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Abstract

A characterization of partial metrizability is given which provides a partial solution to an
open problem stated by K-unzi in the survey paper Non-symmetric Topology (in: Proceedings of
the Szekszard Conference, Bolyai Soc. Math. Studies, Vol. 4, 1993, pp. 303–338; problem 71).
The characterization yields a powerful tool which establishes a correspondence between partial
metrics and special types of valuations, referred to as Q-valuations (cf. also Theoret. Comput.
Sci., to appear). The notion of a Q-valuation essentially combines the well-known notion of
a valuation with a weaker version of the notion of a quasi-unimorphism, i.e. an isomorphism
in the context of quasi-uniform spaces. As an application, we show that !-continuous directed
complete partial orders (dcpos) are quanti'able in the sense of O’Neill (in: S. Andima et al.
(Eds.), Proceedings of the 11th Summer Conference on General Topology and Applications,
Annals of the New York Academy of Sciences, Vol. 86, 1997, pp. 304–315), i.e. the Scott
topology and partial order are induced by a partial metric. For !-algebraic dcpos the Lawson
topology is induced by the associated metric. The partial metrization of general domains improves
prior Gpproaches in two ways:
• The partial metric is guaranteed to capture the Scott topology as opposed to e.g. Smyth

(Quasi-uniformities: Reconciling Domains with Metric Spaces, Lecture Notes in Computer
Science, Vol. 298, Springer, Berlin, 1987, pp. 236–253), Bonsangue et al. (Theoret. Comput.
Sci. 193 (1998) 1), Flagg (Theoret. Comput. Sci., to appear) and Flagg (Theoret. Comput.
Sci. 177 (1) (1997) 1), which in general yield a coarser topology.

• Partial metric spaces are Smyth-completable and hence their Smyth-completion reduces to the
standard bicompletion. This type of simpli'cation is advocated in Smyth (in: G.M. Reed, A.W.
Roscoe, R.F. Wachter (Eds.), Topology and Category Theory in Computer Science, Oxford
University Press, Oxford, 1991, pp. 207–229). Our results extend Smyth (1991)’s scope of
application from the context of 2/3 SFP domains to general domains.
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1 “Characterize those quasi-uniformities having a countable base which are induced by a weighted

quasi-metric”.
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The quanti'cation of general domains solves an open problem on the partial metrizability of
domains2 stated in O’Neil (1997) and Heckmann (Appl. Categor. Struct. (1999) 71).

Our proof of the quanti'ability of domains is novel in that it relies on the central notion of
a semivaluation (Schellekens, The correspondence between partial metrics and semivaluations,
Theoret. Comput. Sci., to appear). The characterization of partial metrizability is entirely new
and sheds light on the deeper connections between partial metrics and valuations commented
on in [Bukatin and Shorina (in: M. Nivat (Ed.), Foundations of Software Science and Com-
putation Structures, Lecture Notes in Computer Science, Vol. 1378, Springer, Berlin, 1998, pp.
125–139)]. Based on (Schellekens, The correspondence between partial metrics and semivalua-
tions, Theoret. Comput. Sci., to appear) and our present characterization, we conclude that the
notion of a (semi)valuation is central in the context of Quantitative Domain Theory since it can
be shown to underlie the various models arising in the applications.
c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction and related work

Recent developments in Domain Theory indicate that additional concepts are re-
quired in order to develop the corresponding applications. These developments include
domain theoretic approaches to dataNow networks (e.g. [25,26]), logic programming
(e.g. [40]), domain theoretic approaches to integration (e.g. [6]), models for probabilis-
tic languages (e.g. [18,19]), models for real number computation [7] as well as models
which incorporate complexity analysis (e.g. [31,35]).

Each of these application involve “real number measurements” in some sense, and
hence the adjective quantitative is used as opposed to the adjective qualitative which
indicates the traditional order theoretic approach. The terminology “Quantitative
Domain Theory” was coined in [10].

At this point several foundations exist. The more abstract approaches include the
Yoneda completion [2], the continuity spaces [9] and the topological quasi-uniform
spaces [44]. These approaches are essentially equivalent (cf. [11,22]) and lead to com-
plex completions, involving non-idempotency or subtle relations between two topolo-
gies and a quasi-uniformity. Moreover, they involve generalized metrics which typically
lead to topologies coarser than the Scott topology, which for instance for the case of
topological quasi-uniform spaces is resolved by the addition of a new topology.

In [42], the totally bounded spaces have been introduced, for which the notion of
completion simpli'es to the bicompletion and for which the induced topology is the
Scott topology. Other approaches include the use of valuations (e.g. [6,18]) as well as
the use of partial metrics (e.g. [25]).

In [28] the question is raised as to which domains are “quanti'able” in the sense
that there exists a partial metric which induces the Scott topology. A similar question

2 Pawel Waszkiewicz communicated recently to the author that he obtained similar results independently.
A stronger result implying the quanti'ability of general domains is reported in [23]. O’Neill obtained the
partial metrizability of !-algebraic domains in his thesis [29].
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has been raised by Heckmann in [17]. It is shown in [28] that Scott domains are
quanti'able. We improve on this result by showing that !-continuous directed complete
partial orders (dcpos) are quanti'able.

A connection between partial metrics and valuations has 'rst been indicated in [28].
Valuation spaces (X;� ; v) are introduced which are de'ned as consistent semilattices,
i.e. semilattices for which every pair of elements which is bounded from above has
a least upper bound, equipped with a strictly increasing real-valued valuation v. It
is shown that these spaces can be equipped with a partial metric pv de'ned by
pv(x; y)=−v(x�y). This partial metric is generalized, in the sense that it assumes
negative values. The relationship between valuations and partial metrics has been fur-
ther discussed in [3] as well as in the recent [4]. These approaches all involve partial
metrics generated from strictly increasing valuations.

According to [4], “the existence of deep connections between partial metrics nd
valuations is well known in Domain Theory”; a claim which is supported in part by
the examples discussed in [3,4,28].

It is well known that the topological characterization of partial metric spaces in
general poses a hard problem. Some interesting partial results for restricted classes of
spaces do exist, however, [21,23] and will be discussed below.

One of the reasons for the intractability of the problems stated in the survey paper
[21], seems to be that partial metric spaces do not embody as yet enough of the
structure of the examples arising in the applications. 3 Hence, in our study of these
structures we have aimed at isolating a “mathematically nice” subclass of partial metric
spaces, which is still suQciently large to incorporate the domain theoretic examples
involving partial metric spaces.

A suitable class of spaces was obtained in [38], where we focused on the class of
quasi-metric semilattices. This class includes the Baire partial metric spaces of [25]
as well as the complexity spaces of [34] (cf. also [31]). It also incorporates the Scott
Domains, whether they be represented as totally bounded quasi-metric spaces, as in
[42], or via 0–1 Valued quasi-metrics (e.g. [41] or [2]), and the interval domain [7].

To analyze partial metrizability, we study the slightly more general class of quasi
uniform semilattices.

These structures are de'ned to be semilattices equipped with a quasi-uniformity with
respect to which the semilattice operation is quasi-uniformly continuous. Quasi-uniform
lattices are de'ned in a similar way, where the de'nitions generalize the classical
de'nition of a uniform lattice (e.g. [46] or [47]).

One can show that the quasi-uniform continuity of the semilattice operation for each
of the above mentioned examples is implied by one of the following invariance prop-
erties (e.g. [13]): ∀x; y; z∈X:d(x� z; y� z)6d(x; y) and d(x� z; y� z)6d(x; y). This
has motivated the study of invariant quasi-metrics; which form a subclass of the quasi-
uniform semilattices.

