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The relationship between metrics and � -equalities is investigated; the latter are
a special case of � -equivalences, a natural generalization of the classical concept
of an equivalence relation. It is shown that in the construction of metrics from
� -equalities triangular norms with an additive generator play a key role. Con-
versely, in the construction of � -equalities from metrics this role is played by tri-
angular norms with a continuous additive generator or, equivalently, by continuous
Archimedean triangular norms. These results are then applied to the biresidual
operator �� of a triangular norm � . It is shown that �� is a � -equality on [0, 1] if
and only if � is left-continuous. Furthermore, it is shown that to any left-continuous
triangular norm � there correspond two particular � -equalities on � �X�, the class
of fuzzy sets in a given universe X; one of these � -equalities is obtained from
the biresidual operator �� by means of a natural extension procedure. These � -
equalities then give rise to interesting metrics on � �X�.  2002 Elsevier Science (USA)

Key Words: additive generator; Archimedean property; biresidual operator; met-
ric; � -equality; triangular norm.

1. INTRODUCTION

The concept of a similarity relation was introduced by Zadeh [17] as
a generalization of the concept of an equivalence relation. Also, simi-
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larity relations have been generalized by replacing the min-transitivity
with the more general � -transitivity, with � an arbitrary triangular norm
(t-norm) [12].

Definition 1 ([4]). Consider a t-norm � . A binary fuzzy relation E in
a universe X is called a � -equivalence on X if it is reflexive, symmetric,
and � -transitive, i.e., if for any �x� y� z� in X3,

(E1) E�x� x� = 1;

(E2) E�x� y� = E�y� x�; and

(E3) � �E�x� y�� E�y� z�� ≤ E�x� z�.
� -equivalences are also called indistinguishability operators [13], fuzzy

equalities [8], and equality relations [9]. Clearly, M-equivalences (with M
the minimum operator) are nothing but similarity relations. W -equivalences
(with W the Łukasiewicz t-norm defined by W �x� y� = max�x+ y − 1� 0��
are called likeness relations. A one-to-one correspondence between
� -equivalences and � -partitions, a generalization of the concept of a
partition, was recently exposed in [4].

In this paper, we deal with � -equalities, a special type of � -equivalence.

Definition 2. Consider a t-norm � . A � -equivalence E in a universe
X is called a � -equality on X if for any �x� y� in X2,

(E1′) E�x� y� = 1 ⇔ x = y.

Recall that a t-norm � ∗ is called weaker than a t-norm � , denoted � ∗ ≤
� , if �∀ �x� y� ∈ �0� 12� �� ∗�x� y� ≤ � �x� y��. The following proposition
then is immediate.

Proposition 1. Consider a binary fuzzy relation E in a universe X and
a t-norm � . If E is a � -equivalence (resp., � -equality), then it is also a
� ∗-equivalence (resp., � ∗-equality) for any t-norm � ∗ that is weaker than � .

Bezdek and Harris [1] have discussed the relationship between like-
ness relations and pseudo-metrics. More general investigations into the
relationship between pseudo-metrics and � -equivalences were done by
Wagenknecht [15]. A complete study was carried out by De Baets and
Mesiar [5] (see Section 3).

Definition 3. An X2 → �0�∞ mapping d is called a pseudo-metric
on X if for any �x� y� z� in X3,

(P1) d�x� x� = 0;

(P2) d�x� y� = d�y� x�; and

(P3) d�x� z� ≤ d�x� y� + d�y� z�.
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In this paper, we will show that � -equalities are related to metrics as
� -equivalences are to pseudo-metrics.

Definition 4. A pseudo-metric d on X is called a metric if for any
�x� y� in X2,

(P1′) d�x� y� = 0 ⇔ x = y.

2. ADDITIVE GENERATORS AND ARCHIMEDEAN t-NORMS

In this section, we recall some important results concerning addi-
tive generators of t-norms (see e.g. [10–12]) and the relationship to the
Archimedean property.

Definition 5. A strictly decreasing �0� 1 → �0�∞ mapping f with
Rng�f � relatively closed under addition, i.e.,

�∀ �u� v� ∈ Rng�f �2��u+ v ∈ Rng�f � ∨ u+ v > f �0���
such that f �1� = 0, is called an additive generator.

