
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
International Journal of Solids and Structures 43 (2006) 2318–2335

www.elsevier.com/locate/ijsolstr
Influence of temperature and strain rate on the
mechanical behavior of three amorphous
polymers: Characterization and modeling

of the compressive yield stress

J. Richeton a, S. Ahzi a,*, K.S. Vecchio b, F.C. Jiang b, R.R. Adharapurapu b

a Institut de Mécanique des Fluides et des Solides—UMR 7507, Université Louis Pasteur/CNRS, 67000 Strasbourg, France
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Abstract

Uniaxial compression stress–strain tests were carried out on three commercial amorphous polymers: polycarbonate
(PC), polymethylmethacrylate (PMMA), and polyamideimide (PAI). The experiments were conducted under a wide
range of temperatures (�40 �C to 180 �C) and strain rates (0.0001 s�1 up to 5000 s�1). A modified split-Hopkinson pres-
sure bar was used for high strain rate tests. Temperature and strain rate greatly influence the mechanical response of the
three polymers. In particular, the yield stress is found to increase with decreasing temperature and with increasing strain
rate. The experimental data for the compressive yield stress were modeled for a wide range of strain rates and temper-
atures according to a new formulation of the cooperative model based on a strain rate/temperature superposition prin-
ciple. The modeling results of the cooperative model provide evidence on the secondary transition by linking the yield
behavior to the energy associated to the b mechanical loss peak. The effect of hydrostatic pressure is also addressed
from a modeling perspective.
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1. Introduction

Strain rate and temperature are known to significantly influence the mechanical behavior of polymers.
Since the beginning of polymer science, numerous experimental studies have been carried out on poly-
mers to characterize the mechanical behavior as a function of temperature and strain rate. Among these
studies, a great deal of attention has been given to the yield stress. Bauwens-Crowet, Bauwens and
co-workers (Bauwens-Crowet et al., 1969, 1972; Bauwens, 1972; Bauwens-Crowet, 1973) have studied
the yield stress of PC, PMMA and PVC as a function of temperature and strain rate. In their work,
they correlated the yield behavior with molecular processes such as the secondary relaxation, but they
did not study the flow stress for strain rates higher than 1 s�1. In particular, to test materials under dy-
namic loading, one common technique employed is the split-Hopkinson pressure bar. The theory and
practical application of the split-Hopkinson pressure bar testing method are clearly presented and re-
viewed by Gray (2000) in the ASM—Handbook, Volume 8 ‘‘Mechanical Testing and Evaluation’’.
The specific use of the split-Hopkinson pressure bar for the evaluation of the high strain rate deforma-
tion of polymers and other soft materials is critiqued by Gray and Blumenthal (2000). The first work on
the high rate response of plastics is due to Kolsky (1949) wherein he identified the importance of sample
thickness on the measured response of the polymers. Walley et al. (1989) compiled reviews on the high
strain rate studies of polymers, and they also showed that the strain hardening behavior of glassy poly-
mers is dependent on the strain rate and temperature. Chou et al. (1973) analyzed the compressive
behavior of several plastics and concluded that the temperature rise developed during deformation can-
not be neglected. They also observed that the yield strength increases with increasing strain rate. Similar
results for the flow stress were also found by Briscoe and Nosker (1985).

While numerous studies have investigated the influence of strain rate on the constitutive response for
several polymers at room temperature, the influence of temperature at high strain rate has received much
less attention. Among these studies, Rietsch and Bouette (1990) studied the compression yield stress of PC
over a wide range of temperatures and strain rates, and revealed the importance of the secondary transition
to account for the flow stress increases. Later, Chen et al. (2002) showed that the dynamic stress–strain
behavior under tension differs significantly from the dynamic compressive response. Blumenthal et al.
(2002) examined the influence of both strain rate and temperature on the deformation response of PMMA
and PC, and more recently, Cady et al. (2003) studied the mechanical response of several polymers under
dynamic loading at high temperatures.