In order to study partial metric spaces, it is convenient to focus on their equivalent
formulation as weightable quasi-metric spaces. A motivation for this choice is that
an equivalence between weighting functions and strictly increasing valuations will be

3 H.P. K-unzi, private communication.
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established, which will imply the equivalence between invariant partial metrics and
strictly increasing valuations in this context. This approach has the additional bene't
that the terminology is part of the standard theory of non-symmetric topology (e.g.
[12,21]).

As remarked above, several open characterization problems on weightedness have
been stated in the survey paper Nonsymmetric Topology ([21]): 4

“Characterize those quasi-uniformities having a countable base which are induced
by a weighted quasi-pseudo-metric” (Problem 7)
“Which topological spaces admit weightable quasi-pseudo-metrics?” (Problem 8)
“Develop a concept of a weighted quasi-uniformity” (Problem 10).

Partial results in connection to Problems 7 and 8 are known [21,23]. The results concern
restricted classes, as for instance the class of AlexandroS topologies in relation to a
partial solution of Problem 8 [21]. In [23] an interesting suQcient condition is given in
connection to Problem 7 for a large class of spaces: “any totally bounded quasi-uniform
space with a countable base can be induced by a weighted quasi-pseudo-metric”.

We recall [35] that Problem 10 cannot be solved via an axiomatization in terms
of the entourages of the quasi-uniform space which would guarantee the weightability
of all quasi-pseudo-metrics which induce the quasi-uniformity (for the case of quasi-
uniformities with a countable base).

We present a partial solution to Problem 7 in the context of quasi-uniform semilat-
tices and of quasi-uniform lattices. We characterize the class of quasi-uniform (semi)
lattices which are induced by an invariant weightable quasi-metric. The solution is
based on the notion of a Q-semivaluation. This notion intuitively is a semivaluation
[38], which is an order quasi-unimorphism. Semivaluations have been introduced in [38]
as a natural generalization of valuations from the context of lattices to the context of
semilattices. Order-quasi-unimorphisms on quasi-uniform spaces (X;U) generalize the
de'nition of a quasi-unimorphism, where the condition of injectivity has been replaced
by strict increasingness and where the quasi-unimorphism conditions are stated on the
ordering relation 6U. Order quasi-unimorphisms are “generalized” quasi-unimorphisms
since, for the case of quasi-uniform spaces with an associated linear order, they reduce
to a quasi-unimorphism.

The solution diSers from prior work in two ways:
• the class of partial metric spaces for which he solution has been presented has been

directly motivated by domain theoretic examples.
• the solution provides an equivalence, as opposed to prior results [21,23], which pro-

vide either necessary or suQcient conditions. The same remark holds for connections
which have been obtained between partial metrics and valuations in [3,4,28], which
have been restricted to partial metrics generated from strictly increasing valuations,
but not conversely.

As an application of this result, we show that domains are partially metrizable.

4 In [21] the problems are actually stated in terms of “quasi-metrics”, which correspond to the “quasi-
pseudo-metrics” as originally de'ned in [12].
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The partial metrizability of domains has an interesting history. We obtained a solution
to the problem during a visit at Imperial College in September 2000. Recently, Pawel
Waszkiewicz communicated that he obtained similar results. On a later reading of
O’Neill’s thesis [29], we discovered that the result was obtained priorly in this work,
but apparently never reported in the literature. O’Neil ’s proof however fails to go
through for !-continuous domains, as illustrated by a counterexample in Section 5.
Finally, we remark that the quanti'cation of domains also follows from a more general
result, obtained by K-unzi and Vajner in [23], where it is shown that each T0-space
with a 
-point-bounded base admits a weighted quasi-pseudometric. So in particular
each second-countable T0-space admits a weighted quasi-pseudometric.

The partial metrizability of domains is interesting in two ways.
It extends Smyth’s result on totally bounded spaces [42] to general domains, with

preservation of the desirable property of Smyth-completability which guarantees that
the completion simpli'es to the bicompletion. Indeed, we recall that partial metric
spaces are Smyth-completable [21].

The result also allows for the quanti'cation of domains via a generalized metric
which does induce the Scott topology. This should be contrasted with prior approaches
which, for the case of arbitrary domains, only could guarantee that the generalized
metric involved induced a topology coarser than the Scott topology. Typically, this
was avoided through the introduction of a second topology.

Our work diSers from O’Neill’s in that we do not need the concept of a “gener-
alized valuation space” [29] to obtain a partial metric from a valuation. Indeed, by
using our characterization of partial metrizability, we can obtain our invariant par-
tial metrics directly from Q-valuations. A similar remark applies to O’Neill’s no-
tion of an information measure, where his extra condition on the Borel measure
“�(x ↓−(x�y) ↓)= 0⇒ x�y” in our case is not required in order to generate a par-
tial metric. Also, we show that the partial metric inducing the Scott topology can be
generated from a function which has 'nite sum over all base elements. This may
be contrasted with O’Neill’s approach for domains with countable base B=(an)n,
which involves a speci'c choice of weights on base elements de'ned by w(an)=
1=2n. Our characterization of partial metrizability for the case of quasi-uniform
lattices, provides a much sharper result for which we not only can derive partial
metrics from valuations, but also obtain an equivalence result between these
notions.

In our proof, the partial metrizability of domains is obtained by an application of the
characterization of partial metrizability to the lattice of Scott-closed sets. It is interesting
to note that the partial metric on general domains is obtained from a semivaluation
on this lattice, while this can be achieved for the case of !-algebraic domains via a
valuation on the lattice.

The characterization sheds light on the “deep connections” between partial metrics
and valuations mentioned in [4] (cf. also [38]).

The proof that partial metrics on domains can be obtained from valuations on lattices,
combined with [38], justi'es the observation that valuations can be viewed as the
central notion of Quantitative Domain Theory which allows one to quantify domains
in a simple and elegant way.
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Indeed, it is now clear that the notion of a (semi)valuation underlies varied and,
on the face of it, entirely unrelated models such as the totally bounded spaces of
[42], e.g. used as logic programming models [40], the partial metric spaces, e.g. used
as models for dataNow networks, models for eQciency analysis and models for real
number computation [7,25,34], and of course the models which are directly based
on valuations, such as models for domain theoretic approaches to integration [6] and
models for non-deterministic computation [18].

2. Background

The following notation is used throughout: N denotes the set of natural numbers, R
denotes the set of real numbers, R+ = (0;∞), R+

0 = [0;∞), while R̃=R∪{−∞;∞};
R̃+ =R+ ∪{∞} and R̃+

0 =R+
0 ∪{∞}.

A function d :X ×X →R+
0 is a quasi-pseudo-metric iS

(1) ∀x∈X: d(x; x)= 0
(2) ∀x; y; z∈X: d(x; y) + d(y; z)¿d(x; z).
A quasi-pseudo-metric space is a pair (X; d) consisting of a set X together with a
quasi-pseudo-metric d on X .

In case a quasi-pseudo-metric space is required to satisfy the T0-separation axiom,
we refer to such a space as a quasi-metric space.

In that case, condition (1) and the T0-separation axiom can be replaced by the
following condition:

(1′) ∀x; y: d(x; y)=d(y; x)= 0⇔ x=y.

The conjugate d−1 of a quasi-pseudo-metric d is de'ned to be the function d−1(x; y)=
d(y; x), which is again a quasi-pseudo-metric (e.g. [12]). The conjugate of a quasi-
pseudo-metric space (X; d) is the quasi-pseudo-metric space (X; d−1). The (pseudo-)
metric d∗ induced by a quasi-(pseudo-) metric d is de'ned by d∗(x; y)= max{d(x; y);
d(y; x)}.

