bound
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form of Kti11 only in the tRNA modification pathway. As the

cysteine mutants are still able to interact with Kti13 in vivo (Fig-

ure S7D), we tested whether the competition occurs on down-

stream targets of Kti11. Strikingly, the mutants displaying a

dominant-negative phenotype are all able to interact with Elon-

gator in vivo, whereas the recessive C50S mutant shows no

detectable interaction with Elongator (Figure 6C). In contrast,

all four cysteine mutants do not interact with Dph1 (Figure 6D).

In summary, we show that the ability of C25S, C27S, and

C47S to block the function of the wild-type protein is specifically

related to the tRNA modification pathway.

DISCUSSION

In eukaryotic cells, biosynthesis of mcm5U34-modified tRNAs

and diphthamide-modified eEF2 requires the highly conserved

protein complexes Elongator and DPH complex, respectively.

Here, we show that in yeast these two different modification re-

actions both require the Kti11/Kti13 heterodimer. According to

our structural analysis, neither Kti11 nor Kti13 undergoes major

structural rearrangements upon heterodimerization. However,

we observed strong functional consequences for the down-

stream modification reactions if heterodimer formation is

impaired.

Based on the crystal structure of the Kti11/Kti13 heterodimer,

we were able to generate structure-guided single point muta-

tions at the interface of Kti11 and Kti13 that abolish heterodimer

formation without affecting the structural integrity of the individ-

ual proteins. The strongest mutant affecting heterodimer forma-

tion in Kti13, namely, W229C, is located in the very center of the

identified Kti11/Kti13 interface. Notably, the W229C mutant

(kti13-5) was also isolated in the first screen for factors conferring

zymocin resistance (Butler et al., 1994). In addition, we identified

highly conserved N-terminal residues in Kti11, namely, Y4 and

D5, that are equally essential for Kti11/Kti13 heterodimer forma-

tion. As probed by g-toxin and diphtheria toxin for the tRNA and

diphthamide biosynthetic reactions, respectively, DPH and

Elongator functions both require Kti11/Kti13 interaction.
hts reserved



Figure 7. Model of the Differential Activa-

tion of Elongator and Diphthamide Biosyn-

thesis by the Kti11/Kti13 Heterodimer

(A) Localization of the metal binding site of Kti11 in

the Kti11/Kti13 heterodimer (left). Surface repre-

sentation of Kti11/Kti13 colored by conservation

scores (middle). Current model of how Kti11 and

Kti13 communicate with their downstream effec-

tors: only residue C50 directly contacts Elongator,

while all metal-coordinating cysteines are required

for the interaction with the DPH complex.

(B) Schematic overview of the current working

model for Kti11- and Kti13-dependent regulation

of Elongator activity, diphthamide biosynthesis,

and global translational control.
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Interestingly, Kti13-E296A and Kti13-H297A, which both show

increased binding affinities to Kti11, exhibit different effects in

toxin resistance assays; i.e., H297A is resistant to both toxins,

whereas E296A remains sensitive. We therefore conclude that

heterodimerization is essential, but not sufficient, for proper

downstream activation.

Since Kti13 has never been shown to be directly involved in

diphthamidebiosynthesis, thepossibility remained that thedeac-

tivation of the tRNAmodification pathway via the deletion or mu-

tation of Kti13 leads to indirect effects on the diphthamide modi-

fication pathway. However, the diphtheria toxin resistance

phenotype resulting from kti13 mutations could not be sup-

pressedbyoverexpressing tRNAK
UUU, tRNAQ

UUG, and tRNAE
UUC

(Figure S8A) known to rescue most of the known Elongator-

relatedphenotypes (Esberget al., 2006). In addition, a yeast strain

where ELP3, the gene encoding the enzymatic subunit of the

Elongator complex, is deleted remains sensitive to diphtheria

toxin (Figure S8B). Our results therefore provide evidence that

Kti13 (or the Kti11/Kti13 heterodimer) is directly involved in the

regulation of the diphthamide modification pathway.
Structure 23, 149–160, January 6, 2015
Interestingly, all the known downstream

partners of Kti11, namely, Dph1, Dph2,

and Elp3, contain iron-sulfur clusters,

whichareessential for their respectivecat-

alytic reactions (Paraskevopoulou et al.,

2006; Zhang et al., 2010). We hypothesize

that the Kti11/Kti13 heterodimer provides

a function to the iron-sulfur cluster of Elon-

gator and Dph1/Dph2 that requires iron

binding to Kti11. During the preparation

of this article, Dong et al. (2014) showed

thatKti11/Dph3can indeedactaselectron

donor for Dph1 and Dph2 in vitro. Our

observation that Kti11 is able to complex

iron not only in vitro but also in yeast cells

further clarifies the functional link between

Kti11 and the two chemically distinct

modification reactions. Mutation of any of

the four conserved cysteines in Kti11 re-

sulted in the inability to bind metal and

gives resistance against the microbial

g-toxin and diphtheria toxin. These obser-

vations indicate that in addition to Kti11/
Kti13 heterodimer formation (see above), metal binding by Kti11

is essential to support both Elongator-dependent tRNAmodifica-

tions and the diphthamide biosynthesis reaction.