The aim of this paper is first to present experimental results illustrating the effect of strain rate and tem-
perature on the mechanical response for three amorphous polymers (PC, PMMA and PAI) under a wide
range of strain rates and temperatures. Both PC and PMMA are very common commercial products widely
used for their optical and mechanical properties; these materials are also used in extreme temperature and
loading condition such as impact-resistant aircraft windows. PAI is a high technology molding polymer for
reliable performance at extremely high temperature and stress. Among the technologically advanced appli-
cations of PAI, it can be mentioned that parts of the space shuttle, automotive transmission, and many
other critical components are molded from this polymer. The testing of these three materials for a wide
range of strain rates and temperatures is a required step to develop constitutive modeling able to accurately
predict the mechanical behavior for severe applications. This is why the second objective of this article is to
model the compressive yield stresses according to the new formulation of the Eyring cooperative model as
proposed by Richeton et al. (2005). At the end, we discuss how the effect of hydrostatic pressure can be
incorporated in the proposed model.
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2. Materials and experimental procedures

2.1. Materials

The materials used in this study were three amorphous polymers, polycarbonate (PC), polymethylmeth-
acrylate (PMMA), and polyamideimide (PAI). Commercial grades of these materials were purchased as ex-
truded rods from a local supplier under the trade names, GE Plastics Lexan� PC, Degussa AG Plexiglas�

PMMA and Quadrant EPP Torlon� 4203 PAI.

2.2. Low strain rate compression testing

Quasi-static uniaxial compression tests were conducted on a servohydraulic Instron load frame. The
samples were tested to large strains at different temperatures, ranging from �40 �C to temperatures above
the glass transition temperature and at different constant extension rates, leading to strain rates ranging
from 10�4 s�1 to 10 s�1. Right cylindrical samples were machined to an aspect ratio of 1:1 from the ex-
truded polymer rods. The exact dimensions of the specimens were of 6.35 mm in height and 6.35 mm in
diameter. Grease was used between the sample end faces and the platens to minimize friction. Load data
from the load cell and displacement data from the deflectometer were recorded using a data acquisition
software. The corresponding true stress–true strain curves were computed and then plotted.

At low temperatures (�40 �C and 0 �C), tests were carried out in a methanol bath cooled down by liquid
nitrogen, while at high temperatures the tests were conducted in a container filled with arachid oil heated up
by a heating collar. In both cases, temperature was monitored through a K-type thermocouple and samples
were held at temperature for approximately 5 min before starting the experiments.

2.3. High strain rate compression testing

Dynamic uniaxial compression tests were conducted for three different temperatures (�40 �C, 0 �C and
25 �C) at high strain rates of about 800–5000 s�1 using a split-Hopkinson pressure bar (SHPB) setup. The
length of polymer samples used in high strain rate tests must be carefully chosen to ensure that stress equi-
librium is achieved in the loading of the sample (Gray and Blumenthal, 2000). Following the guidelines
from Gray and Blumenthal (2000) and more recently discussed in Cady et al. (2003), numerous preliminary
tests were conducted on each of the three polymers tested here, to determine the maximum specimen length
(l) to sample diameter (d) ratio that produced stress equilibrium throughout the tests. As a result of these
preliminary tests, we verified the results of Cady et al. (2003), which indicated that an aspect ratio (l/d)
equal to 1/2 will ensure stress equilibrium. The high strain rate specimen were machined to an (l/d) aspect
ratio of 1/2 from the same polymer rods as for the low strain rate tests, and the exact dimensions of the
specimens were of 3.18 mm in height and 6.35 mm in diameter. Grease was also used between the sample
end faces and the platens to minimize friction. A schematic of the SHPB setup can be found in Fig. 1. The
Fig. 1. Schematic representation of the SHPB setup.
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sample is sandwiched between the incident bar and the transmitter bar, both of which are made out of C350
maraging steel. The striker bar (also made out of C350 maraging steel) is fired from a gas gun and impacts
the incident bar to generate a pressure pulse, which travels down the incident bar and loads the sample. A
portion of the incident pulse is reflected at the sample/bar interface, and the remaining part is transmitted
through the sample into the transmission bar. In the present setup, the reflected pulse is measured, then
captured in a momentum trap, and hence the sample is loaded only once. High gain, large band-width
amplifiers were used to amplify the stress pulses traveling in the bars measured by strain gauges glued to
the bars. The diameter of all the bars was 12.7 mm, the length of the striker bar was of 45.7 cm, and the
incident and transmitter bars had the same length of 121.9 cm. The incident, reflected and transmitted pulse
were recorded at a frequency of 10 MHz and were corrected for wave dispersion. Subsequently, the strain
rate and true strain were calculated from the reflected pulse, and the sample true stress was calculated from
the transmitted pulse. Furthermore, care was taken to verify that each tested sample was in stress equilib-
rium during the loading period of the test, and that a constant strain rate was achieved for the entire load-
ing duration. Lastly, pulse shaping of the incident pulse was performed using a thin layer of petroleum jelly
on the impact side of the incident bar. This thin layer of petroleum jelly has a distinct affect on reducing the
inherent high-frequency noise associated with the impact generating the stress pulse, and increases the rise
time of the incident pulse, which facilitates establishing stress equilibrium. Part of this noise inherent to
dynamic loading was also attenuated from the stress–strain curves by realizing a numerical smoothening
of experimental data. However any test wherein the sample was not under stress equilibrium, not deformed
at a constant strain rate, or which produced a very noisy or oscillating transmitted pulse was discarded and
not used in this study.