Definition 6. Consider a �0� 1 → �0�∞ mapping f ; then the pseudo-
inverse of f is the �0�∞ → �0� 1 mapping f �−1� defined by

f �−1��x� = inf�t � t ∈ �0� 1 ∧ f �t� ≤ x��
Note that this pseudo-inverse is always decreasing. The pseudo-inverse

f �−1� of a continuous additive generator f is given by

f �−1��x� = f−1�min�f �0�� x���
Theorem 1. Consider an additive generator f ; then the �0� 12 → �0� 1

mapping � defined by

� �x� y� = g�f �x� + f �y���
where g is an arbitrary �0�∞ → �0� 1 mapping such that

g�x� =
{
f−1�x�� if x ∈ Rng�f �,
0� if x > f �0�,

is a t-norm.

A suitable candidate for the mapping g in the foregoing theorem is the
pseudo-inverse f �−1� of f .

The continuity of an additive generator f is equivalent with its left-
continuity in the point 1 and with the continuity of the generated t-norm � .
Note that if a continuous t-norm � has an additive generator f , then this
additive generator is uniquely determined up to a nonzero positive multi-
plicative constant.
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Example 1. (i) The mapping f defined by f �x� = − log x is an addi-
tive generator of the algebraic product, i.e., of the t-norm P defined by
P�x� y� = xy.

(ii) The mapping f defined by f �x� = 1 − x is an additive generator
of the Łukasiewicz t-norm W .

(iii) The mapping f defined by

f �x� =
{

2 − x� if x ∈ �0� 1�,
0� if x = 1,

is an additive generator of the weakest t-norm Z defined by

Z�x� y� =
{

min�x� y�� if max�x� y� = 1,
0� otherwise.

Not all t-norms have an additive generator. An example of such a t-norm
is the minimum operator M . The fact that a t-norm has an additive gener-
ator is closely related to the Archimedean property.

Definition 7. A t-norm � is called Archimedean if

�∀ �x� y� ∈0� 1�2� �∃n ∈ ���x�n� < y��
where x�n� stands for � �x� � � � � x� �n times��
Proposition 2. A continuous t-norm � is Archimedean if and only if

�∀x ∈0� 1�� �� �x� x� < x�.
Each t-norm with an additive generator is Archimedean. The converse is

not true in general, but holds for instance for continuous t-norms.

Theorem 2. A �0� 12 → �0� 1 mapping � is a continuous Archimedean
t-norm if and only if there exists a continuous additive generator f such that

� �x� y� = f �−1��f �x� + f �y���

3. PSEUDO-METRICS AND � -EQUIVALENCES

In this section, we briefly recall our previous results concerning the con-
struction of pseudo-metrics from � -equivalences, and vice versa.

If the cardinality of the universe X is smaller than 3, then for any t-norm
� , any � -equivalence E on X, and any additive generator f it holds that
the mapping d = f ◦E is a pseudo-metric on X; in fact, any �0� 1 → �0�∞
mapping f such that f �1� = 0 will do here. Therefore, only universes with
higher cardinality are of interest to us.

Theorem 3 ([5]). Consider a universe X with #X > 2, a t-norm � ∗

with additive generator f , and a t-norm � . Then the following statements
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are equivalent:

(i) � ∗ is weaker than � ; i.e., � ∗ ≤ � .
(ii) For any � -equivalence E on X, the X2 → �0�∞ mapping d =

f ◦ E is a pseudo-metric on X.

In the converse problem, namely the construction of � -equivalences from
pseudo-metrics, continuous additive generators play an important role. In
a counterexample, we have shown that this continuity requirement cannot
be dropped [5].

Proposition 3 ([5]). Consider a pseudo-metric d on a universe X and a
continuous Archimedean t-norm � ∗ with additive generator f ; then the binary
fuzzy relation E = f �−1� ◦ d in X is a � ∗-equivalence on X.

4. METRICS AND � -EQUALITIES

The results from the previous section can be made more specific for
metrics and � -equalities. We will show how to construct metrics from
� -equalities and vice versa.

Theorem 4. Consider a universe X with #X > 2, a t-norm � ∗ with addi-
tive generator f , and a t-norm � . Then the following statements are equivalent:

(i) � ∗ is weaker than � ; i.e., � ∗ ≤ � .
(ii) For any � -equality E on X, the X2 → �0�∞ mapping d = f ◦ E

is a metric on X.

