
Astronomy and Computing 2 (2013) 27–39
Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

CosmoHammer: Cosmological parameter estimation with the
MCMC Hammer✩

Joël Akeret a,∗, Sebastian Seehars b, Adam Amara b, Alexandre Refregier b,
André Csillaghy a

a University of Applied Sciences Northwestern Switzerland, Institute of 4D Technologies, Steinackerstrasse 5, 5210 Windisch, Switzerland
b ETH Zurich, Department of Physics, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland

h i g h l i g h t s

• We analyse MCMC methods for cosmology regarding parallelisability and efficiency.
• We present the Python framework CosmoHammer for parallelised MCMC sampling.
• It enables us to estimate cosmological parameters on high performance clusters.
• To test the efficiency of CosmoHammer we use an elastic cloud computing environment.

a r t i c l e i n f o

Article history:
Received 6 December 2012
Accepted 25 June 2013

Keywords:
Markov chain Monte Carlo methods
Cloud computing
Cosmological parameter estimation

a b s t r a c t

We study the benefits and limits of parallelised Markov chain Monte Carlo (MCMC) sampling in
cosmology. MCMC methods are widely used for the estimation of cosmological parameters from a
given set of observations and are typically based on the Metropolis–Hastings algorithm. Some of the
required calculations can however be computationally intensive, meaning that a single long chain
can take several hours or days to calculate. In practice, this can be limiting, since the MCMC process
needs to be performed many times to test the impact of possible systematics and to understand the
robustness of the measurements being made. To achieve greater speed through parallelisation, MCMC
algorithms need to have short autocorrelation times and minimal overheads caused by tuning and
burn-in. The resulting scalability is hence influenced by two factors, the MCMC overheads and the
parallelisation costs. In order to efficiently distribute the MCMC sampling over thousands of cores on
modern cloud computing infrastructure, we developed a Python framework called CosmoHammer which
embeds emcee, an implementation by Foreman-Mackey et al. (2012) of the affine invariant ensemble
sampler by Goodman and Weare (2010). We test the performance of CosmoHammer for cosmological
parameter estimation fromcosmicmicrowave background data.WhileMetropolis–Hastings is dominated
by overheads, CosmoHammer is able to accelerate the sampling process from awall time of 30 h on a dual
core notebook to 16 min by scaling out to 2048 cores. Such short wall times for complex datasets open
possibilities for extensive model testing and control of systematics.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
h

1. Introduction

Bayesian inference is a standard procedure in cosmology
when the measurement results are compared to predictions of a
parameter-dependent model. The likelihood function L(θ) is de-
fined as the conditional probability of a measurement outcome

✩ This is an open-access article distributed under the terms of the Creative Com-
mons Attribution-NonCommercial-No Derivative Works License, which permits
non-commercial use, distribution, and reproduction in any medium, provided the
original author and source are credited.
∗ Corresponding author. Tel.: +41 446338169.

E-mail address: jakeret@phys.ethz.ch (J. Akeret).

2213-1337/$ – see front matter© 2013 The Authors. Published by Elsevier B.V. All rig
http://dx.doi.org/10.1016/j.ascom.2013.06.003
x given the model parameters are fixed to θ : L(θ) := p(x|θ).
Bayesian inference tells us how to update our knowledge from
a prior distribution q(θ) to a new posterior distribution pnew(θ)
which accounts for the recent measurement:

pnew(θ) ∝ q(θ)p(x|θ).

For exploring the likelihood function L or the posterior distri-
bution pnew of the parameters, Markov chain Monte Carlo (MCMC)
algorithms are today’s method of choice when no functional ex-
pressions are available. Starting with the analysis of cosmic mi-
crowave background (CMB) data in 2001 (Christensen et al., 2001;
Knox et al., 2001), MCMC methods turned into a vital tool in the
analysis of astronomical data from all sorts of cosmological probes.

ts reserved.

http://dx.doi.org/10.1016/j.ascom.2013.06.003
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2013.06.003&domain=pdf
mailto:jakeret@phys.ethz.ch
http://dx.doi.org/10.1016/j.ascom.2013.06.003

28 J. Akeret et al. / Astronomy and Computing 2 (2013) 27–39
Most of the analyses in the literature rely on a particular in-
stance of an MCMC method, the so-called Metropolis–Hastings al-
gorithm from 1970 (Metropolis et al., 1953; Hastings, 1970). It
is based on a random walk in the parameter space of the like-
lihood, serially proposing new positions that are accepted or re-
jected according to its likelihood weights. The Fortran program
CosmoMC by Lewis and Bridle (2002), for example, is a widely
used and very successful tool for parameter estimation in the cos-
mology community, based on the Metropolis–Hastings algorithm
and the Boltzmann integrator CAMB (Code for Anisotropies in the
Microwave Background by Lewis et al., 2000). A large number of
scientific projects have used CosmoMC, among them prominent
observations as the Wilkinson Microwave Anisotropy Probe
(WMAP) (Dunkley et al., 2009) or the Sloan Digital Sky Survey
(Tegmark et al., 2004).

Recently, Foreman-Mackey et al. (2012) presented emcee, a
Python implementation of a novel MCMC algorithm by Goodman
and Weare (2010) which has several potential advantages over
Metropolis–Hastings: the sampling depends on less tuning-
parameters and is independent of linear transformations of the
parameters. Furthermore, emcee is not based on a single iterative
randomwalk but uses an ensemble ofwalkerswhich can bemoved
in parallel.

Creating samples for the estimation of cosmological parameters
from CMBmeasurements, for example, typically takes a few hours
or even days on a desktop computer when using the Metropo-
lis–Hastings algorithm. Whenever the sampling process has to be
repeated a number of times in order to study the fit of various dis-
tinct models to the data or to find out about the systematics of a
measurement, such a long run time gets increasingly problematic.
We therefore focus on the parallelisability of MCMC methods in
order to minimise the wall time of the calculation.

One of the main questions we try to answer is how fast one
can, in principle, generate a useful sample of a given distribution
when using emcee on an extended computing environment such
as a cloud service or grid computer. For this purpose, we combined
the Boltzmann integratorCAMB and theWMAP likelihood code and
data (Larson et al., 2011; Komatsu et al., 2011) (bothwritten in For-
tran90) with the emcee sampler by Foreman-Mackey et al. (2012)
in a Python framework – called CosmoHammer in the following –
allowing us to study the example of parameter inference fromCMB
data in detail. As parameter estimation with CMB data is well doc-
umented in the literature and standard MCMC tools are publicly
available, it is also a good reference point for the performance of
the algorithm by Goodman and Weare as compared to a Metropo-
lis–Hastings sampler.

CosmoHammer has been designed for optimal computational
performance on large scale computing environments such as the
Amazon elastic compute cloud (EC2).1 We carry out a careful anal-
ysis of CosmoHammer’s sampling efficiency, focusing in particu-
lar on the implications arising from the simultaneous sampling on
multiple computers.

The architecture of our code makes CosmoHammer easily ex-
tendable to other applications, as it is straight forward to plug
in the Python modules containing further likelihood functions or
codes for theory predictions.

