Uniqueness of positive solutions for semilinear elliptic systems

D.D. Hai

Department of Mathematics, Mississippi State University, Mississippi State, MS 39762, USA

Received 27 February 2004
Available online 23 September 2005
Submitted by Steven G. Krantz

Abstract
We prove uniqueness of positive solutions for the system
\[\begin{align*}
\Delta u &= -\lambda f(v), \quad \Delta v = -\mu g(u) \quad \text{in } \Omega, \\
u &= v = 0 \quad \text{on } \partial \Omega,
\end{align*} \]
where \(\Omega \) is a bounded domain in \(\mathbb{R}^N \), \(f, g : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) and \(f(x) \sim x^p, \ g(x) \sim x^q \) at \(\infty \) for some positive numbers \(p, q \) with \(pq < 1 \).

Keywords: Uniqueness; Positive solutions; Semilinear systems

1. Introduction

Consider the boundary value problem
\[\begin{align*}
\Delta u &= -\lambda f(v) \quad \text{in } \Omega, \\
\Delta v &= -\mu g(u) \quad \text{in } \Omega, \\
u &= v = 0 \quad \text{on } \partial \Omega,
\end{align*} \]

E-mail address: dang@math.msstate.edu.

0022-247X/S – see front matter © 2005 Elsevier Inc. All rights reserved.
where \(\Omega \) is a bounded domain in \(\mathbb{R}^N \) with a smooth boundary \(\partial \Omega \), \(f, g : \mathbb{R}^+ \to \mathbb{R}^+ \), and \(\lambda, \mu \) are positive parameters.

In [2], Dalmasso proved existence and uniqueness of positive solutions to (I) when the composition \(f o (cg) \) is sublinear at \(\infty \) and superlinear at 0 for each \(c > 0 \). The uniqueness part in [2] required that \(f(x)/x^p \) and \(g(x)/x^q \) are nonincreasing on \(\mathbb{R}^+ \) for some \(p, q > 0 \) with \(pq < 1 \). In the case when \(f(x)/x^p \) and \(g(x)/x^q \) are nonincreasing only for large \(x \), it was established in [5] that the system (I) has a unique positive solution provided that \(\min(\lambda, \mu) < \frac{1}{\lambda^p} \) is sufficiently large, and \(\Omega \) is a ball. The arguments in [5] rely on the fact that positive solutions to (I) in a ball are radially symmetric and decreasing (see [4,8]). In this paper, we shall extend the results in [5] to the case of a bounded domain in \(\mathbb{R}^N \). In particular, our results give uniqueness for a class of sublinear bi-harmonic boundary value problems. Similar results for the single equation case were obtained in [3,6]. Our approach is based on sub- and super-solutions, and maximum principles.

2. Existence and uniqueness results

We make the following assumptions:

(H.1) \(f, g : \mathbb{R}^+ \to \mathbb{R}^+ \) are nondecreasing, continuous, \(C^1 \) on \((0, \infty)\), and

\[
\lim_{x \to 0^+} \sup_{x} xf'(x) < \infty, \quad \lim_{x \to 0^+} \sup_{x} x g'(x) < \infty.
\]

(H.2) There exist positive numbers \(\beta, \delta, p, q \) with \(pq < 1 \), such that

\[
\beta x^p \leq f(x) \leq \delta x^p, \quad \beta x^q \leq g(x) \leq \delta x^q
\]

for all \(x \geq 0 \), and for \(p_1 > p, q_1 > q \),

\[
\frac{f(x)}{x^{p_1}} \quad \text{and} \quad \frac{g(x)}{x^{q_1}}
\]

are nonincreasing for \(x \) large.

Our main result is

Theorem 1. Let (H.1)–(H.2) hold. Then the system (I) has a unique positive solution for \(\min(\lambda, \mu) \) large.

The next lemma provides sharp estimates for solutions to (I). When \(\Omega \) is a ball, it was established in [5].

We shall denote the norm in \(C^k(\bar{\Omega}) \) by \(\| \cdot \|_k \).