Proof. We will first prove the implication (i) ⇒ (ii). Suppose that
� ∗ ≤ � . Since any � -equality is a � -equivalence, it follows from Theorem
3 that d is a pseudo-metric on X. Now consider x and y in X such that
d�x� y� = 0; then we have to show that x = y. From d�x� y� = 0 it follows
that f �E�x� y�� = 0. Since f is strictly decreasing and f �1� = 0, it follows
that E�x� y� = 1, whence x = y.

Next, we prove the implication (ii) ⇒ (i). Consider �a� b� ∈ �0� 12; then
we have to show that � ∗�a� b� ≤ � �a� b�. If a = 1 or b = 1, then always
� ∗�a� b� = � �a� b�. We can therefore assume that �a� b� ∈ �0� 1�2. We con-
struct the following binary fuzzy relation E in X� First, for all u in X we
put E�u� u� = 1. Next, we consider three different elements x, y, and z
of X and define

E�x� y� = a�

E�y� z� = b�

E�x� z� = � �a� b��



536 de baets and mesiar

Furthermore, for any u and v in X\�x� y� z�, u �= v, we put E�u� v� = 0.
One easily verifies that E is a � -equality on X. It then holds that the
mapping d = f ◦ E is a metric on X. This means in particular that

f �E�x� z�� ≤ f �E�x� y�� + f �E�y� z���
Since f �−1� is decreasing, it follows that

f �−1��f �E�x� z��� ≥ f �−1��f �E�x� y�� + f �E�y� z����
Since f �−1��f �E�x� z��� = E�x� z�, it then follows that � �a� b� ≥ � ∗�a� b�.

Corollary 1. (i) Consider an M-equality E on X; then for any additive
generator f it holds that the mapping d = f ◦ E is a metric on X.

(ii) Consider an arbitrary t-norm � and a � -equality E on X; then the
mapping d = f ◦ E, with f an additive generator of the weakest t-norm Z, is
a metric on X.

(iii) Consider a t-norm � such that W ≤ � and a � -equality E on X;
then the mapping d = 1 − E is a metric on X.

Proposition 4. Consider a metric d on a universe X and a continuous
Archimedean t-norm � ∗ with additive generator f ; then the binary fuzzy rela-
tion E = f �−1� ◦ d in X is a � ∗-equality on X.

Proof. According to Proposition 3, E is a � ∗-equivalence on X. Now
consider x and y in X such that E�x� y� = 1; then we have to show that
x = y. From E�x� y� = 1 it follows that f �−1��d�x� y�� = 1; i.e., f−1�min
�f �0�� d�x� y��� = 1. Since f is strictly decreasing and f �1� = 0, it follows
that min�f �0�� d�x� y�� = 0. Since f �0� > f �1� = 0, we can conclude that
d�x� y� = 0, whence x = y.

Corollary 2. Consider a metric d on X, then the binary fuzzy relation
E = max�1 − d� 0� is a W -equality on X.

5. THE BIRESIDUAL OPERATOR OF A t-NORM

5.1. Definition and Properties

In the following section we study two particular � -equalities on � �X�.
One of them is based on the biresidual operator �� of a t-norm � that is
used for measuring the degree of equality of real numbers taken from the
unit interval. In fact, we show that the biresidual operator �� of a t-norm
� is a � -equality on [0, 1] if and only if � is left-continuous. Note that
by a left-continuous t-norm we mean a t-norm with left-continuous partial
mappings.
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Definition 8 (see e.g. [6]). Consider a t-norm � . The residual implica-
tor �� of � is the binary operator on [0, 1] defined by

�� �x� y� = sup�z � z ∈ �0� 1 ∧ � �x� z� ≤ y��
Note that the residual implicator �� is hybrid monotonous; i.e., it has

decreasing first and increasing second partial mappings.

Proposition 5 ([6]). Consider a continuous Archimedean t-norm � with
an additive generator f ; then its residual implicator �� is given by

�� �x� y� = f−1�max�0� f �y� − f �x����
Proposition 6 ([6]). Consider a t-norm � ; then the following properties

hold, for any �x� y� in �0� 12:

(i) x ≤ y ⇒ �� �x� y� = 1;
(ii) �� �1� y� = y (the neutrality principle); and

(iii) �� �x�� �x� y�� ≥ y.