We proceed as follows: in Section 2, the analysis of cosmo-
logical data using MCMC methods is briefly introduced and lim-
itations of the current state-of-the-art are discussed. Section 3
explains how we address these limitations using the algorithm by
Goodman and Weare (2010) and its implementation by Foreman-
Mackey et al. (2012). Introducing our code in Section 4, we review

1 http://aws.amazon.com/ec2/.
its components, explain its architecture and outline the parallelisa-
tion scheme. We test the code in Section 5 by sampling theWMAP
7 likelihood and comparing the results to MCMC chains from
the Metropolis–Hastings sampler CosmoMC by Lewis and Bridle
(2002). In Section 6 we assess the performance of CosmoHammer
on different cloud computing configurations. We discuss the re-
sults and conclude in Section 7. Finally, we explain the installation
of the package and give detailed examples for running the algo-
rithm in the Appendix.

2. Markov chain Monte Carlo for cosmology

In the following, we give a brief introduction to MCMC meth-
ods by discussing the Metropolis–Hastings (MH) algorithm as an
example. Afterwards, we focus on the difficulties one faces when
applying those methods to cosmological data.

2.1. MCMC methods

Assume that we are interested in a probability density function
p(θ) (called target distribution in the following) which is not
given explicitly but can be calculated numerically up to a constant
factor. If we want to learn about p(θ) we need to estimate it
from a finite number of numerical evaluations. MCMC algorithms
generate a sample distributed according to the target distribution
in a probabilistic fashion. We illustrate it using the MH algorithm
as an example. A classic textbook for further information isMacKay
(2003), which is also on the web.2

Imagine the sampling process as a random walk in the param-
eter space of the target distribution. The walk has to be initialised
at a point θ0 and a common method is to start at a random posi-
tion close to the region where the likelihood is expected to be cen-
tred. In order to determine the next position, we need to specify a
proposal density P which has to be easy to sample and is usually
chosen to be a Gaussian distribution. The probability of randomly
proposing the new position θ ′ when being at θt – the tth position
in the sample – is given by P(θ ′

; θt). After sampling θ ′ from P , the
new position is accepted with probability

min

1,

p(θ ′)

p(θt)
P(θt; θ ′)

P(θ ′; θt)

.

The updated θt+1 is finally given by θ ′ if the step is accepted or by θt
if it is rejected. The set {θt}t∈{0,...,T } converges to a sample from the
target distribution p(θ) for large T (Metropolis et al., 1953; Hast-
ings, 1970).

It is worth noting that the efficiency of the sampling crucially
depends on the chosen proposal distribution. If P mainly proposes
positions in the relevant parts of parameter space where the target
distribution is large, the chain very quickly converges to a sample
of p(θ). Yet, if the proposal distribution tends towards positions
where p(θ) has low probability, most of the steps are rejected and
samples will be heavily correlated. Using a proposal which is close
to p(θ) is a convenient choice, as it guarantees that the proposed
positions and the target are distributed similarly.

2.2. Application to cosmology

In cosmology the target distribution often arises from Bayesian
inference. We consider the example of parameter estimation from
CMBdata for illustration. An observationmeasuring the CMByields
the angular power spectrum of the radiation as a result. At the
same time, this power spectrum can be predicted from theoretical

2 http://www.inference.phy.cam.ac.uk/itprnn/book.html.

http://aws.amazon.com/ec2/
http://www.inference.phy.cam.ac.uk/itprnn/book.html

J. Akeret et al. / Astronomy and Computing 2 (2013) 27–39 29
models for the evolution of the universe. Theminimal concordance
model, ΛCDM, depends on six parameters and it takes a few
seconds to calculate it using a numerical Boltzmann integrator like
CAMB .

The likelihood function L of the parameters in the model arises
from the conditional probability of themeasurement resultX given
the parameters θ = (θ1, . . . , θd):

L(θ) := p(X |θ).

If we already have information on the parameters in the form of a
prior distribution q(θ) from the previous observations, L is used
to update it according to Bayes’ rule:

pnew(θ) ∝ L(θ)q(θ).

Both L and the posterior pnew depend on the results of the nu-
merical Boltzmann integrator and are hence not available as ana-
lytical functions of θ . As the number of parameters in this problem
is usually greater than or equal to six, MCMC methods have to be
used for estimating L or pnew. Although MCMC sampling makes
the estimation feasible for large dimensions, it still suffers from
the fact that calling the likelihood function – i.e. running the Boltz-
mann integrator for some specified parameters and comparing the
results to the data in the CMB example – is costly in terms of time
and resources. Consequently, we want our sampler to be as effi-
cient as possible in terms of likelihood function calls per converged
sample.

Additionally, MH sampling is by definition a serial process, it-
erating the calls to the likelihood function several thousand times.
Using a singleMHchain for inferring the parameters ofΛCDM from
CMB datawith an existingMCMC software package like CosmoMC,
for example, takes at least a few hours on a notebook. Such run-
times are practical in cases where a single parameter estimation
run suffices, but quickly become limiting in general applications.

Testing howwell various othermodels different fromΛCDM fit
the data implies that the likelihood has to be explored separately
for every distinct model. Furthermore, it is often necessary to in-
troduce so-called nuisance parameters whichmodel the process of
data generation. Altering the number and the effect of the nuisance
parameters is a way to test for the systematics in a measurement
and requires the MCMC sampling process to be repeated multiple
times.Whenever theMCMCanalyses have to be iterated, it is hence
desirable to decrease their run time—either by improving on the
underlying MCMC process or by running the calculations in paral-
lel on a cluster or cloud computing environment. In the next sec-
tion, we explain why the Python sampler emcee is a good choice
for achieving such a speed-up.

3. Affine invariant ensemble sampler

We learned in Section 2 that MCMC sampling can be very time
consuming in cosmological applications when the likelihood func-
tion is hard to evaluate numerically. Herewe study how this can be
overcome when using more recent MCMC algorithms such as the
one by Goodman and Weare (2010) (called GW in the following)
instead of MH. We therefore introduce the algorithm and its im-
plementation by Foreman-Mackey et al. (2012) before discussing
its advantages in terms of efficiency and parallelisation.

3.1. The ensemble sampler by Goodman and Weare

Instead of a single position which is updated during the course
of the sampling, GW uses an ensemble of walkers which are
spread on the parameter space of the target distribution. At every
iteration, the walkers are randomly assigned to a partner walker
chosen from the ensemble and a random point on a line connect-
ing their positions is proposed as the next step.

More formally, let θ i
t denote the position ofwalker i after t itera-

tions. When updating this position to θ i
t+1, we pick another walker

θ
j
t at randomwith j ≠ i, sample a value z from the fixed distribution

q(z) =

1

√
z

if z ∈

1
a
, a

0 otherwise,

with tuning parameter a and propose the position θ ′
= θ

j
t +z(θ k

t −

θ
j
t). After evaluating the target distribution p at the proposed posi-

tion, we accept the step if

zd−1 p(θ
′)

p(θ i
t)

≥ r,

with r being a randomnumber from [0, 1] and d the dimension of p.
GW is affine invariant, i.e. invariant under linear transforma-

tions of the target distribution. This implies in particular that the
sampler is not sensitive to the scales of the parameters and does
not depend on the covariances of the target distribution.

3.2. Emcee

The algorithm by Goodman and Weare (2010) was slightly al-
tered and implemented as the Pythonmodule emcee by Foreman-
Mackey et al. (2012). In this implementation, the algorithm does
not update the walkers serially but instead divides them into two
subgroups and updates all of the walkers from one subgroup at a
time, using the other half of the walkers as their references.