The SHPB tests were conducted at three temperatures: �40 �C, 0 �C and 25 �C. For the low tempera-
tures, a methanol bath cooled down by liquid nitrogen was utilized. All the tests were repeated for several
samples for each temperature and strain rate conditions. The quasi-static tests provided very good repro-
ducibility, whereas a small variation in the stress–strain results was observed for dynamic tests.
3. Experimental results

3.1. Strain rate dependence

Fig. 2 presents the uniaxial compression true stress–true strain curves of PC, PMMA and PAI tested at
25 �C for various strain rates ranging from quasi-static to dynamic loadings. Only part of the experimental
results is presented to ease the interpretation of the stress–strain curves. The first observation is that the
yield stress increases with an increasing strain rate especially at high strain rates. Many authors (Bauwens,
1972; Bauwens-Crowet, 1973; Rietsch and Bouette, 1990; Xiao et al., 1994; Chen et al., 1999; Brulé et al.,
2001; Rana et al., 2002; Richeton et al., 2005) believe that this increase of the yield stress is correlated to
secondary molecular processes. An increasing strain rate will decrease the molecular mobility of the poly-
mer chains by making the chains stiffer. A similar increase of the yield stress will be observed at the very low
temperatures, where the yield stress dramatically increases with a decreasing temperature near the second-
ary relaxation temperature, Tb. The initial Young�s modulus appears also to be strain rate dependent. In the
case of PMMA and PAI, an increasing strain rate will noticeably increase the initial Young�s modulus. This
effect will have to be taken into account in the development of advanced models capable of predicting the
mechanical properties of polymers under dynamic loading conditions.

Concerning the stress–strain behavior, all the three polymers exhibit a similar mechanical response at the
low strain rates: first an initial elastic response followed by yielding, strain softening and then a dramatic
strain hardening. The extent of strain softening depends on the material. For all three materials, the



Fig. 2. Experimental uniaxial compression stress–strain curves for PC, PMMA and PAI at the temperature 25 �C over a wide range of
strain rates.
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adiabatic heating effect on the strain softening and the strain hardening cannot be neglected. This adiabatic
temperature rise is easily recognizable in that at the large deformations the slope of the flow curve decreases
(decreasing strain hardening rate) with an increasing strain rate. Generally this thermal effect becomes
significant at the strain rate of 0.01 s�1. Due to the low thermal diffusivities of polymers, effects of adiabatic
heating are expected to be significant for high strain rate testing, yet still dependent on the polymer. The
closer the adiabatic temperature rise approaches the glass transition temperature, the stronger the effect
on the strain hardening rate. Indeed for PMMA, the strain hardening completely disappears at the high
strain rates due to the adiabatic heating effect as shown in Fig. 2. Both PC and PAI show much less effect
of the adiabatic heating on the strain hardening rate, yet the effect must still be incorporated into the
constitutive model for these materials. The values of the glass transition temperature of the polymers
can be found in Table 1.



Table 1
Parameters for the cooperative model

Parameters PC PMMA PAI

n 5.88 6.37 6.58
V (m3) 5.16 · 10�29 5.14 · 10�29 1.62 · 10�29

ri(0) (MPa) 145 190 315
m (MPa/K) 0.24 0.47 0.61
_e0 (s�1) 8.69 · 1012 7.46 · 1015 8.03 · 1011

DHb (kJ/mol) 40 90 25

Tg (K) 413 378 538
cg1 17.44 9.00 –
cg2 (�C) 51.60 35.50 –

The WLF parameters of PC are from Ferry (1980) and those from PMMA are from Halary et al. (1991).

Fig. 3. Experimental uniaxial compression stress–strain curves for PC, PMMA and PAI at the strain rate of 0.01 s�1 over a wide range
of temperature.
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3.2. Temperature dependence

The compression true stress–true strain curves at a constant strain rate of 0.01 s�1 for various temper-
atures are given in Fig. 3. As expected the yield stress and the initial Young�s modulus are found to decrease
with an increasing temperature for all three materials; a similar effect is also observed for the strain hard-
ening rate. This corroborates that the temperature rise at high strain rates controls the strain hardening
rate, which depend itself on temperature. The closer the temperature is to the glass transition temperature,
Tg, the lower the strain hardening rate. Strain hardening can even vanish for temperatures above Tg.