Proposition 7 ([6]). Consider a left-continuous t-norm � ; then the fol-
lowing equivalence holds, for any �x� y� in �0� 12:

x ≤ y ⇔ �� �x� y� = 1�

Theorem 5. Consider a t-norm � ; then the following statements are
equivalent:

(i) � is left-continuous;
(ii) �∀ �x� y� ∈ �0� 12� �� �x��� �x� y�� ≤ y�; and

(iii) �∀ �x� y� z� ∈ �0� 13� �� ��� �x� y���� �y� z�� ≤ �� �x� z��.
Proof. The implication (i) ⇒ (ii) is well-known (see e.g. [2]). We will

prove the converse implication. For � to be left-continuous, it suffices to
show that for any x in [0, 1] and for any nonempty family �yi�i∈I in [0, 1]
the following equality holds:

�

(
x� sup

i∈I
yi

)
= sup

i∈I
� �x� yi��

For any i ∈ I it holds that � �x� yi� ≤ supi∈I � �x� yi�, whence

yi ≤ ��

(
x� sup

i∈I
� �x� yi�

)

and also

sup
i∈I

yi ≤ ��

(
x� sup

i∈I
� �x� yi�

)
�
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The monotonicity of � and (ii) then imply that

�

(
x� sup

i∈I
yi

)
≤ �

(
x��� �x� sup

i∈I
� �x� yi��

)
≤ sup

i∈I
� �x� yi��

The converse inequality,

�

(
x� sup

i∈I
yi

)
≥ sup

i∈I
� �x� yi��

follows immediately from the monotonicity of � .
The implication (i) ⇒ (iii) is also well-known (see e.g. [2, 7]). The impli-

cation (iii) ⇒ (ii) follows easily by applying (iii) to the triplet �1� x� y� and
using the neutrality principle. This completes the proof.

Definition 9 ([4, 9]). Consider a t-norm � . The biresidual operator ��

of � is the binary operator on [0, 1] defined by

�� �x� y� = min��� �x� y���� �y� x���
In the foregoing definition, the minimum operator could, without effect,

be replaced with the t-norm � (due to Proposition 6(i)). Note that the
biresidual operator �� of a t-norm � can also be written as

�� �x� y� = �� �max�x� y��min�x� y���
Proposition 8. Consider two t-norms � ∗ and � ; then the following impli-

cation holds:

� ∗ ≤ � ⇒ �� ∗ ≥ �� �

Proof. If � ∗ ≤ � , then it easily follows that �� ∗ ≥ �� , whence also that
�� ∗ ≥ �� .

Proposition 9. Consider two t-norms � ∗ and � . If � ∗ is left-continuous,
then the following implication holds:

�� ∗ ≥ �� ⇒ � ∗ ≤ � �

Proof. Let �� ∗ ≥ �� and suppose there exists �x� y� ∈ �0� 12 such that
� ∗�x� y� > � �x� y�. Due to the left-continuity of � ∗, it then follows that

�� ∗�x�� �x� y�� = sup�z � z ∈ �0� 1 ∧ � ∗�x� z� ≤ � �x� y�� < y�

On the other hand, we have that

�� �x�� �x� y�� = sup�z � z ∈ �0� 1 ∧ � �x� z� ≤ � �x� y�� ≥ y�

It then easily follows, since � �x� y� ≤ x, that

�� ∗�x�� �x� y�� = �� ∗�x�� �x� y�� < y ≤ �� �x�� �x� y�� = �� �x�� �x� y���
a contradiction.
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5.2. The Biresidual Operator as a � -Equality

Lemma 1. Consider a t-norm � ; then the following properties are
equivalent:

(i) �∀ �x� y� z� ∈ �0� 13� �� ��� �x� y���� �y� z�� ≤ �� �x� z��.
(ii) �∀ �x� y� z� ∈ �0� 13� �z < y < x ⇒

� ��� �x� y���� �y� z�� ≤ �� �x� z��.
Proof. The implication (i) ⇒ (ii) is trivial. For the implication (ii) ⇒ (i)

to hold, it suffices to show that for any �x� y� z� ∈ �0� 13 such that ¬�z <
y < x� the inequality

� ��� �x� y���� �y� z�� ≤ �� �x� z� (1)

always holds. We consider the following cases.