3.3. Advantages

In Section 2 we mentioned that MH needs a proposal distribu-
tion P which is governing the efficiency of the algorithm. Think-
ing of P as a d-dimensional Gaussian distribution with unknown
covariance matrix, one finds that the MH has d(d + 1)/2 tuning
parameters. When the scales of variances and covariances of the
target distribution are well known before the sampling, the tun-
ing parameters are very helpful: by supplying the MH with an
appropriate covariance matrix, the parameter space is explored
efficiently and the sample quickly converges. Yet, if the target dis-
tribution is unknown and the covariance matrix is only a guess,
the efficiency of the algorithm generally decreases. In the case of
non-Gaussian target distributions even a tuned Gaussian proposal
might not match the target and the efficiency can be low.

On the other hand, GW is affine invariant and thus not sensitive
to the scales of the target distribution. Hence, the efficiency of the
sampling process does not depend on having a good estimate of
the target distribution before the sampling and a tuning of the
algorithm is not necessary.

Equally important is the use of an ensemble of walkers instead
of a single chain. As the emcee implementation updates a large
number of positions simultaneously at every iteration of the pro-
cess, it can be parallelised in order to take advantage of a compute
cluster (see Section 4).

The emcee sampler based on GW thus has the potential to im-
prove upon the limitations outlined in Section 2. First, we expect
the sampling process to be fairly robust to changes in data and
model. Second, it is possible to distribute the sampling on themul-
tiple nodes of modern cluster or cloud computing environments.
Both advantages can be achieved without tuning of the sampler or
parallelisation of the underlying likelihood and theory codes.

30 J. Akeret et al. / Astronomy and Computing 2 (2013) 27–39
Fig. 1. Class diagram of CosmoHammer’s main architecture components.
4. Implementation of CosmoHammer

We developed a Python framework called CosmoHammer for
the estimation of cosmological parameters. The software embeds
the Python package emcee by Foreman-Mackey et al. (2012) and
gives the user the possibility to plug in modules for the compu-
tation of any desired likelihood. The major goal of the software is
to reduce the complexity when one wants to extend or replace the
existing computation bymoduleswhich fit the user’s needs aswell
as to provide the possibility to easily use large scale computing en-
vironments.

4.1. Architecture

We applied the principle of chaining modules for the computa-
tion of the likelihood as depicted in Fig. 1. The class diagram shows
theunderlying architecture and themost important classes. The ar-
chitecture allows for the development of self-contained and tested
modules which can be assembled in different sampling configura-
tions. The internal design separates parameter space exploration,
theory prediction and likelihood computation. This makes it easy
to extend or replace these modules by new algorithms.

The concept of CosmoHammer divides the modules in two
logical groups: modules for the computation of the likelihood and
coremodules. The coremodules produce information like the CMB
power spectrum or other theory predictions for the likelihood
modules. The individual core modules can be combined in an
instance of the LikelihoodComputationChainmodule (see Fig. 1). The
chain stores the modules and initialises them in the right order.
Furthermore, it ensures that the sampled parameters stay within
physically motivated bounds during the sampling process.

The modules in the LikelihoodComputationChain communicate
via the ChainContext in which arbitrary data can be stored and
retrieved. Thisminimises thedependencies between the individual
modules and ensures that they can be replaced without the need
to change or extend CosmoHammer.

4.2. Components

CosmoHammer comeswith a set ofmoduleswhich compute the
CMB power spectrum and the WMAP likelihood by wrapping the
theory prediction code CAMB by Lewis et al. (2000) and the like-
lihood code from the WMAP team (Larson et al., 2011; Komatsu
et al., 2011). It integrates the two Fortran modules by wrapping
them using numpys F2PY.3 The Fortran to Python interface gen-
erator provides the connection between Python and Fortran. In
this way we can take full advantage of the well tested and widely
used Boltzmann integrator CAMB as well as of the WMAP likeli-
hood computation module while combining themwith the emcee
sampling algorithm. Furthermore, by using the wrapped code we
benefit from the performance of Fortran in the convenient Python
environment.

3 http://www.scipy.org/F2py.

http://www.scipy.org/F2py

J. Akeret et al. / Astronomy and Computing 2 (2013) 27–39 31
4.2.1. CAMB and WMAP modules
To use CAMB and the WMAP code we create an instance of the

LikelihoodComputationChain and add an instance of the CambCore-
Module and CmbWmapLikelihoodComputationModule. The Camb-
CoreModule delegates the computation of the power spectrum to
the CambWrapperManager and the CmbWmapLikelihoodComputa-
tionModule in turn delegates the likelihood computation to the
WmapWrapperManager.

Alternatively an instance of the preconfigured CmbLikelihood-
ComputationChain can be created. This chain extends the regular
LikelihoodComputationChain and ensures the correct setup of the
two modules. A detailed example is given in Appendix B.

4.2.2. Samplers
CosmoHammer also provides different samplers. The samplers

embed the emcee package and are responsible for logging and
storing the obtained results. The CosmoHammerSampler is used
when running on a single physical computer using one or multiple
threads. The functionality, however, is limited to a single computer.
The extended MpiCosmoHammerSampler provides the required
functionality when CosmoHammer should take advantage of a
computation cluster with multiple physical nodes like a cloud or
grid computer. This sampler usesMessage Passing Interface (MPI)4
for the communication between the nodes in the cluster.

The implementation uses the paradigm of workload partition-
ing in which the work is split into blocks of nearly equal length.
Every node then processes its block and returns the results to the
master node. The master node gathers all results andmerges them
into a single list which then is returned to emcee.

When using a compute cluster the nodes often come with a
large number of computational cores. Writing code that fully ben-
efits from such a large number of cores is usually difficult. There-
fore, it makes sense to split the workload also on the node since
using a smaller number of cores per computation while perform-
ing multiple computations in parallel is typically more efficient. In
Section 6.2 it can be seen how the execution time decreases when
CosmoHammer uses multiple processes on one physical node.

If it is desired to distribute the workload to several nodes in a
cluster as well as to spawn multiple processes on a node, the pro-
vided ConcurrentMpiCosmoHammerSampler can be used. This sam-
pler introduces another level of parallelisation by using Python’s
built in multiprocessing package.

4.2.3. Initialisation
By default, all samplers initialise their walkers in a ball around

a given centre point as suggested in Foreman-Mackey et al. (2012)
The starting position θ i

0 of every walker i is then computed as fol-
lows:

θ i
0 = Pc + N(0, 1) ∗ Pw,

where Pc is the centre point and Pw is the start width. Both Pc and
Pw have to be supplied by the user for every parameter. Further-
more, CosmoHammer comes with a built in generator producing a
top-hat distribution as follows:

θ i
0 = Pc + ϵ ∗ Pw,

where ϵ is a pseudorandom number ranging from −1 to 1.
If one prefers to launch the sampling process with a different

starting strategy, it is possible to pass a custom implementation of
a PositionGenerator to the CosmoHammerSampler instance.

4 http://mpi4py.scipy.org/.
5. Tests and results

For testing the efficiency of CosmoHammer we compare it to
CosmoMC, a widely used MCMC engine for cosmological parame-
ter estimation by Lewis and Bridle (2002). CosmoMC is a Fortran90
code which also uses CAMB and the WMAP likelihood code for es-
timating cosmological parameters from CMB data, but it employs
theMHalgorithm for creating itsMCMCchains. It furthermore con-
tains an extensive choice of additional datasets and analysis mod-
ules.

To optimise the sampling process, Lewis and Bridle (2002) use
the following seven default parameters for describing the ΛCDM
model: the physical baryon density Ωbh2, the physical dark matter
density ΩDMh2, the ratio of the approximate sound horizon to the
angular diameter distance θ , the reionisation optical depth τre, the
scalar spectral index ns, the primordial superhorizon power in the
curvature perturbation on 0.05 Mpc−1 scales ∆2

R, and finally ASZ,
a Sunyaev–Zel’dovich template normalisation. Furthermore, some
of the parameters are rescaled to end up with similar orders of
magnitude.