Although themetalbindingsite is incloseproximity to residues in

Kti11 and Kti13, which are important for the heterodimerization,

metal ion coordination is not required for the Kti13 interaction (Fig-

ure S7D). Strikingly, three of the four cysteine mutants (KTI11-

C25S, KTI11-C27S, and KTI11-C47S) display a dominant-nega-

tive phenotype in tRNA modification; i.e., they interfere with

Elongator function in the presence of a wild-type KTI11 gene.

Since these mutant proteins, but not the variant encoded by the

recessive kti11-C50S allele, are still able to interactwith Elongator,

we conclude that metal binding is also not required for the Kti11-

Elongator interaction and that mutant variants of Kti11 compete

with wild-type Kti11 for Elongator binding. Consistently, we were

able to partially suppress the dominant-negative phenotype of

KTI11-C27S by overexpressing wild-type KTI11. Residue C50 in

Kti11 is the only cysteine that is not masked by Kti13 in the Kti11/

Kti13 heterodimer (Figure 7A). Since its replacement by serine

abolished the interaction with Elp3 in vivo, we propose that C50
ª2015 Elsevier Ltd All rights reserved 157
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is directly contacting Elongator, while the other three cysteine res-

idues are presumably buried in the interface of the Kti11/Kti13 het-

erodimer. Interestingly,Kti13-W294andKti13-H297,which arenot

essential for heterodimer formation, but showclear Elongator phe-

notypes, are in close proximity to Kti11-C50. These findings sug-

gest that this highly conserved surface region of the heterodimer

(Figure 7A) carries out important functions required for the down-

stream activation of Elongator. As metal ion coordination is not

required for heterodimer formation (Figure S7D), we propose that

Kti11 and Kti13 likely stay associated during metal incorporation

and their interaction with Elongator.

In contrast, all four cysteine mutants of KTI11 lose the ability to

bind to Dph1 and are recessive in the D-toxin assay, indicating

that different from Elongator binding, interaction of the Kti11/

Kti13 heterodimer with the Dph1/Dph2 complex requires metal

coordination. This suggests that Kti11/Kti13 uses different inter-

faces to bind to the DPH and Elongator complexes. As metal-

free Kti11 is inactive but shows different interaction preferences

for the two downstream pathways, our results shed light on the

subtle differences in Kti11/Kti13-dependent regulation of its

downstream pathways. We hypothesize that Kti11 could also

act as a redox sensor or distinguishes different levels of metal

ions in the cell to direct downstream reactions once the intracel-

lular metal ion balance is altered (Figure 7B).

Kti13 specifically binds to PI(3,4)P2 and PI(4,5)P2 that are en-

riched in certain cellular compartments, such as the cytosolic

side of the cell membrane (Di Paolo and De Camilli, 2006). This

observation suggests that Kti13 might be recruited to cell mem-

branes and that its cellular localization contributes to the regula-

tion of the two downstreammodification pathways. In support of

amore auxiliary role of Kti13 (such as spatial activation), the dele-

tion of Kti13 does not lead to a complete loss rather to a

decrease of Elongator’s tRNA modification activity (Huang

et al., 2008). In addition, it was recently reported that Elp3 from

Toxoplasma gondii contains a C-terminal transmembrane

domain that anchors this protein at the mitochondrial outer

membrane (Stilger and Sullivan, 2013).

The Kti11/Kti13 heterodimer is involved in two consecutive

steps during the translation process: wobble uridine modifica-

tion in tRNA has been shown to affect tRNA binding to the

A-site on the ribosome, whereas the diphthamide modification

alters eEF2 function, thereby affecting the translocation of the

peptidyl-tRNA from the A-site to the P-site. Themolecular details

of the Kti11/Kti13 heterodimer reported here provide insight how

Kti11/Kti13 might fulfill its function and whether the properties of

Kti11 and Kti13 allow linking tRNA and eEF2 modifications to

metabolic signaling pathways.
EXPERIMENTAL PROCEDURES

Cloning, Expression, and Purification

The S. cerevisiae Kti13 and Kti11 codon sequences were cloned into pETM30

vector to obtain N-terminally 63His-GST-tagged proteins, and the resulting

plasmids were transformed into BL21 pSarRare E. coli. The primers we used

are listed in Table S1, and further details about purification strategies and con-

ditions can be found in the Supplemental Experimental Procedures.