(i) The case x ≤ z. Since �� �x� z� = 1, the inequality (1) is trivially
fulfilled.

(ii) The case z < x and x ≤ y. Since the first partial mappings
of �� are decreasing, it follows that �� �y� z� ≤ �� �x� z�. Together with
�� �x� y� = 1, the inequality (1) follows.

(iii) The case z < x, y < x, and y ≤ z. Since the second partial
mappings of �� are increasing, it follows that �� �x� y� ≤ �� �x� z�. Together
with �� �y� z� = 1, this means the inequality (1) again follows.

Theorem 6. Consider a t-norm � ; then its biresidual operator �� is a
� -equality on [0, 1] if and only if � is left-continuous.

Proof. We will first give the proof from right to left. From Proposition 7
it immediately follows that �� �x� y� = 1 if and only if x = y. The symme-
try of �� is trivially fulfilled. We will now show the � -transitivity of �� .
Consider �x� y� z� ∈ �0� 13; then

� ��� �x�y���� �y�z��=� �min��� �x�y���� �y�x���min��� �y�z���� �z�y���
≤min�� ��� �x�y���� �y�z���� ��� �z�y���� �y�x����

With Theorem 5 it then follows that

� ��� �x� y���� �y� z�� ≤ min��� �x� z���� �z� x�� = �� �x� z��
Next, we give the proof from left to right. Consider an arbitrary �x� y� z� ∈

�0� 13 such that z < y < x. Then it holds that �� �x� y� = �� �x� y�,
�� �y� z� = �� �y� z�, and �� �x� z� = �� �x� z�. Since �� is � -transitive, it
follows that

� ��� �x� y���� �y� z�� ≤ �� �x� z��
From this, with Lemma 1 and Theorem 5, the left-continuity of �
follows.
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In the following proposition we consider a left-continuous t-norm � with
an additive generator f . This implies, however, the left-continuity and hence
also the continuity of f . Consequently, � is a continuous Archimedean
t-norm.

Proposition 10. Consider a continuous Archimedean t-norm � with
additive generator f ; then the �0� 12 → �0�∞ mapping d = f ◦ �� is a
metric on [0, 1]. Moreover, it holds that

d�x� y� = �f �x� − f �y���

Proof. It follows immediately from Theorems 4 and 6 that d is a metric
on [0, 1]. Consider �x� y� ∈ �0� 12; then it follows with Proposition 5 that

�� �x� y� = min�f−1�max�0� f �y� − f �x���� f−1�max�0� f �x� − f �y�����

Since f is decreasing, it then follows that

d�x� y� = f ��� �x� y�� = max�f �y� − f �x�� f �x� − f �y�� 0�
= �f �x� − f �y���

Example 2. Consider the Łukasiewicz t-norm W with additive gen-
erator f �x� = 1 − x; then the metric d = f ◦ �W on [0, 1] is given by
d�x� y� = �x− y�.

The foregoing proposition can be generalized as follows.

Proposition 11. Consider a t-norm � ∗ with additive generator f and a
left-continuous t-norm � . If � ∗ ≤ � , then the �0� 12 → �0�∞ mapping
d = f ◦ �� is a metric on [0, 1].

Proof. It follows immediately from Theorems 4 and 6.

The following “converse” proposition is quite remarkable, as it allows
one to decide, considering one particular (potential) � -equality, whether
one t-norm is weaker than another. Note that for any additive generator f
and any t-norm � , since �� is always reflexive and symmetric, the mapping
d = f ◦ �� satisfies (P1) and (P2).