As emcee is affine invariant, the particular choice of parametri-
sation is not expected to influence its performance. For simplicity,
we decided to use the same ones as CosmoMC up to rescaling, yet
replacing θ by Hubble’s constant H0.

5.1. Analysis of MCMC chains

Following the lines of Foreman-Mackey et al. (2012) we adopt
the autocorrelation time as our primary quality criterion for an
MCMC sampler. Consider a probability density function p(θ), an
MCMC sample {θt} of this distribution, and a function f (θ) whose
mean ⟨f ⟩ =

f (θ)p(θ) dθ we wish to estimate. The autocorrela-

tion Cff of f (θ) evaluated at the sample points {θt} with lag T is
defined as:

Cff (T) := ⟨(f (θt) − ⟨f ⟩)(f (θt+T) − ⟨f ⟩)⟩.

Typically, the autocorrelation of an MCMC sample is non-zero and
decaying with increasing lag: Cff (T) ∝ exp(− T

τff
). However, if the

points {θt} were independent of each other, the autocorrelation
function would vanish for all T ≥ 1.

Let us also define the normalised autocorrelation function

ρff (T) =
Cff (T)

Cff (0)
,

where Cff (0) is the variance of the sample {ft} := {f (θt)}. There
are two relevant timescales connected to ρff (T). On the one hand,
there is the exponential autocorrelation time τexp which is defined
by

τexp = lim sup
T→∞

T
− log

ρff (T)
 . (1)

On the other hand, the integrated autocorrelation time τint is given
by

τint =
1
2

+

∞
T=1

ρff (T). (2)

In general τexp and τint are not equivalent, although they are both
equal to τff for exponentially decaying autocorrelation functions
Cff .

The reason why τexp and τint are relevant for the analysis of
MCMC samples is connected to the issues of thermalisation at the
beginning of anMCMC chain (often called burn-in) and the statisti-
cal errors one has to account for when evaluating the expectation
value of f (θ) using the sample {θt} (see the lecture notes by Sokal,
1989 for more information).

http://mpi4py.scipy.org/

32 J. Akeret et al. / Astronomy and Computing 2 (2013) 27–39
Table 1
Each emcee walker and CosmoMC chain is initialised at a random position around the mean,
within a deviation sampled from a Gaussian distribution with given width.

Parameter H0 Ωbh2 ΩDMh2 109∆2
R ns τre ASZ θ

Mean 70 0.0226 0.122 2.1 0.96 0.09 1 1.04
Width 3 0.001 0.01 0.1 0.02 0.03 0.4 0.002
Lower bound 40 0.005 0.01 1.48 0.5 0.01 0 0.5
Upper bound 100 0.1 0.99 5.45 1.5 0.8 2 10
The exponential autocorrelation time tells us how many iter-
ations should be discarded at the beginning of the Markov chain
in order to avoid an initialisation bias, since it measures the time
we have to wait for two positions in the sample {ft} to be close to
uncorrelated. Discarding a few exponential autocorrelation times
at the beginning of the sampling typically suffices to suppress the
bias.

At the same time, the integrated autocorrelation time deter-
mines the standard error of the mean through:

Var(f̄) =
2τint
N

Var(ft), (3)

where N is the size, f̄ is the mean, and Var(ft) is the variance of the
sample {ft}.

An estimate for Cff (T) is given by

Cff (T) ≈ Ĉff (T) =
1

N − T

N−T
t=1

(ft − f̄)(ft+T − f̄). (4)

Estimating the integrated autocorrelation time from (4) is not easy
because of issues regarding the statistical noise in the large T limit
of Ĉff (T). Yet, the autocorrelation function for our problem is ex-
ponentially decaying, meaning that we can also evaluate τexp in-
stead of τint. We find that estimating τint from a fit to Ĉff (T) is the
best choice for evaluating the autocorrelation time of this particu-
lar problem (see Appendix C for more information). As τexp and τint
are equivalent for our purposes, we denote both as the autocorre-
lation time τ for simplicity.

5.2. Multiple walkers

We typically demand that MCMC samples satisfy the following
accuracy criterion: the statistical error of the mean f̄ we wish to
estimate – defined in Eq. (3) – has to be smaller than a given
fraction ϵ of the standard deviation of its marginal distribution. In
other words

Var(f̄)
Var(f)

=

2τ
N

≤ ϵ (5)

and consequently

N ≥
2τ
ϵ2

, (6)

where N is the total size of the sample. For multiple walkers or
independent chains, N is given by the number of steps per walker
or chain n (called sequential steps in the following) times the
number of walkers L and hence

n ≥
2τ
ϵ2L

. (7)

Eq. (5) only holds when the sample is unbiased by the initial-
isation and this is true in the asymptotic limit of large n. When
sampling on a cloud computing infrastructure, however, we need a
large number ofwalkers L formaximumparallelisability and hence
expect rather small n according to (7).
Yet, the sample gets close to unbiased when discarding the ini-
tial steps of every walker or chain as burn-in. We already men-
tioned in Section 5.1 that such a burn-in phase is expected to last
for a few autocorrelation times. When using only a few walkers,
i.e. L close to one, n is large and the burn-in phase is a subdominant
part of the overall sampling. As L grows, though, the number of se-
quential steps n becomes comparable to the burn-in length and the
discarded samples turn into a dominant fraction of the overall sam-
ple size. We analyse the consequences of this result in Section 5.4.

5.3. Configuration of CosmoMC and CosmoHammer

In the following we want to compare CosmoHammer to two
different configurations of CosmoMC. In each case we sample the
likelihood given by the Fortran90 code and the data of the WMAP
7 team.

The first CosmoMC instance is an out-of-the-box approach,
using the standard configuration shipped with the CosmoMC
package. It initialises the chain in a small ball around an esti-
mated mean of the likelihood using the numbers from Table 1 and
supplies a covariance matrix to specify the Gaussian distribution
which is used as the proposal. We will refer to this configuration
as fine-tuned CosmoMC .

The second approach employs an option of CosmoMC which
splits the sampling into two phases. Starting with an initial guess
for the covariance matrix in the tuning phase – a diagonal matrix
with estimated variances in our case – the sampler continuously
updates the proposal’s covariance matrix from the last half of
the generated samples. Afterwards, CosmoMC uses the generated
proposal to create the samples for estimating the likelihood.
This approach will be called self-tuning CosmoMC from now on.
When using multiple independent chains, CosmoMC allows one to
automatically stop the tuning phase once a convergence criterion
is fulfilled.We use this option to ensure that the sampling after the
tuning phase is comparable to the fine-tuned CosmoMC process.
For our analyses,weused 10 independent chains for bothCosmoMC
configurations.

For CosmoHammer we call CAMB in exactly the same fashion
as the standard CosmoMC configuration does (i.e. we use the
same theoretical model for our cosmology) and also initialise the
walkers according to Table 1. We furthermore used emcee with
350 walkers, a rather arbitrary pick which was convenient to work
with.

The bounds listed in Table 1 are needed to ensure that the
parameters which are passed to the Boltzmann integrator CAMB
make sense physically. Whenever the sampler proposes a position
which is out of bounds, CosmoHammer returns zero probability
immediately.