Concerning the yield stress, PMMApresents a significant increase for the low temperatures at�40 �C and
0 �C. The reason for this effect is that these low temperatures are below the secondary relaxation temperature
of PMMA (about 10 �C). As is the case at high strain rates, the yield stress dramatically increases for
temperatures below the secondary relaxation temperature, Tb. Here we can also mention that the PMMA
samples tested at �40 �C and 0 �C, for the very high strain rates, fractured before yielding. When the theo-
retical yield stress value is superior to the brittle stress value, the polymer presents a brittle behavior. In the
case of PMMA, the competition process between yielding and brittle failure cannot be neglected for the low
temperatures and high strain rates. Similar increase of yield stress have also been observed for PC, where the
yield stress of this material dramatically augments at about �100 �C/�150 �C (Boyer, 1968; Kastelic and
Baer, 1973). According to Boyer (1968), this sharp increase in the yield point is associated with the b tran-
sition. This can easily be understood since below Tb the secondary molecular motions are restricted and thus
the polymer chains are stiffer. Unfortunately for PAI, we could not find in the literature any data for the yield
stress at very low temperatures or any values for the secondary transition temperature.
4. Modeling of the yield stress

4.1. Cooperative model

Many molecular theories have been proposed for the prediction of the yield stress of amorphous poly-
mers (Eyring, 1936; Robertson, 1966; Bauwens-Crowet et al., 1969; Argon, 1973; Bowden and Raha, 1974).
These theories consider the yield behavior as a thermally activated process and account for temperature and
strain rate effects. Most of these models give an acceptable prediction for the yield stress, but only in a spe-
cific domain of temperatures and/or strain rates. In particular, Richeton et al. (2003) have revealed that
these models are either unable to account for the dramatic increase of the yield stress at higher strain rates
or non-valid in the glass transition temperature region. Recently, a new formulation of the Eyring cooper-
ative model by Richeton et al. (2005) has shown to give satisfactory results for a wide range of strain rates
and temperatures, including the high strain rates and the glass transition region.

The cooperative model is based on to the work of Fotheringham and Cherry (1976, 1978), where these
authors have introduced the concept that yielding involves a cooperative motion of polymer chain segments
to account for the significance of an activation volume during the yield process. They made two modifica-
tions to the original Eyring equation. First, they adopted a similar representation as in Haward and Thack-
ray (1968), where it is assumed that there exists an internal stress, ri, that will reduce the effective stress, r*,
defined by:
r� ¼ ry � ri ð1Þ
This internal stress is a structural parameter, which provides a better way of expressing the observed macro-
scopic properties in polymeric materials. The value of ri is strongly affected by temperature. Second, they
considered that the yield stress, ry, is obtained when many polymer chain segments are moving coopera-
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tively at the same time. The resulting model is an Eyring-like equation, where the hyperbolic sine function is
raised to an nth power.
Fig. 4
T1 < T
_e ¼ _e�sinhn ðry � riÞV
2kT

� �
ð2Þ
Here, n is a material parameter used to characterize the cooperative movement of the chain segments, V is
the activation volume, k is the Boltzmann constant and T is the absolute temperature. The characteristic
strain rate, _e�, is thermally activated. The development of Richeton et al. (2005) consists of deriving the tem-
perature dependence of _e� and ri, so that both quantities conform to the strain rate/temperature superpo-
sition principle for the yield stress described by Bauwens-Crowet et al. (1969).

4.2. Strain rate/temperature superposition principle

It is well established that an increase in temperature will have the same effect on the yield stress as a de-
crease in strain rate. According to the well-known time-temperature superposition principle, which de-
scribes the equivalence of time (or frequency, herein assimilated as the strain rate) and temperature, the
yield of amorphous polymers at low temperatures is comparable to that at high strain rates. Bauwens-
Crowet et al. (1969) have established that the Eyring plots (curves representing ry/T versus log _e for various
temperatures) can be shifted to create a master curve for a given reference temperature, Tref. Fig. 4
schematically illustrates the scaling properties of the Eyring plots where the shifts with respect to the master
curve are both horizontal and vertical. The expression of these shifts is given by:
Dðlog _eÞ ¼ log _eðT refÞ � log _eðT Þ

D ry
T

� �
¼ ryðT refÞ

T ref

� ryðT Þ
T

8<
: ð3Þ
where Dðlog _eÞ is the horizontal shift and D(ry/T) is the vertical shift. It needs to be pointed out that the
strain rate, _e, does not depend on the temperature; the form, _eðT Þ, is only used for referencing the temper-
ature at which the Eyring plot is represented.