Lemma 1. Let \((u, v)\) be a positive solution of (I). Then there exist positive constants \(M_1 \) and \(M_i, 1 \leq i \leq 4 \), such that

\[
M_1(\lambda, \mu) \frac{1}{\lambda^p} d(x, \partial \Omega) \leq u(x) \leq M_2(\lambda, \mu) \frac{1}{\lambda^p} d(x, \partial \Omega),
\]

\[
M_3(\mu, \lambda) \frac{1}{\mu^q} d(x, \partial \Omega) \leq v(x) \leq M_4(\mu, \lambda) \frac{1}{\mu^q} d(x, \partial \Omega)
\]

for \(\min(\lambda, \mu) \) large. Here \(d(x, \partial \Omega) \) denotes the distance from \(x \) to \(\partial \Omega \).
Proof. Let \((u, v)\) be a positive solution of (I). We first establish the upper estimate for \(v\). In what follows, we shall denote by \(C_i\) positive constants independent of \(\lambda, \mu, u, v\). Using the equations for \(u, v\), we obtain
\[
 u(x) = \lambda \int_{\Omega} K(x, y) f(v(y)) \, dy, \quad v(x) = \mu \int_{\Omega} K(x, y) g(u(y)) \, dy,
\]
where \(K(x, y)\) denotes the Green’s function of \(-\Delta\) with Dirichlet boundary conditions. Thus, by (H.2),
\[
 |u|_0 \leq \lambda C f(|v|_0) \leq \lambda C_1 \delta |v|_0^p \tag{1}
\]
and
\[
 |v|_0 \leq \mu C g(|u|_0) \leq \mu C_1 \delta |u|_0^q \tag{2}
\]
From (1) and (2), it follows that
\[
 |u|_0 \leq C_2 \left(\lambda \mu^p \right)^{\frac{1}{1-pq}},
\]
which, together with (H.2) and regularity estimates, implies
\[
 |v|_1 \leq \mu C_3 |g(u)|_0 \leq \mu C_3 \delta |u|^q_0 \leq \mu C_3 \delta C_2 \left(\lambda \mu^p \right)^{\frac{q}{1-pq}} \equiv M_4 \left(\mu \lambda^q \right)^{\frac{1}{1-pq}},
\]
and
\[
 v(x) \leq M_4 \left(\mu \lambda^q \right)^{\frac{1}{1-pq}} d(x, \partial \Omega)
\]
follows from the mean value theorem. The upper estimate for \(u\) follows in the same manner.

Next, let \(x_0 \in \Omega\) and \(R > 0\) be such that \(B \equiv B(x_0, R) \subset \Omega\). Here \(B(x_0, R)\) denotes the open ball centered at \(x_0\) with radius \(R\). Then \((u, v)\) is a supersolution for
\[
 \begin{cases}
 \Delta \bar{u} = -\lambda f(\bar{v}) & \text{in } B, \\
 \Delta \bar{v} = -\mu g(\bar{u}) & \text{in } B, \\
 \bar{u} = \bar{v} = 0 & \text{on } \partial B.
\end{cases}
\]
(I*)