5.4. Efficiency

A good estimate for the autocorrelation function is impor-
tant for the analysis of the sample. For both CosmoMC and
CosmoHammer the autocorrelations

ĈX (T) =
1

n − T

n−T
t=1

(Xt − X̄)(Xt+T − X̄),

J. Akeret et al. / Astronomy and Computing 2 (2013) 27–39 33
Table 2
Estimated autocorrelation time τ for the seven parameters and the three sampler
configurations.

Sampler H0 Ωbh2 ΩDMh2 ∆2
R ns τre ASZ

CosmoHammer 44.4 44.7 44.4 43.4 43.8 43.8 48.2
Fine-tuned CosmoMC 17.3 17.1 15.1 13.8 17.6 14.4 18.4
Self-tuning CosmoMC 16.6 14.9 19.1 13.3 15.0 14.8 16.3
with X being one of the seven dimensions of the parameter-space,
behave equivalently for all parameters. As the estimation of the au-
tocorrelation times for the different sampler configurations is not
straightforward, we give a detailed description of our procedure in
Appendix C. The results can be found in Table 2. It is not very sur-
prising that the CosmoMC processes are more efficient in terms of
calls per independent sample, as they are using a well tuned pro-
posal to sample a target distribution which is itself close to nor-
mally distributed. On the other hand, emcee needed no tuning
while still performing reasonably well in terms of autocorrelation
time.

Additionally we need to consider the optimal length of the
burn-in period before the actual sampling starts. As was discussed
in Section 5.2, this is particularly important if we want to iterate a
large number of walkers. Let {X i

t} denote the position of walker i ∈

{1, . . . , L} at iteration t ∈ {1, . . . , n} for parameter X . For finding
the burn-in length, we observed the mean sequential step X̄t

X̄t =

L
i=1

X i
t

for increasing time t . Once the positions of the walkers are drawn
from the target distribution in an unbiased way, we expect X̄t to
vary around the true mean as predicted by the standard error in
the mean

σ(X̄t) =
σ
√
L
,

where σ is the standard deviation of the marginal target distribu-
tion for parameter X . As long as this is not the case, the walkers are
still biased by the initialisation.

Using this method we find that a safe choice for the burn-in
period is 250 for both the fine-tunedCosmoMC andCosmoHammer,
as can be seen in Fig. 2 for parameter ∆2

R. This is surprising as both
processes have very different autocorrelation times, but theMCMC
algorithm of emcee turns out to be very efficient in getting rid of
its initialisation bias. The self-tuning algorithm needs about 2000
iterations to estimate its proposal distribution, but already starts at
an unbiased position afterwards. The reason for such a long tuning
phase is that the sampling efficiency is very poorwhen the sampler
is untuned in the beginning.

We can now consider the statistical error ϵ from Eq. (7) as a
function of burn-in or tuning length b, sequential steps n, number
of walkers L, and autocorrelation time τ :

ϵ =

2τ

(n − b)L
for n > b. (8)

This is visualised in Fig. 3 for all sampler configurations, using τ
from Table 2 and the corresponding burn-in and tuning values.

We find that the most efficient way to create a sample which
satisfies the accuracy criterion (5) is to use a fine-tuned CosmoMC.
This is not surprising, as it has a good estimate of the target
distribution before it even starts the sampling process, resulting in
a short autocorrelation time and burn-in phase. Yet, a well tuned
MH is typically not available when analysing new data. In this
Fig. 2. Mean sequential steps X̄t of CosmoHammer (top) and fine-tuned CosmoMC
(bottom) for parameter ∆2

R . The shaded regions depict the error in the mean σ(X̄t)

for every mean sequential step. Self-tuning CosmoMC runs need about 2000 initial
steps for tuning, but start at an unbiased position afterwards.

case, the self-tuning CosmoMC configuration or similar concepts
with lengthy tuning phases have to be used for configuring the
sampler.

It is this tuning phase which turns out to be the bottle-neck for
the parallelisation of a MH sampler. We can see in Fig. 3 that for
as few as 10 walkers, CosmoHammer reaches the 10% error regime
ϵ ≤ 0.1 before the self-tuning CosmoMC run even finalises the
tuning at n = 2000. When estimating the parameter X from the
target distribution, the result usually reads

X̂ = X̄ ± σ(X),

with estimate X̂ , sample mean X̄ , and standard deviation σ(X).
Consequently, the statistical error does not affect X̂ up to the
second digit of σ(X) when ϵ is smaller than 0.1 and is hence
sufficiently small for most applications in cosmological parameter
estimation.

34 J. Akeret et al. / Astronomy and Computing 2 (2013) 27–39
Fig. 3. Statistical error ϵ, defined in Eq. (8), as a function of sequential steps n and for different numbers of walkers. For simplicity, we assume in this plot that burn-in length
and autocorrelation time are independent of the number of walkers or chains. The shaded regions show where the respective configurations reach statistical error ϵ = 10%
and ϵ = 1%.
Table 3
Mean, standard deviation and the expected statistical error of the parameters
sampled by CosmoHammer and CosmoMC .

Parameter CosmoHammer CosmoMC Statistical error

H0 70.4+2.8
−2.5 70.2+2.4

−2.1 ±0.1

100Ωb0h2 2.247+0.065
−0.051 2.243+0.057

−0.057 ±0.002

Ωdm0h2 0.1107+0.0063
−0.0049 0.1116+0.0048

−0.0055 ±0.0002

109∆2
R 2.174+0.078

−0.069 2.168+0.077
−0.068 ±0.003

ns 0.967+0.014
−0.014 0.966+0.014

−0.012 ±0.0005

100τre 8.7+1.5
−1.3 8.6+1.5

−1.3 ±0.05

ASZ 0.92+0.71
−0.64 1.01+0.65

−0.72 ±0.02

5.5. Parameter estimation

We know from the previous discussion that the errors we
expect for our estimates of the mean are of the order σ

√
2τ/N ,

where σ is the standard deviation of the target distribution for
the respective parameter. The total sample size after the burn-in
was chosen to be N = 250 × 350 = 87,500 for CosmoHammer,
predicting an accuracy in the mean estimate of about 3.4% relative
to the standard deviation. The sameprecisionwill be reachedwhen
using about N = 3500 × 10 = 35,000 samples from CosmoMC.

As we chose N such that the error is smaller than 3.4% of
the standard deviation, the parameter estimates of the different
sampler configurations are supposed to vary on this scale, too. We
can see from Table 3 that this is indeed the case. Finally, Fig. 4
shows the projections of the 7-dimensional likelihood into one and
two dimensional marginal distributions.

We conclude that the samples of CosmoMC and CosmoHammer
behave just as expected from our analysis in Section 5.1. In par-
ticular, this means that the quality of the sampling is well under-
stood once the autocorrelation of the MCMC process is known.
Tests based on multiple independent instances of the employed
sampler configurations support these conclusions.

6. Performance measures and metrics

The performed computations required a large amount of com-
putational power. We therefore decided to explore the possible
Table 4
Amazon EC2 instance types used for the benchmarks in Fig. 5.

Master node Worker node

Name Large instance Cluster compute eight extra large
API Name m1.large cc2.8xlarge
Memory 1.7 GB 60.5 GB
Instance storage 160 GB 3370 GB
Processing Power 2 Cores 32 Cores

benefits of cloud computing by means of CosmoHammer. One of
themajor advantages of this computing strategy is that the config-
uration of the cloud can be easily tailored to the problem at hand.
In the cloud more computational power can be added within min-
utes by renting extra compute instances on demand, resulting in an
optimised execution time. The following section describes the en-
vironment and the configuration used to perform the benchmarks.