A quasi-pseudo-metric space (X; d) is totally bounded iS ∀�¿0∃ x1 : : : xn∈X∀x∈X ∃
i∈{1; : : : ; n}: d∗(xi; x)¡�.

A quasi-metric space (X; d) is compact iS the associated metric space (X; d∗) is
compact.

The associated preorder 6d of a quasi-pseudo-metric d is de'ned by x6dy iS
d(x; y)= 0.

We write that a quasi-pseudo-metric space encodes a preorder when ∀x; y∈X: d(x; y)
∈{0; 1}. In that case we also write that the encoded preorder is the preorder (X;6d).
Conversely, for a given preorder (X;6), one can de'ne a quasi-pseudo-metric space
(X; d6) which encodes the preorder, in the obvious way.

Let (P;�1) and (Q;�2) be partial orders. A function f :P→Q is increasing
(decreasing) ⇔∀x; y∈P: x�1 y⇒f(x)�2 f(y)(f(y)�2 f(x)).

A function f : (X; d)→ (X ′; d′) is an isometry iS f is a bijection and ∀x; y∈X: d′
(f(x); f(y))=d(x; y).



M.P. Schellekens / Theoretical Computer Science 305 (2003) 409–432 415

We recall [35, Lemma 5], that quasi-pseudo-metrics satisfy the following property,
which we refer t as the “Monotonicity Lemma”: if (X; d) is a quasi-pseudo-metric
space then ∀x; x′; y; y′∈X: (x′6dx and y′¿d y)⇒d(x′; y′)6d(x; y).

We discuss a few examples of quasi-pseudo-metric spaces.
The function d1 :R2 →R+

0 , de'ned by d1(x; y)=y − x when x¡y and d1(x; y)= 0
otherwise, and its conjugate are quasi-pseudo-metrics. We refer to d1 as the “left
distance” and to its conjugate as the “right distance”. These quasi-pseudo-metrics cor-
respond to the non-symmetric versions of the standard metric m on the reals, where
∀x; y∈R: m(x; y)= |x − y|.

Note that the right distance has the usual order on the reals as associated order, that is
∀x; y∈R:x6d−1

1
y⇔ x6y, while for the left distance we have ∀x; y∈R: x6d1y⇔ x¿y.

The function d2: (R̃−{0})2 →R+
0 , de'ned by d2(x; y)= 1=y− 1=x when y¡x and

0 otherwise, and its conjugate are quasi-pseudo-metrics.
The complexity space (C; dC) has been introduced in [34] (cf. also [31,35]. Here

C =
{
f :! → R̃+

∣∣∣∣ ∞∑
n=0

2−n 1
f(n)

¡+∞
}

and dC is the quasi-pseudo-metric on C de'ned by

dC(f; g) =
∞∑
n=0

2−n
[(

1
g(n)

− 1
f(n)

)
∨ 0

]
;

whenever f; g∈C. The complexity space (C; dC) is a quasi-metric space with a maxi-
mum �, which is the function with constant value ∞.

The dual complexity space is introduced in [31] as a pair (C∗; dC∗), where C∗ =
{f :!→R+

0 | ∑∞
n=0 2

−nf(n)¡+∞}, and dC∗ is the quasi-metric de'ned on C∗ by dC∗

(f; g)=
∑∞

n=0 2
−n[(g(n) − f(n))∨ 0], whenever f; g∈C∗. We recall that (C; dC) is

isometric to (C∗; dC∗) by the isometry � :C∗ →C, de'ned by �(f)= 1=f (see [31]).
Via the analysis of its dual, several quasi-metric properties of (C; dC), in particular
Smyth completeness and total boundedness, are studied in [31].

For a given set X , � is the identity relation. A quasi-uniform space is a pair (X;U)
consisting of a set X with a 'lter U on X ×X such that
(1) ∀U ∈U: �⊆U
(2) ∀U ∈U ∃V ∈U: V ◦V ⊆U .
In that case, U is called a quasi-uniformity on X and its elements are referred to as
entourages.

A uniform space is a quasi-uniform space (X;U) such that
(3) ∀U ∈U: U−1∈U.
In that case, U is called a uniformity on X .

Given a quasi-uniform space (X;U) then the uniform space associated to (X;U)
is de'ned to be the space (X;U∗) where U∗ = {V ⊆X ×X | ∃U ∈U such that V ⊇
U ∩U−1}.

The preorder associated with a quasi-uniform space (X;U) is the relation 6U

de'ned to be the intersection of all the entourages of U.
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The quasi-uniformity Ud generated by a quasi-pseudo-metric d on a set X is the
'lter generated on X ×X by the set of relations (B�¿0)�, where ∀�¿0: B� = {(x; y) |
d(x; y)¡�}. Two quasi-pseudo-metrics are equivalent iS they generate the same
quasi-uniformity.

The topology T(U) associated to a quasi-uniformity U on a set X is the topology
generated by the neighborhood 'lter base U[x] = {U [x] |U ∈U}, where ∀x∈X ∀U ∈U:
U [x] = {y | (x; y)∈U}.

If (X;U) and (Y;V) are quasi-uniform spaces, then a base of the product quasi-
uniformity U×V is the set of all binary relations B on X ×Y , such that there is a
U ∈U and a V ∈V such that for each (x; y) in X ×Y , B[(x; y)]⊇U [x]×V [y]. The
topology induced by the product quasi-uniformity is the product topology.

A function f; : (X;U)→ (Y;V) is quasi-uniformly continuous iS ∀V ∈V∃U ∈
U: f2(U )⊆V , where f2(U )= {(f(x); f(y))| xUy}. A quasi-unimorphism f: (X;U)→
(Y;V) is a bijection such that both f and f−1 are quasi-uniformly continuous. A func-
tion f: (X; d)→ (Y; d′) is quasi-uniformly continuous iS the function f : (X;Ud)→
(Y;Vd′) is quasi-uniformly continuous.

In case the associated order of a quasi-pseudo-metric (quasi-uniform) space is a linear
order we refer to the space as a linear quasi-pseudo-metric (quasi-uniform) space.

A join (meet) semilattice is a partial order (X;6) such that every two elements
x; y∈X have a supremum x�y (in'mum x�y) in X . A lattice is a partial order
which is both a join and a meet semilattice.

We write that a quasi-pseudo-metric (quasi-uniform) space is a (semi)lattice iS the
associated order is a (semi)lattice.

In fact, with slight abuse of terminology, we will refer to quasi-metric spaces for
which the associated order is a semilattice, simply as semilattices, and a similar con-
vention holds for the case of lattices.

In this context, the quasi-metric space is referred to as the underlying quasi-metric
space.

The terminology of quasi-pseudo-metric (quasi-uniform) (semi)lattice is reserved
for quasi-pseudo-metric (quasi-uniform) spaces which are (semi)lattices for which the
operations are quasi-uniformly continuous with respect to the product quasi-uniformity
Ud×Ud (U×U). This is in accordance with the terminology used for the theory of
uniform lattices (e.g. [46,47]).

A join semilattice (X; d) is invariant iS ∀x; y; z∈X: d(x� z; y� z)6d(x; y). In that
case we also write that the quasi-pseudo-metric d is invariant. The notions of an in-
variant meet semilattice and of an invariant lattice are de'ned in the obvious way.
One can easily verify that invariant join semilattices are quasi-pseudo-metric join semi-
lattices and that similar results hold for the case of invariant meet semilattices and for
invariant lattices.