We shall construct a positive subsolution \((u_0, v_0)\) for (I*) with \(u_0 \leq u\) and \(v_0 \leq v\) in \(B\). To this end, let \(\varepsilon > 0\) and let \(\tilde{u}, \tilde{v}\) be the solution of
\[
 \begin{cases}
 \Delta \tilde{u} = -\mu \beta \varepsilon^{1/p} \tilde{v}^p & \text{in } B, \\
 \Delta \tilde{v} = -\mu \beta \varepsilon^{1/p} \tilde{u}^q & \text{in } B, \\
 \tilde{u} = \tilde{v} = 0 & \text{on } \partial B,
\end{cases}
\]
whose existence follows from [2,5]. Define \(u_0 = \varepsilon^{1/pq} \tilde{u}, v_0 = \mu \beta \varepsilon^{1/p} \tilde{v}\), where \(\beta\) is given by (H.2). A direct calculation gives
\[
 \Delta u_0 = -\varepsilon^{(1/pq)} \tilde{v}^p \geq -\lambda \beta \left(\mu \beta \varepsilon^{1/p} \tilde{v} \right)^p \geq -\lambda f \left(\mu \beta \varepsilon^{1/p} \tilde{v} \right) = -\lambda f(v_0)
\]
if \(\lambda \mu^p > 1\) and \(\varepsilon\) is sufficiently small, and
\[
 \Delta v_0 = -\mu \beta \varepsilon^{1/p} \tilde{u}^q \geq -\mu \beta \varepsilon^{1/pq} \tilde{u}^q \geq -\mu g \left(\varepsilon^{1/pq} \tilde{u} \right) = -\mu g(u_0),
\]
i.e., \((u_0, v_0)\) is a subsolution for \((I^*)\). Clearly \(u_0 \leq u\) and \(v_0 \leq v\) in \(B\) for small \(\varepsilon\). Hence there exists a solution \((\tilde{u}, \tilde{v})\) to \((I^*)\) with \(\tilde{u} \leq u, \tilde{v} \leq v\). Since \(\tilde{u}\) is radially symmetric, it follows from [5, Lemma 4] that

\[
 u(x) \geq \tilde{M}_1(\lambda \mu p)^{\frac{1}{1-pq}} \text{ for } |x - x_0| \leq \frac{R}{2}, \tag{3}
\]

for \(\min(\lambda \mu p, \mu \lambda q)\) large, where \(\tilde{M}_1\) is a positive constant independent of \(u, v, \lambda, \mu\).

Let \(\Omega = \Omega \setminus B(x_0, R/2)\) and let \(\phi\) be the solution of

\[
 \begin{cases}
 \Delta \phi = 0 & \text{in } \tilde{\Omega}, \\
 \phi = 0 & \text{on } \partial \Omega, \\
 \phi = 1 & \text{on } \partial B(x_0, R/2).
 \end{cases}
\]

Since \(\Delta u \leq 0\) in \(\Omega\), the maximum principle (see, e.g., [1,7]) implies

\[
 u(x) \geq \tilde{M}_1(\lambda \mu p)^{\frac{1}{1-pq}} \phi(x) \geq \tilde{M}_1(\lambda \mu p)^{\frac{1}{1-pq}} d(x, \partial \Omega) \text{ in } \tilde{\Omega},
\]

where \(\tilde{M}_1\) is a positive constant satisfying \(\tilde{M}_1 \phi(x) \geq M_1 d(x, \partial \Omega)\) for \(x \in \tilde{\Omega}\). Combine this and (3), we obtain the lower estimate for \(u\). This completes the proof of Lemma 1. \(\square\)

Lemma 2. Let \((u, v)\) be a solution to \((I)\) and let \(w_0\) satisfy

\[
 \begin{cases}
 \Delta w_0 = -g(u) & \text{in } \Omega, \\
 w_0 = 0 & \text{on } \partial \Omega.
 \end{cases}
\]

Then for \(\min(\lambda \mu p, \mu \lambda q)\) large, there exists a positive number \(c\) independent of \(u, v, \lambda, \mu\), such that

\[
 w_0(x) \geq cd(x, \partial \Omega) \text{ for } x \in \Omega.
\]

Proof. Let \(\varepsilon_0 > 0\). It follows from (H.2) and Lemma 1 that for \(\min(\lambda \mu p, \mu \lambda q)\) large,

\[
 g(u(x)) \geq \beta(u(x))^q \geq \beta\left[M_1(\lambda \mu p)^{\frac{1}{1-pq}} d(x, \partial \Omega)\right]^q > 1
\]

if \(d(x, \partial \Omega) > \varepsilon_0\). Thus

\[
 \Delta w_0 \leq \begin{cases}
 -1 & \text{if } d(x, \partial \Omega) > \varepsilon_0, \\
 0 & \text{if } d(x, \partial \Omega) \leq \varepsilon_0,
 \end{cases}
\]

and the lemma follows from the maximum principle.