Proposition 12. Consider a t-norm with an additive generator f and a
t-norm � . If the �0� 12 → �0�∞ mapping d = f ◦ �� is a pseudo-metric on
[0, 1], then � ∗ ≤ � .
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Proof. Suppose there exists �a� b� ∈ �0� 12 such that � ∗�a� b� > �
�a� b�. By assumption, it holds for any �x� y� z� ∈ �0� 13 that

f ��� �x� z�� ≤ f ��� �x� y�� + f ��� �y� z���
Since f �−1� is decreasing, it then follows that

f �−1��f ��� �x� z��� ≥ f �−1��f ��� �x� y��� + f ��� �y� z��
or, equivalently, that

�� �x� z� ≥ � ∗��� �x� y���� �y� z��� (2)

Now choose x = � �a� b�� y = b, and z = 1; then x ≤ y ≤ z. One easily
verifies that for this choice it holds that

�� �x� z� = �� �z� x� = �� �1�� �a� b�� = � �a� b��
�� �x� y� = �� �y� x� = �� �b�� �b� a�� ≥ a�

and
�� �y� z� = �� �z� y� = �� �1� b� = b�

Substituting the above results into (2), we obtain that � �a� b� ≥ � ∗�a� b�,
a contradiction.

Note that in the foregoing proposition it is not necessary to impose left-
continuity on the t-norm � , since it is not required that �� is a � -equality,
but only that d = f ◦ �� is a pseudo-metric. However, if we do impose
left-continuity, then this proposition is a stronger version of the implication
(ii) ⇒ (i) of Theorem 4, for the special case of X = �0� 1, since it allows
one to conclude the comparability of t-norms by considering one particular
� -equality. We can then state the following corollary.

Corollary 3. Consider a t-norm � ∗ with an additive generator f and a
left-continuous t-norm � . If for the � -equality �� on [0, 1] it holds that the
�0� 12 → �0�∞ mapping d = f ◦ �� is a metric on [0, 1], then � ∗ ≤ � .

6. METRICS AND � -EQUALITIES ON � �X�

6.1. Two Particular � -Equalities on � �X�
In this subsection, we study two particular � -equalities on � �X�, the

class of fuzzy sets on a universe X.

Definition 10 ([4]). Consider a t-norm � . The binary fuzzy relation E�

in � �X� is defined, for any two fuzzy sets A and B in X, as

E� �A�B� = inf
x∈X

�� �A�x�� B�x���



542 de baets and mesiar

Definition 11 ([7, 14, 16]). Consider a t-norm � . The binary fuzzy rela-
tion E� in � �X� is defined, for any two fuzzy sets A and B in X, as

E� �A�B� = �

(
inf
x∈X

�� �A�x�� B�x��� inf
x∈X

�� �B�x��A�x��
)
�

Proposition 13. Consider a t-norm � ; then it holds that E� ⊆ E� .

Proof. Consider two fuzzy sets A and B in X; then it holds that

E� �A�B�=�

(
inf
x∈X

�� �A�x�� B�x��� inf
x∈X

�� �B�x��A�x��
)

≤ inf
x∈X

� ��� �A�x�� B�x����� �B�x��A�x���

= inf
x∈X

�� �A�x�� B�x�� = E� �A�B��

Note that when � = M , it obviously holds that EM = EM . Also, if #X = 1,
say X = �x�, then for any t-norm � it holds that E� �A�B� = E� �A�B� =
�� �A�x�� B�x��.

In the following theorem, we show that any � -equality on [0, 1] can be
extended, by means of the infimum operator, to a � -equality on � �X�.
Theorem 7. Consider a t-norm � and a binary fuzzy relation E in [0, 1].

Define the binary fuzzy relation E′ in � �X� as follows, for any two fuzzy sets
A and B in X:

E′�A�B� = inf
x∈X

E�A�x�� B�x���

Then the following statements are equivalent:

(i) E is a � -equality on [0, 1].

(ii) E′ is a � -equality on � �X�.
Proof. We will first prove the implication (i) ⇒ (ii).

(a) Consider two fuzzy sets A and B in X; then the following chain
of equivalences holds:

E′�A�B� = 1 ⇔ inf
x∈X

E�A�x�� B�x�� = 1

⇔ �∀x ∈ X��E�A�x�� B�x�� = 1�
⇔ �∀x ∈ X��A�x� = B�x�� ⇔ A = B�

(b) The symmetry of E′ is obvious.
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(c) Consider three fuzzy sets A�B, and C in X; then

� �E′�A�B�� E′�B�C�� = �

(
inf
x∈X

E�A�x�� B�x��� inf
x∈X

E�B�x�� C�x��
)

≤ inf
x∈X

� �E�A�x�� B�x��� E�B�x�� C�x����
Since E is � -transitive, it follows that

� �E′�A�B�� E′�B�C�� ≤ inf
x∈X

E�A�x�� C�x�� = E′�A�C��
Next, we prove the implication (ii) ⇒ (i). Consider �a� b� c� ∈ �0� 13 and

the corresponding constant fuzzy sets A�x� = a�B�x� = b, and C�x� =
c in X. It then holds that E′�A�B� = E�a� b�� E′�B�C� = E�b� c�, and
E′�A�C� = E�a� c�.