We recall that a quasi-pseudo-metric (quasi-uniform) space is T0 iS the associated
order of the space is a partial order (e.g. [12]). We will work under the assumption that
all spaces satisfy the T0 separation axiom; that is we will solely refer to quasi-metric
spaces in the following.

A non-negative real valued function f on a set X is bounded iS ∃K¿0∀x∈X: f(x)
6K .
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A function f :X →R+
0 is fading iS inf x∈X f(x)= 0. We recall the de'nition of a

valuation on a lattice (L;�).
A function f :L→R+

0 is a valuation iS
(1) f is increasing.
(2) ∀x; y∈L: f(x�y) + f(x�y)=f(x) + f(y).
In case the function f is decreasing and satis'es (2), we refer to f as a
co-valuation.

If f only satis'es (2) we say that f satis'es the modularity law, or also that f is
modular.

There does not seem to be a consistent terminology in the literature. Valuations, also
called evaluations, as used in computer science (e.g. [3] or [19]) typically satisfy (1)
and (2) above. In the classical mathematical literature a valuation only needs to satisfy
(2) (e.g. [1]).

It is convenient for matters of presentation to reserve the de'nition given above for a
valuation in order to state results on connections between partial metrics and valuations
as they occur in Computer Science.

Finally, a (co)valuation f on a lattice (L;�) is strictly increasing (strictly decreas-
ing) if ∀x; y∈L: x❁y⇒f(x)¡f(y)(f(x)¿f(y)). What we call strictly increasing
corresponds to the strongly non-degenerate requirement of [4] and strictly increasing
valuations are exactly the dimension functions as de'ned in [5].

A partial order (X;6) is directed iS ∀x; y∈X ∃ z∈X: z¿x and z¿y.
A dcpo is a partially ordered set (;�) with a least element ⊥ and such that every

directed subset has a supremum. The set of elements below an element x is denoted
by x ↓.

Suppose that x and y are elements of a dcpo (P;�), then x is way below y iS for
all directed subsets A, y�� sup A⇒∃ a∈A: x� a. The set of elements way below a
given element x is denoted by x ⇓. For any set A⊆P, A⇓= {x∈P | ∃ a∈A: x�a}. A
compact element is an element which is way below itself. The set of compact elements
of P is denoted by K(P).

A subset B of a dcpo P is a basis for P iS for all x∈P, the set Bx =B∩ (x ⇓) is
directed with supremum x.

A dcpo P is called continuous if it has a basis and it is called algebraic if it has a
basis of compact elements.

An equivalent characterization of a continuous dcpo is that x= � (x ⇓) for any
element x of the continuous dcpo. Every algebraic domain is a continuous domain.
A continuous dcpo with a countable basis is called !-continuous. An !-continuous
dcpo is also simply referred to as a domain. Similarly, we use the terminology of an
!-algebraic dcpo P, when K(P) is countable.

A basis characterizes the ordering since x6y⇔Bx ⊆By. Of course x�y⇒ x�y.
A dcpo in which each pair of elements with an upper bound has a supremum, is

called bounded-complete. The !-algebraic bounded-complete dcpos are called Scott
domains. An example of a continuous dcpo which is not algebraic is the unit interval
[0; 1], with its usual order, where x�y⇔ (x¡y or x=0). We discuss an example of
a Scott domain below.
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Example. As in Example 4 of [42], let %∞ denote the set of all 'nite and in'nite
sequences (“words”) over a countable alphabet %. For any subset A of %, let A∗ denote
the set of all 'nite sequences over A. Given a sequence s∈%∞, say of length L¿1, then
for any natural number n such that 16n6L, s(n) denotes the nth element. The pre'x
order � on %∞ is de'ned as follows: for any two sequences, s; s′∈%∞: s� s′ ⇔ s is
an initial subsequence of s′. Then (%∞;�) is an example of a Scott Domain, where
the set of 'nite elements is %∗.

We recall some basic information from [30] on 2=3 SFP domains.

De�nition 1. Given a subset A of a partial order P, then an upper (lower) bound of A
is an element x∈P such that ∀y∈A: x�y (x�y). A minimal upper bound of A is an
upper bound for A which has no other upper bounds of A below it. The set of minimal
upper bounds of A is complete iS every upper bound of A has a minimal upper bound
below it.

De�nition 2. An !-algebraic domain is 2=3 SFP iS its Lawson topology is compact.

Theorem 3 (The 2=3 SFP Theorem of Plotkin [30]). An !-algebraic domain is 2=3
SFP i8 for any pair of compact elements of the domain, the set of minimal up-
per bounds is complete and 9nite.

A quasi-metric space (X; d) is weightable iS there exists a function w :X →R+
0 such

that ∀x; y∈X: d(x; y) + w(x)=d(y; x) + w(y). The function w is called a weighting
function, w(x) is the weight of x and the quasi-metric d is weightable by the function
w. A weighted space is a triple (X; d; w) where (X; d) is a quasi-metric space weightable
by the function w.

A quasi-metric space (X; d) is co-weightable iS its conjugate (X; d−1) is weightable.
A co-weighting function of a quasi-metric space is a weighting function of its conjugate.
A co-weighted space (X; d; w) is a triple consisting of a set X , a quasi-metric d on X
and a co-weighting function w.

A quasi-metric space (X; d) is bi-weightable iS it is weightable and co-weightable.
We remark that any weighted space (X; d; w) of bounded weight, where say ∀x∈X: w(x)
6K , is co-weighted by the weighting function K −w [21]. Hence any weighted space
of bounded weight is bi-weightable. Similarly, one obtains that any co-weighted space
of bounded co-weight is bi-weightable.

For a detailed discussion of weightable quasi-metric spaces and the equivalent partial
metric spaces we refer the reader to Section 4 of [38]. We recall in the following the
de'nition of a semivaluation and its natural interpretation as a generalization of the
notion of a valuation to the context of semilattices (cf. also [38]).

De�nition 4. If (X;4) is a meet semilattice then a function f : (X;4)→R+
0 is a meet

valuation iS

∀x; y; z ∈ X: f(x � z)¿ f(x � y) + f(y � z)− f(y)
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and f is meet co-valuation iS

∀x; y; z ∈ X: f(x � z)6 f(x � y) + f(y � z)− f(y):

De�nition 5. If (X;4) is a join semilattice then a function f : (X;4)→R+
0 is a join

valuation iS

∀x; y; z ∈ X: f(x � z)6 f(x � y) + f(y � z)− f(y)

and f is join co-valuation iS

∀x; y; z ∈ X: f(x � z)¿ f(x � y) + f(y � z)− f(y):

De�nition 6. A function is a semivaluation if it is either a join valuation or a meet val-
uation. A join (meet) valuation space is a join (meet) semilattice equipped with a join
(meet) valuation. A semivaluation space is a semilattice equipped with a semivaluation.

Proposition 7. Let L be a lattice.
(1) A function f :L→R+

0 is a join valuation if and only if it is increasing and
satis9es join-modularity, i.e.:

f(x � z) + f(x � z)6 f(x) + f(z):

(2) A function f :L→R+
0 is a meet valuation if and only if it is increasing and

satis9es meet-modularity, i.e.

f(x � z) + f(x � z)¿ f(x) + f(z):

Corollary 8. A function on a lattice is a valuation i8 it is a join valuation and a
meet valuation. A function on a lattice is a co-valuation i8 it is a join co-valuation
and a meet co-valuation.