Crystallization and Structure Determination

Native and selenomethionine-substituted crystals were grown at 18�C using

the hanging drop vapor diffusion method. Purified Kti13 protein in gel filtration
158 Structure 23, 149–160, January 6, 2015 ª2015 Elsevier Ltd All rig
buffer was concentrated to 10 mg/ml and combined with equal volume of

100 mMHEPES (pH 7.5) and 6% polyethylene glycol 3350. Crystals grew until

day 7, were cryoprotected with 25% glycerol, and subsequently flash frozen in

liquid nitrogen. Purified Kti11/Kti13 fusion protein in gel filtration buffer was

concentrated to 10 mg/ml and combined with an equal volume of 100 mM

Tris (pH 7.4–8.4) and 2M Li2SO4. Crystals grew until day 3, were cryoprotected

with 20% glycerol, and subsequently flash frozen in liquid nitrogen. A seleno-

methionine data set for Kti13 was collected at European Synchrotron Radia-

tion Facility (ESRF) beamline ID14-4 on a Q315r ADSC detector. The Kti13

selenomethionine crystals diffracted to higher resolution than the native crys-

tals, and the selenomethionine data set was therefore used for the refinement

(Table 1). Native data sets for Kti13-(GS)5-Kti11 were collected at the PETRAIII

beamline P14 on a PILATUS 6M-F detector. Details about crystallographic

software used for data processing, structure determination, and refinement

can be found in the Supplemental Experimental Procedures.

ITC Measurements

ITC was performed with a VP-ITC calorimeter (Microcal). To measure the Kti11

Kti13 interaction, protein samples were dialyzed extensively against ITC buffer

(20 mM Tris-HCl [pH 7.5], 125 mM NaCl, and 2 mM b-mercaptoethanol). Pro-

tein concentration in the cell was 10 mM and 100 mM in the injection syringe.

The data were analyzed using Origin software (GE Healthcare).

NMR Analyses

All the NMR spectra were recorded on a Bruker 800 MHz Avance III spectrom-

eter equipped with a CP-TCI cryoprobe at 25�C, and 1H-15N correlations were

acquired by 2D fast HSQC. Previously reported zinc-bound Kti11 assignments

(Sun et al., 2005) were used for further NMR analysis. A titration experiment

was carried out by varying Kti13 from 5 to 100 mM,while keeping the Kti11 con-

centration constant at 50 mM. A complex of 50:15 Kti11:Kti13 was analyzed in

detail. The NMR titration experiment was carried out in 20 mM Tris, 150 mM

NaCl, 5 mM dithiothreitol (DTT) (pH 7.5), and 10% D2O.

In Vitro Interaction Assays

We incubated 20 mg of GST-tagged Kti11 or Kti11 mutants and equal amounts

of untagged Kti13 protein or mutants thereof overnight at 4�C with glutathione

Sepharose in 20 mM Tris (pH 7.5), 150 mM NaCl, 5 mM DTT, and 0.1% Tween

20. The beadswere washed five timeswith incubation buffer and subsequently

resuspended in SDS loading buffer. Inputs and bound proteins were separated

using denaturing SDS-PAGE and visualized using Coomassie blue stain.

Strains and Media

All S. cerevisiae strains used are listed in Table S2. Yeast strains were grown in

rich media (0.8% yeast extract, 2% peptone) containing 2% glucose or 2%

galactose or on minimal growth media. Solid medium was prepared by adding

agar to 2% (w/v). Details of yeast manipulations including 55Fe incorporation

are indicated in the Supplemental Experimental Procedures.

In Vivo Interaction Assays

We added 100 ml of protein A Sepharose (PAS)-coupled a-HA primary anti-

body (for preparation protocol, see Supplemental Experimental Procedures)

to the obtained yeast raw extracts. The mixture was then incubated on a

shaker for 60 min at 4�C. Thereafter, the mixture was centrifuged at

1,000 rpm at 4�C for 1 min, and the supernatant was discarded. The PAS-

coupled a-HA antibody pellet was washed three times with 1 ml of B60 buffer

and centrifuged at 1,000 rpm for 1 min at 4�C. The PAS-coupled antibody pel-

let was resuspended in SDS buffer (10% SDS) and incubated at room temper-

ature for 10 min. The suspension was centrifuged through a PCR-filter tip, and

the flowthrough was analyzed by SDS-PAGE and western blotting.

Phenotypical Analyses of Mutants

To analyze the function of mutated kti11 and kti13 alleles, the g-toxin or diph-

theria toxin sensitivity was assayed as described previously (Frohloff et al.,

2001; Mattheakis et al., 1992). Responses of yeast cells to intracellular expres-

sion of zymocin’s lethal tRNase g-toxin subunit involved the galactose-induc-

ible GAL1-g-toxin expression plasmid pHMS14. Sensitivity or resistance

against diphtheria toxin was analyzed by using the intracellular expression

plasmid pLMY101 (URA3 marker) that was a kind gift of R. John Collier
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(HarvardMedical School). pLMY101 carries the toxic diphtheria toxin fragment

F2 under the galactose-inducible GAL1-promoter. Transformed strains were

spotted in 10-fold serial cell dilutions on either 2% dextrose (repressing condi-

tions)- or 2% galactose (inducing conditions)-containing plates and were incu-

bated for 3 days at 30�C.
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The atomic coordinates and structure factors of Kti13 (PDB ID code 4D4Q) and
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