We are in a position to give the

Proof of Theorem 1. The existence part follows from [2]. Let \((u, v)\) and \((u_1, v_1)\) be solutions to \((I)\) and suppose that \(\min(\lambda \mu p, \mu \lambda q)\) is large enough so Lemmas 1 and 2 apply. By Lemma 1,

\[
 \frac{M_1}{M_2} u_1 \leq u \leq \frac{M_2}{M_1} u_1 \text{ in } \Omega.
\]
Let \(\alpha = \sup \{ c > 0 : u \geq cu_1 \text{ in } \Omega \} \). Then \(\alpha_0 \leq \alpha \leq \alpha_0^{-1} \), where \(\alpha_0 = M_1/M_2 \). We claim that \(\alpha \geq 1 \). Suppose to the contrary that \(\alpha < 1 \). Let \(q_1, q_2, p_1, p_2 > 0 \) be such that \(q_2 > q_1 > q, p_2 > p \) and \(p_2 q_2 < 1 \). Let \(A > 0 \) be such that

\[
\frac{g(x)}{x^{q_1}} \text{ is nonincreasing for } x > A,
\]

and define \(\Omega_1 = \{ x \in \Omega : u_1(x) > A/\alpha_0 \} \). Then

\[
g\left(\alpha u_1(x)\right) \geq \alpha^{q_1} g\left(u_1(x)\right) \text{ for } x \in \Omega_1,
\]

while if \(x \in \Omega \setminus \Omega_1 \),

\[
\left| g\left(u_1(x)\right) - g\left(\alpha u_1(x)\right) \right| \leq K (1 - \alpha),
\]

where \(K = \frac{1}{\alpha_0} \sup \{|xg'(x)| : 0 < x \leq A/\alpha_0\} \), which implies

\[
g\left(\alpha u_1(x)\right) \geq g\left(u_1(x)\right) - K (1 - \alpha) \text{ for } x \in \Omega \setminus \Omega_1.
\]

Define the operator \(T : C(\bar{\Omega}) \to C(\bar{\Omega}) \) by \(Tz = w \) if

\[
\Delta w = -z \text{ in } \Omega, \quad w = 0 \text{ on } \partial \Omega.
\]

Let \(w = Tg(\alpha u_1) \). Then it follows from (4), (5) and the maximum principle that \(w \geq \bar{w} \), where \(\bar{w} \) satisfies

\[
\Delta \bar{w} = \begin{cases} -\alpha^{q_1} g(u_1) & \text{in } \Omega_1, \\ -g(u_1(x)) + K (1 - \alpha) & \text{in } \Omega \setminus \Omega_1, \end{cases} \quad \bar{w} = 0 \text{ on } \partial \Omega.
\]

Let \(w_0 = Tg(u_1) \). Then \(\Delta w_0 = -g(u_1) \) and therefore

\[
\Delta \left(\bar{w} - \alpha^{q_1} w_0 \right) = \begin{cases} 0 & \text{in } \Omega_1, \\ (\alpha^{q_1} - 1) g(u_1) + K (1 - \alpha) & \text{in } \Omega \setminus \Omega_1. \end{cases}
\]

Note that there exists a positive constant \(K_1 \) depending only on \(A, \alpha_0, K, q_1 \) such that

\[
\left| (\alpha^{q_1} - 1) g(u_1) + K (1 - \alpha) \right| \leq K_1 (1 - \alpha) \text{ in } \Omega \setminus \Omega_1.
\]

Using regularity estimates, we obtain for \(r > N \),

\[
\left| \bar{w} - \alpha^{q_1} w_0 \right|_1 \leq C K_1 (1 - \alpha) \left(\int_{\Omega \setminus \Omega_1} dx \right)^{1/r}.
\]