The last result clearly motivates the fact that semivaluations provide a natural gen-
eralization of valuations from the context of lattices to the context of semilattices. We
refer the reader to [38] for the correspondence theorems which link partial metrics to
semivaluations. We include Theorem 10 of [38] to which we will refer extensively in
the following.

Theorem 9 ([38, Theorem 10]). For every join semilattice (X;4), there exists a bi-
jection between invariant weighted quasi-metrics d on X with 6d=4 and fading
strictly decreasing join co-valuations f : (X;4)→ (R+

0 ;6). The map f �→df is de-
9ned by df(x; y)=f(y)−f(x�y). The inverse is the function which to each weighted
space (X; d) associates its unique fading weighting. Similarly one can show that for
every join semilattice (X;4), there exists a bijection between invariant co-weighted
quasi-metrics d on X with 6d=4 and fading strictly increasing join valuations
f : (X;4)→ (R+

0 ;6). The map f �→df is de9ned by df(x; y)=f(x�y)−f(y). The
inverse is the function which to each co-weighted space (X; d) associates its unique
fading co-weighting.
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We end the section with the remark that the totally bounded quasi-metric Scott
domains of [42] are neither weightable nor co-weightable in general. The fact that the
spaces are not co-weightable, prevents a straightforward representation of such a domain
as a meet valuation space via the dual version of Theorem 9 (cf. Theorem 11 of [38]).
However, the problem will be eliminated, since we will show that domains allow for
a bi-weightable quasi-metric which induces the Scott topology and their partial order
(Proposition 7).

Counterexample. We recall that any weightable quasi-metric space (X; d; w) is order
convex [35], i.e. ∀x; y; z∈X: x¿dy¿dz⇒d(x; z)=d(x; y) + d(y; z). It is easy to show
that the same holds for co-weightable quasi-metric spaces. We show that in general,
Scott Domains are not order convex and hence not co-weightable nor
weightable.

Let % be a countable alphabet, say %=(an)n¿0. We consider a Scott domain (%∞;�)
as in the example at the end of Section 2. We equip the domain with a quasi-
metric dr , de'ned by dr(x; y)= inf{2−n | e� x⇒ e�y for every 'nite e of rank 6n}.
Here the rank of a 'nite element is determined by the function r :%∗ →N where
∀w∈%∗: r(w)= the minimal n such that w∈{a0; : : : ; an}∗ and length(w)6n.

Let w1 = (a0; : : : ; ak); w2 = (a0; : : : ; al) and w3 = (a0; : : : ; am), where k¿l¿m. Then
w1¿drw2¿drw3, but dr(w1; w2)= 2−l; dr(w2; w3)= 2−m, while dr(w1; w3)= 2−m. So
(%∞; dr) is not order convex, and thus not co-weightable nor weightable.

3. Quasi-uniform semilattices

We recall the following useful characterization of invariance from [38].

Lemma 10. A join semilattice (X; d) is invariant i8 ∀x; y∈X: d(x�y; y)=d(x; y).
A meet semilattice (X; d) is invariant i8 ∀x; y∈X: d(x; x�y)=d(x; y).

We say that a partial metric on a join semilattice is invariant iS its corresponding
weightable quasi-metric is invariant. The de'nitions for the case of meet semilattices
and lattices are similar.

We will discuss several examples of quasi-uniform (semi)lattices which arise in Do-
main Theory (cf. [38]). In each case, the quasi-uniform continuity of the (semi)lattice
operations follows from the fact that the quasi-uniformity is generated by an invariant
quasi-metric.

Example 1. Any quasi-metric space which encodes a semilattice is invariant with re-
spect to the semilattice operation. This is in particular the case for quasi-metrics which
encode a Scott domain, since any bounded-complete algebraic cpo is a semilattice (e.g.
[14]).

Not only straightforward encodings of Scott domains give rise to quasi-uniform semi-
lattices. We recall that a main example of [42], regarding totally bounded spaces as
domains of computation (Example 2), as well as the Baire partial metric spaces of
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[26] (Example 3), the complexity space of [34] and its dual (Example 4) correspond
to quasi-uniform semilattices [38].

Example 2. As in [42], let (D;�) be a Scott domain equipped with a rank function
r :FD→N, where ∀n∈N: r−1(n) is a 'nite non-empty set and FD is the set of 'nite
elements of D. Then the following function de'nes a totally bounded quasi-metric on
D:

dr(x; y) = inf{2−n | e � x ⇒ e � y for every 'nite e of rank 6 n}:
The resulting structure is a quasi-metric meet semilattice.

Example 3. Any Baire partial metric space (%∞; p) (cf. [38]) gives rise to a quasi-
uniform meet semilattice induced by the corresponding weightable quasi-pseudo-metric
meet semilattice (%∞; b).

We remark that the weighting function of a Baire quasi-metric space is bounded and
thus such a space is bi-weightable.

Example 4. The interval domain (I([0; 1]); p) consisting of the closed bounded inter-
vals of [0; 1] ordered by reverse inclusion and equipped with the partial metric p (see
[29]) de'ned by

p([a; b]; [c; d]) = max{b; d} −min{a; c}:
One can easily verify that the associated weighted quasi-metric space (I([0; 1]); dp) is
a quasi-metric meet semilattice with a bounded weighting function.

Example 5. The complexity space (C; dC) and its dual (C∗; dC∗) are examples of in-
variant join and meet lattices, respectively. We refer the reader to [35], where the
invariance (optimality) of the complexity space is shown and where more general ex-
amples of invariant semilattices involving upper weighted function spaces are discussed.

We remark that neither the weighting function of the complexity space nor of its
dual is bounded. However, as discussed in [31], complexity functions of programs
computing a given problem frequently can be shown to possess a complexity lower
bound. A theoretical justi'cation for the existence of lower bounds has been given in
[32] based on Levin’s theorem (e.g. [20]). It is remarked in [20] that “for an important
class of problems that can occur in practice an optimal algorithm does exist”, by Levin’s
theorem, and hence one does obtain a lower bound in general. So it is reasonable to
restrict the complexity space to complexity functions respecting a given lower bound.
It is easy o verify that the complexity distance is bounded on such restricted spaces
and hence the fading weighting is bounded. So, we obtain that the restricted spaces
are bi-weightable.

A similar argument can be given for the dual complexity space. For more information
on complexity spaces with a lower bound, we refer the reader to [31,32].

Example 6. Any quasi-metric space for which the associated order is linear is invariant
with respect to its lattice operations. We leave the veri'cations to the reader. Some
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examples are the quasi-metric space (I; d−1
1 ) considered in [42], where I is the unit

interval [0; 1], as well as the spaces (R+
0 ; d1) and (R̃+; d2).

The following theorem provides a partial solution to Problem 7 of [21], for the class
of quasi-uniform join semilattices. We 'rst de'ne the useful notion of an order quasi-
unimorphism.

De�nition 11. If (X;U) and (Y;V) are quasi-uniform spaces then a function f : (X;U)
→ (Y;V) is an order quasi-unimorphism iS
(1) f is strictly increasing with respect to the associated orders,
(2) ∀V ∈V∃U ∈U∀x; y∈X: x¿Uy⇒ (xUy⇒ (fx)V (fy)),
(3) ∀U ∈U∃V ∈V∀x; y∈X: x¿Uy⇒ (f(x)Vf(y)⇒ xUy).

If (X; d) and (Y; d′) are quasi-metric spaces then a function f : (X; d)→ (Y; d′) is an
order isometry iS
(1) f strictly increasing with respect to the associated orders,
(2) ∀x; y∈X: x¿dy⇒ (d′(f(x); f(y))=d(x; y)).