Although, the scaling properties of the cooperative model have already been studied by Povolo and
co-workers (Povolo and Hermida, 1995; Povolo et al., 1996), Richeton et al. (2005) have recently proposed
a new development which assumes that, independent of the yield stress model, both of the horizontal and
vertical shifts have to follow an Arrhenius-like temperature dependence. Subsequently, Richeton et al.
. Illustration of the strain rate—temperature superposition principle of the Eyring plots for three different temperatures

ref < T2. The curves drawn for T1 and T2 can be superposed to the curve given for Tref.
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(2005) have drawn a parallel with the work of Bauwens (1972) and Bauwens-Crowet (1973) where the yield
behavior has been linked with the b mechanical loss peak of the T < Tg transition. As a matter of fact, the
expressions of both shifts can be expressed as function of DHb, the activation energy of the b loss peak.
Finally according to these assumption, the expressions of _e� and ri are derived as:
_e�ðT Þ ¼ _e0 exp �DHb

kT

� �
riðT Þ ¼ rið0Þ � mT

8<
: ð4Þ
where _e0 is a constant pre-exponential strain rate, DHb is the activation energy, ri(0) is the athermal internal
yield stress and m is a material parameter. Combining Eqs. (2) and (4), the expression of the yield stress is
given by:
ry ¼ rið0Þ � mT þ 2kT
V

sinh�1 _e

_e0 exp �DHb

kT

� �
0
BB@

1
CCA

1=n

ð5Þ
4.3. Extension of the model through the glass transition region

Several authors such as Roetling (1965), Robertson (1966) and Bauwens et al. (1969) have previously
studied and modeled the yield stress behavior of amorphous polymers through the glass transition region.
For temperatures above Tg, it has been found that the yield stress vanishes to zero with respect to relations
based on the concept of free volume. In the work of Richeton et al. (2005), the cooperative model was also
extended through the glass transition according to the Williams–Landel–Ferry (WLF) equation (Ferry,
1980). In lines with the superposition principle between time (or frequency) and temperature, the WLF
equation describes the mechanical properties of amorphous polymers in the range Tg to Tg + 100 �C.
According to this development, the characteristic strain rate above Tg, _e

�ðT P T gÞ, is be expressed as:
_e�ðT P T gÞ ¼ _e0 exp �DHb

kT g

� �
exp

ln 10� cg1ðT � T gÞ
cg2 þ T � T g

� �
ð6Þ
where cg1 and cg2 are the WLF parameters and all other parameters have been defined previously. It can be
noted that _e�ðT Þ, as defined by Eq. (4) for T < Tg and by Eq. (6) for T P Tg, is a continuous function of T.

For the determination of ri(T P Tg), it was suggested by Fotheringham and Cherry (1976) to use a van-
ishing internal stress above Tg:
riðT P T gÞ ¼ 0 ð7Þ

Heating an amorphous polymer above Tg must annihilate the past thermal history of the material. Accord-
ing to this assumption, the proposed model for the yield stress will not be continuous through the glass
transition temperature region because the internal stress is inherently non-continuous. In addition the glass
transition is postulated to occur for a single temperature. However it is universally known that it occurs for
a large domain of temperature. Finally, by substituting Eqs. (6) and (7) into Eq. (2), the expression of the
cooperative model above Tg is given by:
ryðT P T gÞ ¼
2kT
V

sinh�1 _e

_e0 exp �DHb

kT g

� �
exp

ln 10� cg1ðT � T gÞ
cg2 þ T � T g

� �
0
BB@

1
CCA

1=n

ð8Þ
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4.4. Physical nature of the model

Originally, Fotheringham and Cherry (1976, 1978), and Povolo and co-workers (Povolo and Hermida,
1995; Povolo et al., 1996) have not provided any information on the nature of the activation energy of the
cooperative model. It is quite remarkable to notice that the b process is also involved in the cooperative
process, since it is a physical process that has been identified as a plasticity precursor. It has been empha-
sized by Yee and co-workers (Xiao et al., 1994; Chen et al., 1999) and by Halary and co-workers (Brulé
et al., 2001; Rana et al., 2002) that there exists a correlation between yielding and segmental mobility asso-
ciated to the b relaxation processes (localized molecular motions). Therefore the curvature of the Eyring
plots at high strain rates and at low temperatures may also be accounted for by the existence of this sec-
ondary transition.