Since

\[
M_1 \left(\lambda \mu^p \right)^{1 - \frac{1}{nq}} d(x, \partial \Omega) \leq u_1(x) \leq \frac{A}{\alpha_0} \text{ on } \Omega \setminus \Omega_1,
\]

it follows that

\[
d(x, \partial \Omega) \leq \frac{A}{\alpha_0 M_1 \left(\lambda \mu^p \right)^{1 - \frac{1}{nq}}} \text{ for } x \in \Omega \setminus \Omega_1,
\]

and therefore the right-hand side of (6) goes to 0 as \(\lambda \mu^p \to \infty \). Let \(\varepsilon > 0 \), then it follows from (6) and the mean value theorem that

\[
\bar{w}(x) - \alpha^{q_1} w_0(x) \geq -\varepsilon (1 - \alpha) d(x, \partial \Omega), \quad x \in \Omega,
\]
for $\min(\lambda, \mu^p, \mu^q)$ large, which implies by Lemma 2 that
\[
\bar{w}(x) - \alpha_q^2 w_0(x) \geq (\alpha_q^1 - \alpha_q^2) w_0(x) - \epsilon(1 - \alpha) d(x, \partial \Omega) \\
\geq c \alpha_q^1 (1 - \alpha_q^{q_2 - q_1}) d(x, \partial \Omega) - \epsilon(1 - \alpha) d(x, \partial \Omega) \\
\geq \left[\min(1, q - q_1) c \alpha_q^{q_1} - \epsilon \right] (1 - \alpha) d(x, \partial \Omega) > 0
\]
if ϵ is sufficiently small. Consequently, $w(x) \geq \bar{w}(x) \geq \alpha_q^2 w_0(x)$, or
\[
T g(\alpha u_1) \geq \alpha^q_2 T g(u_1).
\] (7)

Since
\[
\Delta v = -\mu g(u) \leq -\mu g(\alpha u_1),
\]
it follows from (7) that
\[
v \geq \mu T g(\alpha u_1) \geq \mu \alpha^q_2 T g(u_1) = \alpha^q_2 v_1.
\]
This implies
\[
\Delta u = -\lambda f(v) \leq -\lambda f(\alpha^q_2 v_1).
\] (8)

Now similarly
\[
T f(\alpha^q_2 v_1) \geq \alpha^{p_2 q_2} T f(v_1).
\] (9)

(8), (9) and the maximum principle imply
\[
u \geq \lambda T f(\alpha^q_2 v_1) \geq \lambda \alpha^{p_2 q_2} T f(v_1) = \alpha^{p_2 q_2} u_1,
\]
which is a contradiction since $\alpha^{p_2 q_2} > \alpha$. Thus $\alpha \geq 1$, i.e., $u \geq u_1$ and therefore $u = u_1$. Similarly, $v = v_1$, completing the proof of Theorem 1.

As a consequence of Theorem 1, consider the fourth order boundary value problem
\[
\begin{align*}
\Delta^4 u &= -\mu g(u) \quad \text{in } \Omega, \\
u &= \Delta u = 0 \quad \text{on } \partial \Omega,
\end{align*}
\] (II)

where μ is a positive parameter. It is assumed that

(H.3) $g : R^+ \rightarrow R^+$ is continuous, nondecreasing, C^1 on $(0, \infty)$, and
\[
\lim_{x \to 0^+} \sup_{x g'(x)} < \infty.
\]

(H.4) There exist positive numbers q, β, δ with $q < 1$, such that
\[
\beta x^q \leq g(x) \leq \delta x^q
\]
for all $x \geq 0$, and for $q_1 > q$,
\[
\frac{g(x)}{x^{q_1}} \text{ is nonincreasing for } x \text{ large.}
\]

Then we have
Theorem 2. Let (H.3)–(H.4) hold. Then the problem (II) has a unique positive solution for μ large.

Proof. Let $v = \Delta u$, then $\Delta v = -\mu g(u)$, and uniqueness follows from Theorem 1 if μ is sufficiently large. Here $\lambda = 1$. \qed

Acknowledgment

The author thanks the referee for helpful suggestions.

References