(a) Let E�a� b� = 1. Then also E′�A�B� = 1, which implies that
A = B and also that a = b.

(b) The symmetry of E follows immediately from the symmetry of E′.
(c) The � -transitivity of E′ implies that

� �E′�A�B�� E′�B�C�� ≤ E′�A�C�
and hence also that

� �E�a� b�� E�b� c�� ≤ E�a� c��

Corollary 4. Consider a t-norm � . The binary fuzzy relation E� is a
� -equality on � �X� if and only if � is left-continuous.

Proof. It follows immediately from Theorems 6 and 7.

Theorem 8. Consider a t-norm � . The binary fuzzy relation E� is a
� -equality on � �X� if and only if � is left-continuous.

Proof. The proof from right to left was given by Gottwald [7]. Indeed,
he has shown that for a left-continuous t-norm � � E� is a � -equivalence
on � �X�. He further demonstrated that in this case E� �A�B� = 1 if and
only if A = B. This means that E� is a � -equality on � �X�.

For the proof from left to right, consider �a� b� c� ∈ �0� 13 such that
c < b < a. Consider x0 in X and construct the fuzzy sets A�B, and C in X
as follows:

A�x� =
{
a� if x = x0,
0� elsewhere.

B�x� =
{
b� if x = x0,
0� elsewhere.

C�x� =
{
c� if x = x0,
0� elsewhere.
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One easily verifies that in this case E� �A�B� = �� �a� b�� E� �B�C� = ��

�b� c�, and E� �A�C� = �� �a� c�. Since E� is � -transitive, it then follows
that

� �E� �A�B�� E� �B�C�� ≤ E� �A�C�

and hence also that

� ��� �a� b���� �b� c�� ≤ �� �a� c��

With Lemma 1 and Theorem 5, it then follows that � is left-continuous.

The fuzzy relation E� is inspired by the following classical equivalence,
for any two sets A and B in X:

A = B ⇔ A ⊆ B ∧ B ⊆ A�

The inclusion of a fuzzy set A in X in a fuzzy set B in X is then measured
by infx∈X � �A�x�� B�x��, with � a fuzzy implication operator, such as the
residual implicator �� (see e.g. [3, 14]).

6.2. Metrics on � �X� Based on E�

Proposition 14. Consider a t-norm � ∗ with an additive generator f and
a left-continuous t-norm � such that � ∗ ≤ � ; then the � �X�2 → �0�∞
mapping d = f ◦ E� is a metric on � �X�.

Proof. It follows immediately from Theorems 4 and 8.

Note that for any additive generator f and any t-norm � , since E�

is always reflexive and symmetric, the mapping d = f ◦ E� satisfies (P1)
and (P2).

Theorem 9. Consider a t-norm � ∗ with additive generator f and a
t-norm � . If the � �X�2 → �0�∞ mapping d = f ◦ ET is a pseudo-metric
on � �X�, then � ∗ ≤ � .

Proof. Suppose there exists �a� b� ∈ �0� 12 such that � ∗�a� b� >
� �a� b�. By assumption, it holds for any �A�B�C� ∈ � �X�3 that

f �E� �A�C�� ≤ f �E� �A�B�� + f �E� �B�C���

As in the proof of Proposition 12, it then follows that

E� �A�C� ≥ � ∗�E� �A�B�� E� �B�C��� (3)
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Now consider two different elements x0 and y0 of X and construct the fuzzy
sets A�B, and C in X as

A�x� =
{ 1� if x = x0,
b� if x = y0,
0� elsewhere.

B�x� =
{
a� if x = x0,
b� if x = y0,
0� elsewhere.

C�x� =
{
a� if x = x0,
1� if x = y0,
0� elsewhere.