Concerning the internal stress, Povolo and Hermida (Povolo and Hermida, 1995; Povolo et al., 1996)
proposed a linear dependence of the internal stress with temperature, but they do not have a physical model
that can explain it. Nonetheless, we believe that the linear dependence of ri can find some justification in the
work of Rault (1998). This author applied the compensation law to the yielding of amorphous and semi-
crystalline polymers. Accordingly, the yield stress may be written as:
ry ¼ r0 �
r0

T g

T þ kT
V

ln
_e
_e0

ð9Þ
where r0 may be associated with the athermal stress ri(0) of the cooperative model. If Eqs. (5) and (9) are
compared, it can be seen that the first term of both yield stress models exhibits a linear dependence on tem-
perature. As mentioned by Rault (1998), the ratio r0/Tg is found to be on the order of 0.5 MPa/K for many
thermoplastic polymers. This value is in good agreement with the cooperative model, since we recently
found m � 0.5 MPa/K for three amorphous polymers (Richeton et al., 2005).
5. Results and discussion for the yield stress

In considering the deformation of polymers, the yield stress is generally defined as the true stress at the
peak value on the stress–strain curves, and this definition is used herein. We remind the reader that the qua-
si-static tests were made at a constant crosshead speed, which does not provide a constant strain rate during
loading at large strains. However, the strain rate variation occurring before yielding (small strains) has a
negligible effect on the measured yield stress value.

5.1. Identification of the model parameters

The number of the parameters for the cooperative model is six (n, V, _e0, DHb, ri(0) and m). To identify
these parameters, a reference temperature, Tref, first has to be chosen. A reference temperature of 25 �C was
chosen for all three polymers. Then a master curve of the experimental data has to be built at Tref by using
an Eyring plot representation (ry/T versus log _e). The horizontal and vertical shifts are determined to obtain
the most suitable master curve. For the cooperative model, we have previously shown that the horizontal
and vertical shifts can be expressed as (Richeton et al., 2005):
Dðlog _eÞ ¼ DHb

k ln 10
1

T
� 1

T ref

� �

D ry
T

� �
¼ �rið0Þ

1

T
� 1

T ref

� �
8>>><
>>>: ð10Þ
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where DHb and ri(0) are the two adjusting parameters to get the most suitable master curve. In addition, the
experimental data shifted horizontally and vertically have to satisfy the following equation:
ry

T ref

¼ riðT refÞ
T ref

þ 2k
V

sinh�1 _e
_e�ðT refÞ

� �1=n

ð11Þ
This equation is simply a rewriting of Eq. (2) for Tref. The next step for the identification consists of cal-
culating numerically the variables n, V, _e�ðT refÞ and ri(Tref) using a curve-fitting software to obtain the best
fit of the shifted experimental data. The two remaining parameters _e0 and m derive directly from Eq. (4)
taken at Tref.

Fig. 5 represents the master curves of the experimental data built at 25 �C for PC, PMMA and PAI ver-
sus the corresponding numerical fits. The excellent agreement between the experimental data and the mod-
eling validates the strain rate/temperature superposition principle for the reduced yield stress. The
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Fig. 5. Master curves built at 25 �C for PC, PMMA and PAI tested in uniaxial compression.
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parameters used for the modeling can be found in Table 1. These parameters are in conformity with our
preceding work (Richeton et al., 2005). The activation volume, V, is in the order of 10�29 m3, the pre-expo-
nential strain rate, _e0, is roughly in the same order as the Debye frequency (1012–1014 Hz), the b activation
energy, DHb, is in the same range as those found in the literature for PC and PMMA, and the relation
m � ri(0)/Tg is quite well verified.

5.2. Strain rate dependence

Fig. 6 shows, for PC, PMMA and PAI, a comparison of the strain rate dependence for the compressive
yield stress between the cooperative model and experimental data. The cooperative model shows good
agreement with the data for different strain rates at different temperatures. This result further justifies
our assumption concerning the strain rate/temperature superposition principle.
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Fig. 6. Strain rate dependence of the compression yield stress for PC, PMMA and PAI.
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For PC, the experimental data are comparable to what can be found in the article of Rietsch and Bouette
(1990). At the low strain rates, PC displays a weak strain rate dependence, while at high strain rates, the
yield stress increases dramatically with increasing strain rate.