6.1. Environment

As cloud service provider we decided to use Amazon EC2 in
combination with the Starcluster Toolkit (Software Tools for Aca-
demics and Researchers).5 Table 4 shows the configuration of
the instance types we used for the benchmarks. The high perfor-
mance computing cluster consisted of onemaster node and several
worker nodes. At the moment of the benchmarks one cc2.8xlarge
Instance shipswith 2× Intel Xeon E5-2670, eight-core architecture
with Hyper-Threading, resulting in 32 cores per node. We used a
m1.large instance as master node mainly to benefit from the high
I/O performance in order to reduce the loading time of the WMAP
data.

To compile the native Fortran modules, we used Intel’s ifort
compiler and mkl libraries, Python 2.7, and numpy 1.6.2.

6.2. Benchmarks

The results depicted in Fig. 5 have been realised with one to
64 worker nodes (32–2048 cores) and different combinations of

5 http://star.mit.edu/cluster/.

http://star.mit.edu/cluster/

J. Akeret et al. / Astronomy and Computing 2 (2013) 27–39 35
Fig. 4. One and twodimensionalmarginal distributions of theWMAP7 likelihood as sampled byCosmoHammer (top) andCosmoMC (bottom) for all parameter combinations.
processes and threads per node. The processes define the num-
ber of computations executed in parallel and the threads rep-
resent the number of cores used for one computation. In the
case of 4 processes and 8 threads, for instance, there were four
Python processes working in parallel on every node, each of them
spawning eight threads.

For all test runs, CosmoHammer was configured to use 350
walkers and to run 500 sampling iterations, resulting in 175,000

36 J. Akeret et al. / Astronomy and Computing 2 (2013) 27–39
Fig. 5. Run time behaviour of CosmoHammer with changing number of cores using
different parallelisation schemes.

samples per run. This sample size was also used for the parameter
estimation in Section 5.5. We used a LikelihoodComputationChain
with the CambCoreModule and the CmbWmapExtLikelihoodCompu-
tationModule for the computation of the likelihood.

Fig. 5 shows that thewall time T as a function of number of cores
N behaves as a power law: T ∝ N−α , i.e. it is linear on a logarithmic
scale with a mean α of 0.89. The best result was achieved using 64
nodes with 32 cores, four processes and eight threads. Using this
configuration, the computation took about 16 min.

6.3. Discussion

The implemented algorithm for the parallelisation is efficient
yet easy to understand. Note, however, that this way of paralleli-
sation is only beneficial when the executed computations are time
and resource consuming. Distributing the workload in a compute
cluster always implies the transfer of information over the network
which is typically slower than transferring information between
local processes by an order of magnitude. Therefore, the advantage
of additional computing resources and the disadvantage of the net-
work overhead have to be weighted.

Since we use CosmoHammer for the estimation of cosmo-
logical parameters which implies the execution of computation-
ally intensive theory prediction modules like CAMB, the overhead
of the network latency plays a secondary role. We expect that
CosmoHammer will be extended by additional theory and likeli-
hood modules so that the network overhead can be neglected and
the number of computational nodes and therefore CPUs can be in-
creased. Nevertheless, there is a given maximum: the number of
nodes cannot exceed the number of walkers.

CosmoHammer cannot only take advantage ofmultiple nodes in
a cluster but can be parallelised also on every node. As illustrated
in Fig. 5, there is a maximum for the number of processes on the
node, too. The test run using eight processes and four OMP threads
reaches a plateauwhen using 64 nodes. This is caused by thework-
load partitioning where the 350 walkers are equally distributed on
64 nodes. Consequently,more processes are available thanwalkers
to process, which in turn causes the processes and their spawned
threads to idle instead of being used for the computation of the
power spectrum.

Inferring parameters from WMAP data takes 30 h on a dual
core notebook with a single MH process. Using one chain, 37,000
samples need to be created to obtain results in the specified error
regime. When parallelising an MCMC process the scalability is
affected by two overheads: First, the number of samples has to be
increased to N = 2 × 250 × 350 = 175,000 due to the growth of
burn-in overheads and a larger autocorrelation time as described in
Section 5.5. This consequently results in additional computational
costs. Second, the distribution of the workload in the compute
cluster causes a loss of efficiency. In the benchmarks, a power law
behaviour with an exponent of α = 0.89 was measured, resulting
in a scaling overhead of 11% when the number of cores is doubled.
Accounting for both effects, the wall time decreases to 16 min on
2048 cores.

7. Conclusion

In cosmological applications, accelerating MCMC methods is
crucial whenever the sampling has to be repeated numerous times
and evaluating the target distribution is computationally expen-
sive. Examining the measurement systematics of an astrophysical
observation in an iterative analysis, for example, requires sampling
an extensive amount of target distributions, each depending on
time intensive simulations. Whenever it is not possible to mas-
sively parallelise the likelihood code, starting a large number of
short chains enables us to evolve them in parallel not only on a
couple of local CPUs, but globally on a large scale computing in-
frastructure.

We found that two characteristics are crucial for the perfor-
mance of parallelised MCMC sampling: it has to be efficient in
terms of autocorrelation time and – equally important – it has to
sample efficiently without needing much overhead for tuning and
equilibration. It is this overhead which puts a fundamental lower
bound on the run time of the sampling procedure and can limit
the application of MCMC methods when a large number of target
distributions has to be explored. The emcee sampler by Foreman-
Mackey et al. (2012) turned out to be a good choice regarding those
preconditions: it not only requires no tuning of the algorithm in
general, but also avoids an initialisation bias very quickly while
performing fairly well in terms of autocorrelation time when ap-
plied to the likelihood of the WMAP 7 observations.

In order to exploit the advantages of emcee on large cloud
computing configurations or similar infrastructure, we introduced
CosmoHammer, a Python framework for parallelised MCMC sam-
pling. It enabled us to explore arising computer science technolo-
gies like elastic cloud computing for scientific applications. The
elastic nature of Amazon EC2, for example, ensures that scientists
and engineers do not have to wait in long queues to access shared
clusters as the computational power can be increased within min-
utes by renting additional compute instances. We reduced the
time for estimating cosmological parameters using the WMAP 7
likelihood from 30 h on a desktop computer running a MH sam-
pler to about 16 min on a cluster with 2048 cores on Amazon
EC2. Furthermore, CosmoHammer scales linearly with increasing
number of cores, highlighting the efficiency of the parallelisation
concept.

The implementation is not limited to inferring the parameters
of ΛCDM using CAMB and WMAP, but the application program-
ming interface of CosmoHammer allows for the extension of its ap-
plication to further cosmological probes and models using newly
developed and self-contained Python modules.

In the Appendix, we describe the installation of CosmoHammer
and give a guide for the correct setup when using CAMB and the
WMAP likelihood.

Acknowledgements

We want to thank Joel Bergé, Lukas Gamper and Joe Zuntz for
helpful discussions, as well as Laurenz Gamper for his help with
licensing and homepage.

J. Akeret et al. / Astronomy and Computing 2 (2013) 27–39 37
Appendix A. Download and installation

The tarballs containing the most recent and stable version of
CosmoHammer and the wrapper modules can be found at http://
www.astro.ethz.ch/refregier/research/Software/cosmohammer.

CosmoHammer relies on the following Python packages:

• emcee—affine invariant MCMC sampler
• numpy—Numerical Python
• mpi4py—Python wrapper for mpi (optional, only used if

CosmoHammer is supposed to be distributed on multiple
nodes).