We also refer to f as an order isometry on the space (X; d).

Clearly, every quasi-unimorphism f : (X;U)→ (Y;V) is a surjective order quasi-
unimorphism. We remark that for the case where the domain (X;U) is linear, the
notion of a surjective order quasi-unimorphism and that of a quasi-unimorphism are
equivalent.

We will focus in the following on order quasi-unimorphisms with range space
(R+

0 ;Ud1 ) and (R+
0 ;Ud−1

1
), respectively. These are referred to as left order quasi-

unimorphisms and right order quasi-unimorphisms respectively. A similar terminology
is used for order isometries.

De�nition 12. A Q-join valuation on a quasi-uniform join semilattice is a join valuation
which is a right order quasi-unimorphism. A Q-join co-valuation on a quasi-uniform
join semilattice is a join co-valuation which is a left order quasi-unimorphism.

Remark. The fact that a join co-valuation is decreasing, while a Q-join co-valuation
is increasing with respect to the associated orders is of course consistent, since the
associated order of the left distance d1 is the opposite of the standard ordering on the
reals.

Theorem 13. If (X;U) is a quasi-uniform join semilattice then U is generated
by a weightable invariant quasi-metric ⇔ there exists a Q-join co-valuation on
(X;U).

Proof. Let (X;U) be a quasi-uniform join semilattice generated by a weightable in-
variant quasi-metric, say d. Let w be a weighting function for the space (X; d). By
Theorem 9, w is a join co-valuation and strictly increasing with respect to the associated
orders.
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We show that w : (X;U)→ (R+
0 ;Ud1 ) is a left order quasi-unimorphism. For this it

suQces to show that w : (X; d)→ (R+
0 ; d1) is an order isometry. Since w is strictly in-

creasing with respect to the associated orders, we only need o verify that ∀x; y∈X: x¿dy
⇒ (d1(w(x); w(y))=d(x; y)).

Let x; y∈X be such that x¿dy, then, by the weighting equality, we obtain that
d(x; y)=w(y)− w(x)=d1(w(x); w(y)).

To show the converse implication, we assume that there exists a Q-join co-valuation
f on (X;U). Since f : (X;6U)→ (R+

0 ;6) is a strictly decreasing join co-valuation and
(X;6U) is a join semilattice, by Theorem 9, we obtain the weighted space (X; df; f)
where ∀x; y∈X: df(x; y)=f(y)−f(x�y) and where df is invariant. We show that df
induces U.

For the proof, note that df(x; y)=f(y)− f(x�y)=d1(f(x�y); f(y)).
For Udf ⊆U, we must show ∀�¿0∃U ∈U: xUy⇒df(x; y)¡�. Let �¿0. Since f is

a left-order quasi-unimorphism, there is a U ′∈U with [z¿Uy and zU ′y]⇒d1(f(z);
f(y))¡�. Since (X;U) is a quasi-uniform join semilattice, there is U ∈U with aUb⇒
(a�y)U ′(b�y). Hence xUy implies (x�y)U ′y. Since x�y¿Uy holds, xUy implies
�¿d1(f(x�y); f(y))=df(x; y).

For U⊆Udf , we must show that ∀U ∈U∃ �¿0: df(x; y)¡�⇒ xUy. Let U ∈U. By
the de'nition of quasi-uniformities, there is a V ∈U such that V ◦V ⊆U . Since f is a
left-order quasi-unimorphism, there is �¿0 with [z¿Uy and d1(f(z);
f(y))¡�]⇒ zVy. We remark that df(x; y)¡� implies d1(f(x�y); f(y))¡�. Since
x�y¿Uy holds, this implies (x�y)Vy and of course xV (x�y). Hence xV (x�y)Vy
and thus xUy.

De�nition 14. A Q-meet valuation on a quasi-uniform meet semilattice is a meet
valuation which is a right order quasi-unimorphism. A Q-meet co-valuation is a meet
co-valuation which is a left order quasi-unimorphism. A Q-semi-valuation is a
function which is either a Q-join valuation or a Q-meet valuation.

Finally, we give a dual version of Theorem 13.

Theorem 15. If (X;U) is a quasi-uniform meet semilattice then U is generated
by a co-weigh able invariant quasi-metric ⇔ there exists a Q-meet valuation on
(X;U).

4. Quasi-uniform lattices

De�nition 16. A Q-valuation on a quasi-uniform lattice is a modular right order quasi-
unimorphism. A Q-co-valuation on a quasi-uniform lattice is a modular left order
quasi-unimorphism.

We will obtain a version of Theorems 13 and 15 for the case of quasi-uniform
lattices. We focus on the case of bounded valuations since all of the above discussed
examples involve bounded semivaluations.
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Theorem 17. Let (X;U) be a quasi-uniform lattice. There exists a bounded Q-(co-)
valuation f on (X;U) i8 U is generated by a bi-weightable invariant quasi-metric.

Proof. Let (X;U) be a quasi-uniform lattice.
Let f be a bounded Q-valuation on (X;U), say with a bound K . By Corollary 8,

the function f is a meet valuation.
Thus f is a Q-meet valuation and hence we obtain by (the proof of) Theorem 15

(cf. also Theorem 11 of [38]) a quasi-metric df which is co-weightable, invariant with
respect to the meet operation and which induces U, where ∀x; y∈X: df(x; y)=f(x)−
f(x�y).

Since f is also join-modular and strictly increasing, we obtain that Uf=K − f is
co-join-modular and strictly decreasing. Hence Uf is a Q-join co-valuation and by (the
proof of) Theorem 13 (cf. also Theorem 9), we obtain that U is induced by the co-
weightable quasi-metric d Uf which is invariant with respect to the join operation and
where d Uf = Uf(y)− Uf(x�y).

By Proposition 13 of [38], we obtain that ∀x; y∈X: df(x; y)=d Uf(x; y). We denote
these identical quasi-metrics by d.

Clearly, the quasi-metric d is bi-weightable, invariant and induces the quasi-unifor-
mity U.

To show the converse, we assume that there exists a bi-weightable invariant quasi-
metric d on X which induces U. Let f be the unique fading weighting and g the unique
fading co-weighting of d. Then ∀x; y∈X: d(x; y) + f(x)=d(y; x) + f(y)⇒d(x; y) −
d(y; x)=f(y)− f(x) and d(x; y) + g(y)=d(y; x) + g(x)⇒d(x; y)− d(y; x)= g(x)−
g(y). Hence ∀x; y∈X: f(y)− f(x)= g(x)− g(y)⇒f(x) + g(x)=f(y) + g(y). Thus,
f+ g is a constant function, say K . This implies that f and g are bounded by K , and
g=K − f.

By meet-invariance, d(x; y)=d(x; x�y)=f(x�y) − f(x), and by join-invariance,
d(x; y)=d(x�y; y)=f(y) − f(x�y). Together, this shows that f is modular and
thus a co-valuation. Therefore, g=K − f is a valuation.

By (the proof of) Theorem 13, f is a left order quasi-unimorphism, hence a Q-co-
valuation. Similarly, g is a Q-valuation.

We recall (cf. the counterexample following Corollary 8) that Scott domains are not
co-weightable in general. As an application of Theorem 17, we will show in the next
section that domains are partially metrizable. In particular, we will show that domains
can be equipped with a bi-weightable invariant quasi-metric which induces the Scott
topology.

5. Domains are quanti�able

De�nition 18. A domain (P;�) is quanti'able iS there exists a weighted quasi-metric
d on P which induces the Scott topology on the domain and for which the associated
order coincides with the domain order.