For PMMA, the experimental data are qualitatively in agreement with the work of Bauwens-Crowet
(1973). The modeling results are satisfactory in comparison with the experimental yield stress. Some data
are missing for the lowest temperatures at the high strain rates. The reason is that PMMA is brittle under
these conditions and breaks before reaching the yield point. The high strain rates results presented in this
study strongly indicate that the cooperative model can be used for the modeling of the yield stress of
PMMA at high strain rates; the master curve of Fig. 5 further supports the physics of the cooperative
model.

For PAI, the model results are in good agreement with the experimental data. It can be noticed that
the strain rate dependence of the yield stress of this material exhibits a behavior closer to PC than to
PMMA. For the low strain rates, the yield stress of PAI is weakly dependent on strain rate. We believe
that this observation implies that the b transition of PAI occurs at a very low temperature. Unfortu-
nately, for this material, we do not find any values in the literature concerning the b activation energy
or the b transition temperature. It will be very interesting to know if the activation energy given in Table
1 can be assimilated as the b activation energy of PAI determined by mechanical dynamical spectroscopy
for example.

5.3. Temperature dependence

Concerning the temperature dependence of the compressive yield stress, the results for PC PMMA, PAI
can be found in Fig. 7. The results are only presented at the strain rate of 0.01 s�1 to facilitate interpretation
of the figures. The modeling results are in good agreement with the experimental data. Identical tempera-
ture dependence can be observed for other strain rates with the same satisfaction towards model predic-
tions. As explained previously, the parameters were obtained based on the experimental data of the
yield stress plotted as function of the strain rate. Consequently, it is quite remarkable that the same param-
eters can be used to correctly describe yield stress data plotted as function of temperature. This observation
is another validation of the strain rate/temperature superposition principle.

For PC, the results are in agreement with those reported by Boyer (1968). At �100 �C, the yield begins to
exhibit the appearance of the secondary transition. Extending the model to lower temperatures would result
in a dramatic increase in yield stress, similar to that observed at high strain rates. PC also exhibits a sharp
drop of the yield stress in the glass transition domain. This jump is due to the fact that the internal stress ri
is not continuous through the glass transition. Nevertheless, the agreement between the modeling and
experimental results remains good.

For PMMA, our experimental data are qualitatively in agreement with the work of Bauwens-Crowet
(1973). The physics of the cooperative model is able to depict the mechanical behavior in the secondary
transition region, in particular the shape of the curves for low temperatures. For temperatures far below
�50 �C, the model cannot be applied anymore since no yield stress is observed in this temperature region
due to brittle fracture. For temperatures above Tg, the model as given by Eq. (8) describes fairly well the
mechanical behavior. Similar to the case for PC, this result is significant since it gives a better description
than simply extrapolating Eq. (5) to the glass transition region. Moreover the yield stress given by the coop-
erative model vanishes towards the zero value for the T > Tg temperatures, whereas the extrapolation of
Eq. (5) would result in negative value for the absolute compressive yield stress at the very high
temperatures.

For PAI, the calculated temperature dependence of the yield stress is linear down to low temperatures.
This result suggests that the b transition of this material should occur below �100 �C. The lower the b tran-
sition, the more linear is the yield stress dependence on temperature at low temperatures. Unfortunately, we
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Fig. 7. Temperature dependence of the compression yield stress for PC, PMMA and PAI.
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did not conduct tests below �100 �C, and therefore could not determine whether the material is still ductile
in this temperature range. In addition, the cooperative model was not extrapolated above Tg due to the lack
of experimental data, and because the WLF parameters of PAI are not known.

5.4. Effect of hydrostatic pressure

The parameters given in Table 1 are only valid for compression tests, and cannot be used directly to des-
cribe the tensile yield stress. The compressive yield stress of amorphous polymers is generally 15% higher
than the tensile yield stress. This phenomenon is related to the fact that the hydrostatic pressure is positive
in a compression test and negative in a tension test. The pressure sensitivity of polymers was observed by
Rabinowitz et al. (1970) and by Spitzig and Richmond (1979). Their studies have shown that the yield stress
exhibits a phenomenological linear dependence with applied pressure P:
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ryðPÞ ¼ ryð0Þ þ apP ð12Þ

where ry(P) is the yield stress at pressure P, ry(0) is the yield stress under zero pressure and ap is a pressure
sensitivity coefficient. From this latter development and according to the work of Boyce et al. (1988), the
pressure dependence of the cooperative model can be expressed by:
ry ¼ ~rið0Þ � ~mT þ 2kTeV sinh�1 _e
_e�ðT Þ