When additionally using the wrapped WMAP likelihood mod-
ule, the WMAP data6 needs to be accessible on the filesystem and
CFITSIO7 has to be installed.We tested CosmoHammerwith Python
2.6, Python 2.7, numpy 1.6.2, emcee 1.1.2, andmpi4py 1.3, but it is
likely to work with earlier versions of these Python packages. For
the compilation of the Fortran wrappers, a Fortran compiler and
mkl libraries are required. The current distribution has only been
tested with Intel’s ifort compiler and mkl libraries, though.

To install the components the tarballs have to be extracted and
the following commands have to be executed in the root directory
of each module:

% python setup.py build
% sudo python setup.py install

Every module comes with a Readme containing detailed informa-
tion.

Appendix B. Examples

We show how to use CosmoHammer to estimate cosmological
parameters with CAMB and WMAP likelihood. The listed source
code is also available in the distributed tarball.

The import statements for both CosmoHammer and numpy
have been omitted. We first define the initialisation by specifying
the estimated start centre, minimal and maximal value, and the
start width using, for example, the values defined in Table 1.

#parameter s t a r t centre , min , max , s t a r t width
params=np . array ([[70 , 40 , 100 , 3] ,

[0 .0226 , 0.005 , 0 .1 , 0 .001] ,
[0 .122 , 0 .01 , 0 .99 , 0 .01] ,
[2 .1 e−9, 1.48e−9, 5.45e−9, 1e−10],
[0 .96 , 0 .5 , 1 .5 , 0 .02] ,
[0 .09 , 0 .01 , 0 .8 , 0 . 03]])

After instantiating the chain and passing the min and max pa-
rameter boundaries as follows, the chainwill check if the proposed
walker positions arewithin the boundaries before calling themod-
ules.

chain=LikelihoodComputationChain (
min=params [: , 1] ,
max=params [: , 2])

We create an instance of the CambCoreModule and add it to the pre-
viously instantiated chain. At this point it is possible to add other
modules, e.g. further theory prediction modules.

camb=CambCoreModule ()
chain . addCoreModule (camb)

6 http://lambda.gsfc.nasa.gov/product/map/current/likelihood_get.cfm.
7 http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html.
Next, we have to instantiate theWMAP likelihood computation
module and then add themodule to the chain. Here, further imple-
mentations of likelihood modules can be added.

wmapLikelihood=CmbWmapLikelihoodComputationModule
()

chain . addLikelihoodModule (wmapLikelihood)

Alternatively, we could create an instance of a CmbLikelihood-
ComputationChain which automatically adds the previous mod-
ules.

chain=CmbLikelihoodComputationChain (
min=params [: , 1] ,
max=params [: , 2])

By calling the setup() function the CAMB and WMAP modules
are initialised.

chain . setup ()

Finally, we create a CosmoHammerSampler and pass the argu-
ments. A walkersRatio of 50 will launch 50 × 6 = 300 walkers,
where six is the number of parameters sampled. By calling the
startSampling() function, CosmoHammer will first sample 250 it-
erations for burn-in and then run for another 250 iterations while
writing the results to a file.

sampler=CosmoHammerSampler(
params=params ,
likelihoodComputationChain=chain ,
f i l e P r e f i x ="example" ,
walkersRatio =50 ,
burninI terat ions =250 ,
sampleIterat ions =250)

sampler . startSampling ()

Further examples can be found in the distributed tarball.

Appendix C. Estimation of autocorrelation

As mentioned in Section 5.1, we want to estimate the correla-
tion function Cff (T) from a finite sample {θt}. For parameter esti-
mation, we are particularly interested in the case when f (θt) = θt
is the identity, as we want to estimate the mean of the marginals
of our multidimensional posterior distribution (and maybe higher
moments). For a single MCMC chain, the estimator for Cff (T) was
introduced in Eq. (4) and for f being the identity, it reads

Ĉ(T) =
1

n − T

n−T
t=1

(Xt − X̄)(Xt+T − X̄),

where X is one of the seven parameters of the likelihood and the
estimator of the identity’s autocorrelation function is denoted by
Ĉ(T).

We now consider the case of an ensemble sampler with sam-
ple {X i

t}
i∈1,...,L
t∈1,...,n where i is the walker and t the iteration. Goodman

and Weare (2010) propose the following procedure for estimating
C(T) of their ensemble sampler: let Ft =

1
L

L
i=1 X

i
t denote the en-

semble average per iteration. The estimate ĈF (T) of the correlation
function of the process is then given by:

ĈF (T) =
1

n − T

n−T
t=1

(Ft − F̄)(Ft+T − F̄). (C.1)

In our analyses we found that large n are needed for a sta-
ble estimator ĈF (T) using this procedure. However, altering the

http://www.astro.ethz.ch/refregier/research/Software/cosmohammer
http://www.astro.ethz.ch/refregier/research/Software/cosmohammer
http://www.astro.ethz.ch/refregier/research/Software/cosmohammer
http://www.astro.ethz.ch/refregier/research/Software/cosmohammer
http://www.astro.ethz.ch/refregier/research/Software/cosmohammer
http://www.astro.ethz.ch/refregier/research/Software/cosmohammer
http://www.astro.ethz.ch/refregier/research/Software/cosmohammer
http://www.astro.ethz.ch/refregier/research/Software/cosmohammer
http://www.astro.ethz.ch/refregier/research/Software/cosmohammer
http://lambda.gsfc.nasa.gov/product/map/current/likelihood_get.cfm
http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html

38 J. Akeret et al. / Astronomy and Computing 2 (2013) 27–39
Fig. C.6. Autocorrelations of parameter ΩDMh2 sampled by CosmoHammer, fine-tuned, and self-tuning CosmoMC with 3000 sequential steps, estimated by C̃(T) (solid line)
and ĈF (T) (dashed line). The shaded regions depict the standard deviation of Ĉ(T) between the individual walkers or chains.
calculations slightly did improve the stabilitywhile yielding results
consistent with (C.1). Instead of calculating the autocorrelation of
the average steps, we calculated Ĉ(T) per walker and averaged the
results afterwards:

C̃(T) =
1
L

L
i=1

1
n − T

n−T
t=1

(X i
t − X̄ i)(X i

t+T − X̄ i).

The difference between the two approaches is visualised in Fig. C.6
for parameterΩDMh2. It shows that 3000 steps are not sufficient for
estimating the autocorrelation time reliably from a single chain,
as the deviations between the different chains are still too big.
Evaluating the autocorrelation time using the dashed line given by
Eq. (C.1) is hence not expected to yield reliable results. Averaging
over a large number ofwalkers suppresses the fluctuations and im-
proves the stability of the estimated autocorrelation time.

Even if the estimate for C(T) is stable, it is non-trivial to deduce
τexp and τint defined in Eqs. (1) and (2). We used the algorithm pro-
posed by Jonathan Goodman8 and implemented in Python by Dan
Foreman-Mackey9 to estimate the integrated autocorrelation time.
On the other hand, we evaluated the exponential autocorrelation
time from a simple least-squares fit to C̃(T) up to the maximal T
for which C̃(T) < e−1 holds.

As can be seen fromFig. C.6, the autocorrelation function resem-
bles an exponential decay. We hence expect the estimated values
of τexp and τint to coincide. Indeed, both τexp and τint converge to
the same value, but the exponential autocorrelation time estimate
is quite stable already at about 3000 iterations per walker (using
350walkers), while the integrated autocorrelation has not yet con-
verged. We hence decided to use τexp for estimating the relevant
time-scales for our sample analysis.