M.P. Schellekens / Theoretical Computer Science 305 (2003) 409–432 425

We introduce the Smyth quasi-metric related to a quasi-metric discussed in [42].

De�nition 19. For a domain (X; �) with a basis B=(an)n, the Smyth-quasi-metric dS
is de'ned by

dS(x; y) = inf
{

1
2n

|∀i6n: ai�x⇒ ai�y
}
:

We leave the proof of the following proposition as an exercise.

Proposition 20. Domains (P;�) are quasi-metrizable by the quasi-metric dS; i.e. dS

induces the Scott topology on (P;�).

For the case of !-algebraic domains, the quasi-metric dS can be simpli'ed by
replacing the way below inequality “�” by “�”.

Proposition 21. Two b SFP !-algebraic domains (P; dS), equipped with the Smyth
quasi-metric dS, are totally bounded.

Proof. Let P be a 2/3 SFP !-algebraic domain. We show that (P; dS) is totally
bounded, where (an)n∈! is the enumeration of the base elements which determines
dS.

Given �¿0, then consider a natural number N such that 1=2N¡�.
Let the 'nitely many elements which satisfy the total boundedness requirement con-

sist of the union of the sets of the minimal upper bounds of all combinations of 'nite
elements with an index 6N . We denote this set by X = {x1; : : : ; xn}.

Given an element x∈X , we consider the base elements below x with index 6N .
Note that for this set there exists an upper bound x and hence a minimal upper bound
below x by the completeness condition. This minimal upper bound is an element of
X , say some xi. It is easy to verify that d(x; xi)¡� and hence d∗(x; xi)¡�.

In the following P denotes a domain (P;�) unless otherwise stated.

De�nition 22. Let C(P) denote the lattice of Scott-closed subsets of P, ordered by
inclusion.

We remark that P ↓= {x ↓ x∈P}⊆C(P).

De�nition 23. The Smyth quasi-metric is extended to the lattice of Scott-closed sets
C(P) by

Dc
S(C; C

′)= inf n

{
1
2n

| ∀i 6 n: ai ∈ C ⇓⇒ ai ∈ C′ ⇓
}
:

The restriction dcS of Dc
S to P is de'ned by dcS(x; y)=Dc

S(x ↓; y ↓).
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We leave the straightforward veri'cations of the following three lemmas to the
reader.

Lemma 24. Dc
S is a join-invariant quasi-metric and hence (C(P);UDc

S
) is a quasi-

uniform join semilattice, equipped with the subset order, i.e. C6Dc
S
C′ ⇔C ⊆C′.

For the following lemma we use the fact that (x ↓)⇓= x ⇓.

Lemma 25. dcS coincides with the Smyth quasi-metric dS.

Lemma 26. Let (P;�) be a domain with countable base B=(an)n. We use the fol-
lowing notation for A⊆P :∀n: A[n] =A∩{ai| i6n}. Then, for any two Scott-closed
sets, C and C′ such that C ⊇C′, we have

Dc
S(C; C

′) = inf
n

{
1
2n

| (C ⇓)[n] = (C′ ⇓)[n]
}
:

In the following proposition, on the quanti'ability of domains (P;�) with a countable
base B= {an}n, we use the notation dw to distinguish this quasi-metric from the quasi-
metric dw de'ned in Theorem 9. In fact, dw is dK−w (using the notation of Theorem 9),
where K =

∑
an w(an).

Proposition 27. Let (P;�) be a domain with a countable base B=(an)n and let
w :B→R+ denote a function such that 5 ∀n: w(an)¿0 and

∑
an∈B w(an)¡∞. Then

(P;�) is quanti9able by the following bi-weightable quasi-metric:

dw(x; y) =
∑

an∈x⇓−y⇓
w(an):

If (P;�) is !-algebraic, then (P;�) is quanti9able by the following bi-weightable
quasi-metric:

dw(x; y) =
∑

an∈x↓−y↓
w(an):

In this case, the associated metric d∗ induces the Lawson topology.

Proof. Consider a function w :B→R+ such that
∑

n w(an) has 'nite value, say K .
We apply Theorem 13 to the lattice of Scott-closed sets C(P) in order to show that

UdcS is generated by a bi-weighted invariant quasi-metric. We extend w to C(P) as
follows: for any Scott-closed set C,

W (C) =
∑

an∈C⇓
w(an):

By Theorem 13, we need to show that W ′ =K − W is a Q-join co-valuation on the
quasi-uniform lattice (C(P);UdcS).

5 In case the domain has a least element ⊥, one can allow w(⊥)= 0.
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We remark that

∀C1; C2 ∈ C(P): (C1 ∪ C2) ⇓= C1 ⇓ ∪C2 ⇓ :

However, in general one only has

∀C1; C2 ∈ C(P): (C1 ∩ C2) ⇓⊆ C1 ⇓ ∩C2 ⇓ :

Hence, W (C ∪C′)+W (C ∩C′)=
∑

an∈(C ∪C′)⇓ w(an) +
∑

an∈(C ∩C′)⇓ w(an)6∑
an∈(C⇓∪C′⇓) w(an)+

∑
an∈(C⇓∩C′⇓) w(an)=

∑
an∈C⇓ w(an)+

∑
an∈C′⇓ w(an)=W (C)

+W (C′).
So W is a join valuation and hence W ′ is a join co-valuation on the lattice C(P)

with the operations of intersection and union. To verify that W ′ is strictly decreasing,
it suQces to verify that W : (C(P);⊆)→ (R+;6) is strictly increasing.

Let C; C′ be Scott-closed sets such that C is strictly included in C′. Then W (C)6
W (C′). We show by way of contradiction that W (C)¡W (C′). Indeed, if W (C)=
W (C′) then for any base element an, we obtain: an∈C ⇓⇔ an∈C′ ⇓ from the fact that
∀n: w(an)¿0.

Hence C ⇓ ∩B=C′ ⇓∩B. If x is an element of C′ then, since P is a domain, we
have that x=�Bx. Since x∈C′ and C′ is downwardly closed, Bx ⊆C′. Hence Bx ⊆C
and thus x∈C. So we obtain C′ ⊆C which is a contradiction. Hence W ′ is a strictly
decreasing join co-valuation.

We verify that W ′ is a left order quasi-unimorphism. W ′ : (C(P);UdcS)→ (R+; d1) is
strictly increasing since W ′ : (C(P);⊆)→ (R+;6) is strictly decreasing. So it remains
to be veri'ed that
(1) ∀� ∃ 2∀C; C′∈C(P): C¿Dc

S
C′ ⇒ (Dc

S(C; C
′)¡2⇒d1(W ′(C); W ′(C′))¡�).

(2) ∀� ∃ 2∀C; C′∈C(P): C¿Dc
S
C′ ⇒ (d1(W ′(C); W ′(C′))¡2⇒Dc

S(C; C
′)¡�).

We remark that for any two Scott-closed sets C; C′ with C ⊇C′, we have

d1(W ′(C); W ′(C′)) =
∑

an∈C⇓−C′⇓
w(an):

In order to prove the result, we can assume that the basis B is in'nite. Indeed, in case
B is 'nite, it is easy to verify that for C′ ⊆C in (1), requiring that Dc

S(C; C
′)¡2,

and for C′ ⊆C in (2), requiring that d1(W ′(C); W ′(C′))¡2, for 2 suQciently small,
implies that C =C′ and hence (1) and (2) are satis'ed.

We assume in what follows that B is in'nite.
To show (1), assume that �¿0 is given, C and C′ are Scott-closed sets such that

C ⊇C′ and dcS(C; C
′)¡2.