One easily verifies that for this choice it holds that E� �A�B� = a�
E� �B�C� = b, and E� �A�C� = � �a� b�. Substituting these results in (3),
we obtain that � �a� b� ≥ � ∗�a� b�, a contradiction.

Corollary 5. Consider a t-norm � ∗ with an additive generator f and a
left-continuous t-norm � . If for the � -equality E� on � �X� it holds that the
� �X�2 → �0�∞ mapping d = f ◦ E� is a metric on � �X�, then � ∗ ≤ � .

As a corollary of Proposition 14 and Theorem 9, we rediscover the main
theorem of Gottwald in [7].

Corollary 6 ([7]). Consider a left-continuous t-norm � . The � �X�2 →
�0�∞ mapping d = 1 − E� is a metric on � �X� if and only if W ≤ � .

We cite Gottwald here [7]: “The intuition behind that relation comes
from the interpretation of E� as a graded measure of the equality of fuzzy
sets or of their indistinguishability. The negation of such an indistinguisha-
bility relation E� hence should be a kind of graded distinguishability and
thus (perhaps) even a kind of ‘distance’.”

An important remark should be made here: In Corollary 6, the operation
1– should not be interpreted as the standard negation, but as an additive
generator of the Łukasiewicz t-norm. Only this insight can lead to the more
general results presented in this paper.

6.3. Metrics on � �X� Based on E�

Propositions similar to those in the previous subsection can be writ-
ten for the � -equality E� . The first proposition is an extended version
of Proposition 10.

Proposition 15. Consider a continuous Archimedean t-norm � with an
additive generator f ; then the � �X�2 → �0�∞ mapping d = f ◦ E� is a
metric on � �X�. Moreover, it holds, for any two fuzzy sets A and B in X, that

d�A�B� = sup
x∈X

�f �A�x�� − f �B�x����
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Proof. It follows immediately from Corollary 4 and Theorem 4 that d is
a metric on � �X�. Consider �A�B� ∈ � �X�2; then

d�A�B� = f �E� �A�B�� = f

(
inf
x∈X

�� �A�x�� B�x��
)
�

Since f is continuous and decreasing, it then follows that

d�A�B� = sup
x∈X

f ��� �A�x�� B�x����

As in the proof of Proposition 10, it then follows that

d�A�B� = sup
x∈X

�f �A�x�� − f �B�x����

Example 3. Consider the Łukasiewicz t-norm W with an additive gen-
erator f �x� = 1 − x; then the metric d = f ◦ EW on � �X� is given by, for
any two fuzzy sets A and B in X,

d�A�B� = sup
x∈X

�A�x� − B�x���

Proposition 16. Consider a t-norm � ∗ with an additive generator f and
a left-continuous t-norm � such that � ∗ ≤ � ; then the � �X�2 → �0�∞
mapping d = f ◦ E� is a metric on � �X�.

Proof. It follows immediately from Corollary 4 and Theorem 4.

The following theorem (also its proof) is an extended version of
Proposition 12.

Theorem 10. Consider a t-norm � ∗ with an additive generator f and a
t-norm � . If the � �X�2 → �0�∞ mapping d = f ◦ E� is a pseudo-metric
on � �X�, then � ∗ ≤ � .

Proof. Suppose there exists �a� b� ∈ �0� 12 such that � ∗�a� b� > �
�a� b�. As in the proof of Proposition 12, it follows that for any �A�B�C� ∈
� �X�3 it holds that

E� �A�C� ≥ � ∗�E� �A�B�� E� �B�C��� (4)

Now consider x0 in X and construct the fuzzy sets A�B, and C in X as
follows:

A�x� =
{
� �a� b�� if x = x0,
0� elsewhere.

B�x� =
{
b� if x = x0,
0� elsewhere.

C�x� =
{

1� if x = x0,
0� elsewhere.
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One easily verifies that for this choice it holds that E� �A�C� = � �a� b�,
E� �A�B� ≥ a, and E� �B�C� = b. Substituting these findings in (4) we
obtain � �a� b� ≥ � ∗�a� b�, a contradiction.

Corollary 7. Consider a t-norm � ∗ with an additive generator f and a
left-continuous t-norm � . If for the � -equality E� on � �X� the � �X�2 →
�0�∞ mapping d = f ◦ E� is a metric on � �X�, then � ∗ ≤ � .
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