Yet, it turns out that after analysing the autocorrelation time
from 3000 iterations per walker and 350 walkers, we found in

8 http://www.math.nyu.edu/faculty/goodman/software/acor/.
9 https://github.com/dfm/acor.
Section 5.5 that only 250 sequential steps are required for an error
in themean of 3.4% of the standard deviation. Hence,more samples
are needed to properly evaluate the error bars than for parameter
estimation. Nevertheless, the estimate for τexp is typically of the
right order even for small numbers of sequential steps. Rounding
the result generously should hence suffice to get a rough upper
bound on the error bars.

For our comparison of the samplers, we decided to consider
the runs with a large number of sequential steps in order to get
stable estimates for τexp.Weused10 independent chainswith 3000
iterations each for the CosmoMC runs and 3000 iterations of 350
walkers for the CosmoHammer. The results are stated in Table 2.

References

Christensen, N., Meyer, R., Knox, L., Luey, B., 2001. Bayesian methods for
cosmological parameter estimation from cosmic microwave background
measurements. Classical Quantum Gravity 18 (14), 2677.

Dunkley, J., Komatsu, E., Nolta, M.R., Spergel, D.N., Larson, D., Hinshaw, G., Page,
L., Bennett, C.L., Gold, B., Jarosik, N., Weiland, J.L., Halpern, M., Hill, R.S., Kogut,
A., Limon, M., Meyer, S.S., Tucker, G.S., Wollack, E., Wright, E.L., 2009. Five-
year wilkinson microwave anisotropy probe observations: likelihoods and
parameters from the WMAP data. Astrophys. J. Suppl. Ser. 180 (2), 306.

Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J., 2012. emcee: the MCMC
hammer.

Goodman, J., Weare, J., 2010. Ensemble samplers with affine invariance. Commun.
Appl. Math. Comput. Sci. 5 (1), 65.

Hastings,W.K., 1970.Monte Carlo samplingmethods usingMarkov chains and their
applications. Biometrika 57 (1), 97.

Knox, L., Christensen, N., Skordis, C., 2001. The age of the universe and
the cosmological constant determined from cosmic microwave background
anisotropy measurements. Astrophys. J. 563 (2), L95.

Komatsu, E., Smith, K.M., Dunkley, J., Bennett, C.L., Gold, B., Hinshaw, G., Jarosik,
N., Larson, D., Nolta, M.R., Page, L., Spergel, D.N., Halpern, M., Hill, R.S., Kogut,
A., Limon, M., Meyer, S.S., Odegard, N., Tucker, G.S., Weiland, J.L., Wollack, E.,
Wright, E.L., 2011. Seven-year wilkinsonmicrowave anisotropy probe (WMAP)
observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192 (2), 18.

Larson, D., Dunkley, J., Hinshaw, G., Komatsu, E., Nolta, M.R., Bennett, C.L., Gold,
B., Halpern, M., Hill, R.S., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Odegard,
N., Page, L., Smith, K.M., Spergel, D.N., Tucker, G.S., Weiland, J.L., Wollack, E.,
Wright, E.L., 2011. Seven-year wilkinsonmicrowave anisotropy probe (WMAP)
observations: power spectra and WMAP-derived parameters. Astrophys. J.
Suppl. Ser. 192 (2), 16.

Lewis, A., Bridle, S., 2002. Cosmological parameters from CMB and other data: a
Monte Carlo approach. Phys. Rev. D 66 (10), 103511.

http://www.math.nyu.edu/faculty/goodman/software/acor/
https://github.com/dfm/acor
http://refhub.elsevier.com/S2213-1337(13)00022-X/sbref1
http://refhub.elsevier.com/S2213-1337(13)00022-X/sbref2
http://refhub.elsevier.com/S2213-1337(13)00022-X/sbref4
http://refhub.elsevier.com/S2213-1337(13)00022-X/sbref5
http://refhub.elsevier.com/S2213-1337(13)00022-X/sbref6
http://refhub.elsevier.com/S2213-1337(13)00022-X/sbref7
http://refhub.elsevier.com/S2213-1337(13)00022-X/sbref8
http://refhub.elsevier.com/S2213-1337(13)00022-X/sbref9

J. Akeret et al. / Astronomy and Computing 2 (2013) 27–39 39
Lewis, A., Challinor, A., Lasenby, A., 2000. Efficient computation of cosmic
microwave background anisotropies in closed Friedmann–Robertson–Walker
models. Astrophys. J. 538 (2), 473.

MacKay, D., 2003. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, New York, NY, USA.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., 1953.
Equation of state calculations by fast computing machines. J. Chem. Phys. 21
(6), 1087.

Sokal, A.D., 1989. Monte Carlo Methods in Statistical Mechanics: Foundations
and New Algorithms. In: Cours de Troisième Cycle de la Physique en Suisse
Romande.
Tegmark, M., Strauss, M.A., Blanton, M.R., Abazajian, K., Dodelson, S., Sandvik,
H., Wang, X., Weinberg, D.H., Zehavi, I., Bahcall, N.A., Hoyle, F., Schlegel, D.,
Scoccimarro, R., Vogeley, M.S., Berlind, A., Budavari, T., Connolly, A., Eisenstein,
D.J., Finkbeiner, D., Frieman, J.A., Gunn, J.E., Hui, L., Jain, B., Johnston, D.,
Kent, S., Lin, H., Nakajima, R., Nichol, R.C., Ostriker, J.P., Pope, A., Scranton, R.,
Seljak, U.c.v., Sheth, R.K., Stebbins, A., Szalay, A.S., Szapudi, I., Xu, Y., Annis, J.,
Brinkmann, J., Burles, S., Castander, F.J., Csabai, I., Loveday, J., Doi, M., Fukugita,
M., Gillespie, B., Hennessy, G., Hogg, D.W., Ivezić, i.c.v., Knapp, G.R., Lamb, D.Q.,
Lee, B.C., Lupton, R.H., McKay, T.A., Kunszt, P., Munn, J.A., O’Connell, L., Peoples,
J., Pier, J.R., Richmond, M., Rockosi, C., Schneider, D.P., Stoughton, C., Tucker,
D.L., Vanden Berk, D.E., Yanny, B., York, D.G., 2004. Cosmological parameters
from SDSS and WMAP. Phys. Rev. D 69 (10), 103501.

http://refhub.elsevier.com/S2213-1337(13)00022-X/sbref10
http://refhub.elsevier.com/S2213-1337(13)00022-X/sbref11
http://refhub.elsevier.com/S2213-1337(13)00022-X/sbref12
http://refhub.elsevier.com/S2213-1337(13)00022-X/sbref13
http://refhub.elsevier.com/S2213-1337(13)00022-X/sbref14

	CosmoHammer: Cosmological parameter estimation with the MCMC Hammer
	Introduction
	Markov chain Monte Carlo for cosmology
	MCMC methods
	Application to cosmology

	Affine invariant ensemble sampler
	The ensemble sampler by Goodman and Weare
	Emcee
	Advantages

	Implementation of CosmoHammer
	Architecture
	Components
	CAMB and WMAP modules
	Samplers
	Initialisation

	Tests and results
	Analysis of MCMC chains
	Multiple walkers
	Configuration of CosmoMC and CosmoHammer
	Efficiency
	Parameter estimation

	Performance measures and metrics
	Environment
	Benchmarks
	Discussion

	Conclusion
	Acknowledgements
	Download and installation
	Examples
	Estimation of autocorrelation
	References