� �1=n

þ apP ð13Þ
Here ry is the yield stress independent of the mode of testing with the corresponding parameters ~rið0Þ, ~m
and eV (see Eq. (2)). In the absence of external pressure, P is the hydrostatic pressure defined by:
P ¼ �1
3
TraceðrÞ ð14Þ
where r is the stress tensor. For uniaxial compression tests, P is equal to rc
y=3 (r

c
y is the absolute value of the

compressive yield stress), whereas for tensile tests, P is equal to �rt
y=3 (rt

y is the tensile yield stress). By
using Eq. (13), a system of two equations can be written:
1� ap
3

� �
rc
y ¼ ~rið0 KÞ � ~mT þ 2kTeV sinh�1 _e

_e�ðT Þ

� �1=n

ðaÞ

1þ ap
3

� �
rt
y ¼ ~rið0 KÞ � ~mT þ 2kTeV sinh�1 _e

_e�ðT Þ

� �1=n

ðbÞ

8>>><
>>>: ð15Þ
By equating the left hand side of Eq. (15a) with that of Eq. (15b), the pressure sensitivity coefficient ap is
obtained as:
ap ¼ 3
rc
y � rt

y

rc
y þ rt

y

ð16Þ
The numerical values of ap can be calculated by testing the polymer in tension and in compression under the
same temperature and strain rate conditions. For PC, ap is equal to 0.08 after Boyce and Arruda (1990), for
PMMA, ap is set equal to 0.26 from Arruda et al. (1995), and for PAI, we found ap equal to 0.43 with
rc
y ¼ 165 MPa and rt

y ¼ 124 MPa (values found on www.matweb.com). Fig. 8 plots the experimental values
of the pressure sensitivity coefficient ap versus the temperature sensitivity parameter, m, along with the pre-
diction of this relationship from the cooperative model. It is interesting to note that we found a linear rela-
tion between the pressure sensitivity coefficient ap and the temperature sensitivity parameter m of the
cooperative model for four amorphous polymers (Fig. 8). At the present time, we do not clearly understand
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the reason for this linear relation. Nonetheless, since there is an equivalence principle between strain rate
and temperature, it could also be envisaged that there is an equivalence principle between pressure and tem-
perature as well.

Furthermore, the parameters ~rið0Þ, ~m and eV , which are independent of the mode of testing (tension or
compression) can be derived from the compression parameters and from the value of ap. By comparing Eqs.
(2) and (15a), we have:
~rið0Þ ¼ ð1� ap=3Þrið0Þ
~m ¼ ð1� ap=3Þm

eV ¼ 1

ð1� ap=3Þ
V

8>>><
>>>: ð17Þ
In fact, the numerical values of the parameters ri(0), m and V determined for compression already included
implicitly the effect of hydrostatic pressure. This result is significant since the cooperative model, as given in
Eq. (13), should therefore be able to model both the compressive and tensile yield stresses. In particular, to
derive the tensile yield stress from the compressive yield stress, Eq. (16) can be rewritten as:
rt
y ¼

1� ap=3
1þ ap=3

rc
y ð18Þ
Nevertheless, this formula has to be used carefully, since the pressure coefficient ap can only be regarded as
a constant in the first order. In the work of Quinson et al. (1997), pressure coefficients have been found to
depend slightly on temperature. To our knowledge no specific work has been made on the strain rate depen-
dence. Nevertheless, the high strain rate results in tension and compression of Chen et al. (2002) tend to
indicate that ap is sensitive to the strain rate, due to the significant difference between quasi-static and dy-
namic responses observed.
6. Conclusions

The mechanical response of amorphous polymers is strongly affected by strain rate and temperature. In
particular, the initial Young�s modulus, the yield stress, and the strain hardening rate exhibit similar depen-
dency on strain rate and temperature. An increase in temperature will decrease these quantities, whereas an
increase of strain rate will increase these quantities. Moreover in this article, a new formulation of the coop-
erative model, as proposed by Richeton et al. (2005), for the description of the yield stress has been found to
be capable of depicting the experimental results for a wide range of temperatures and strain rates, including
the glass transition region as well as dynamic loadings. The physical nature of the cooperative model can
definitely be seen as a first step toward the development of advanced material constitutive models for the
description of the mechanical behavior of thermoplastic polymers for a wide range of temperature, strain
rate and pressure.
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