If N is the largest natural number such that 1=2N62 then ∀n6N: (C ⇓)[n] = (C′ ⇓)
[n]. Thus

d1(W ′(C); W ′(C′)) =
∑

an∈C⇓−C′⇓
w(an) =

∑
an∈C⇓−C′⇓ and n¿N

w(an):
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Finally, since B is in'nite and the series
∑

n w(an) converges, we can choose 2 small
enough and hence N large enough such that

∑
n¿N w(an)¡� and thus

d1(W ′(C); W ′(C′))6
∑
n¿N

w(an)¡�:

To show (2), we assume that �¿0 is given, C and C′ are Scott-closed sets such that
C ⊇C′ and d1(W ′(C); W ′(C′))¡2. Let N0 be the largest number such that 1=2N06�.
We will show that dcS(C; C

′)61=N0 for suQciently small value of 2. I.e. we need to
verify that ∀n6N0: (C ⇓)[n] = (C′ ⇓ )[n]. Let w0 = min{w(ai)| ai∈(C ⇓ )[N0]}.

Pick 2¡w0. Then d1(W ′(C); W ′(C′))¡2⇒ ∑
an∈C⇓−C′⇓ w(an)¡w0 ⇒∀ai∈(C ⇓)

[N0]: ai �∈C ⇓ − C′ ⇓⇒∀ai∈(C ⇓)[N0]: ai∈C′ ⇒ (C ⇓)[N0]=C′ ⇓)[N0]⇒dcS(C; C
′)6

1=2N0 .
So W ′ is a Q-join co-valuation on the quasi-uniform lattice (C(P);UDc

S
).

Hence by (the proof of) Theorem 13, we obtain that UDc
S
is induced by the weighted

quasi-metric DW ′ de'ned by

DW ′(C; C′) = W ′(C′)−W ′(C ∪ C′):

We remark that

DW ′(C; C′) =
∑

an∈C⇓−C′⇓
w(an):

Since UDc
S
=UDW ′ , we obtain that the restrictions of these quasi-uniformities to the

product P ↓×P ↓ coincide.
We now consider the weighted quasi-metric dW ′ , de'ned on P by dW ′(x; y)=DW ′

(x ↓; y ↓).
We recall that the Smyth quasi-metric dS coincides with the distance dcS, i.e. the

restriction of the quasi-metric Dc
S to the product P ↓×P ↓.

Hence we obtain a (trivial) quasi-unimorphism i1 : (X;UdS)⇒ (X ↓;UdcS), which maps
x to x ↓. Similarly, we obtain a quasi-unimorphism i2 : (X;Udw′ )⇒ (X ↓;UdW ′ ), where

dw′(x; y) =
∑

an∈x⇓−y⇓
w(an):

Since the restrictions of UDc
S
and UDW ′ to the product P ↓×P ↓ coincide, we obtain,

via the quasi-unimorphisms i1 and i2, that UdS and Udw′ coincide. Since the Smyth
quasi-metric dS generates the Scott topology on the domain P, we obtain in particular
that Udw′ induces the Scott topology and that its associated order is the domain order.
So it suQces to chose dw =dw′ .

Finally, we show that !-algebraic dcpos (P;�) can be quanti'ed as a weighted
quasi-metric space (P; d), where d(x; y)=

∑
an∈x↓−y↓ w(an) and where the associated

metric d∗ induces the Lawson topology.
For the case of !-algebraic dcpos (P;�), one can easily verify that the above

proof simpli'es since one does not need to refer to the way below relation. In par-
ticular, one can de'ne W on C(P) as follows: W (C)=

∑
an∈C w(an). It is easy

to verify that this function is a strictly increasing valuation. Once can then show
that W ′ is a Q-co-valuation and apply Theorem 17 (rather than Theorem 13) in
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order to obtain a bi-weightable invariant quasi-metric. Finally, via a restriction to
P ↓×P ↓, one obtains that (P;�) is quanti'able via the weighted quasi-metric dw,
where dw(x; y)=

∑
an∈x↓−y↓ w(an).

The proof that d∗ induces the Lawson topology is a straightforward generalization of
the one given in [29], so we only provide a sketch. First, remark that for quasi-metric
spaces (X; d) in general Tk

d ⊆Td−1 , where Tk
d is the co-compact topology. Hence

the Lawson topology is included in the associated metric topology. So it suQces to
verify for the quanti'ed domain (P; dw) that B∗

� [x] = {y|d∗(x; y)¡�} is Lawson-open
for every �¿0 and for every x∈P. Pick N such that 1=2N =

∑
n¿N+1 1=2n¡� and let

2=1=2N . Consider the set A= {an | an �� x; 16n6N} and let B2[x] = {y |dw(x; y)¡2}
and O=B2[x]∩ (

⋂
an∈A(P − an ↑)). Then O is Lawson-open since B2[x] is Scott-open.

We show O⊆B∗
� [x]. Consider y∈O. Then, by de'nition of O, dw(x; y)¡2¡�. Finally,

note that dw(y; x)=
∑

an∈y↓−x↓ w(an). If an∈y↓−x↓ then an�y but an �� x and thus
n¿N . Hence dw(y; x)6

∑
n¿N+1 1=2

n¡�.

The case of !-continuous domains which are not !-algebraic. We remark that the
quanti'ability for general domains cannot be obtained via an argument on the Smyth-
quasi-metric dS de'ned via the partial order domain relation �, i.e. dS(x; y)= inf{1=2n |
∀i6n: ai � x⇒ ai �y}, nor from the weighted quasi-metric dw(x; y)=

∑
an∈x↓−y↓ w

(an), since neither distance induces the Scott topology in general. Consider for in-
stance the !-continuous lattice [0; 1] with as basis the dyadic rationals in [0,1). Let
the basis be enumerated by: a1 = 0; a2 = 1

2 ; a3 =
1
4 ; a4 =

3
4 ; a5 =

1
8 ; a6 =

3
8 ; : : : : Then the

set {y |dS( 12 ; y)¡
1
2}= [12 ; 1]={y |dw( 12 ; y)¡ 1

4} is dS-open and dw-open, but not Scott
open. Hence the argument for the quanti'ability of !-continuous domains reported in
[29], based on dw(x; y)=

∑
an∈x↓−y↓ w(an), only holds for the !-algebraic case.

De�nition 28. Given a domain (P;�) with countable base B. A function w :B→R+

which has 'nite sum over B is called a basic valuation. The valuation

W (C) =
∑
an∈C

w(an)

is called the valuation generated by w and the weighted quasi-metric

dw(x; y) =
∑

an∈x⇓−y⇓
w(an)

is called the quasi-metric generated by w. The corresponding partial metric

pw(x; y) =
∑

an =∈x⇓∩y⇓
w(an)

is called the partial metric generated by w.
For any domain (P;�), we refer to the partial metric space (P; pw) as a quanti'cation

of the domain.

We obtain the following immediate corollary of Proposition 27.
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Corollary 29. Quanti9cations (P; pw1 ) and (P; pw2 ) of a domain (P; �) are equivalent,
i.e. the quasi-metrics dw1 and dw2 generate the same quasi-uniformity.

Corollary 30. For !-algebraic dcpos P the following holds: P is 2=3 SFP i8 any of
its quanti9cations (P; pw) is compact.

Proof. We remark that for !-algebraic dcpo’s the associated metric induces the Lawson
topology and 2/3 SFP !-algebraic dcpo’s have a compact Lawson topology. Hence the
result follows.
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