Metrics and *T*-Equalities

Bernard De Baets

Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Coupure links 653, B-9000 Ghent, Belgium E-mail: bernard.debaets@rug.ac.be

and

Radko Mesiar

Department of Mathematics, Slovak Technical University, Radlinského 11, 81368 Bratislava, Slovakia

Submitted by Antonio di Nola

Received May 25, 1999

The relationship between metrics and \mathcal{T} -equalities is investigated; the latter are a special case of \mathcal{T} -equivalences, a natural generalization of the classical concept of an equivalence relation. It is shown that in the construction of metrics from \mathcal{T} -equalities triangular norms with an additive generator play a key role. Conversely, in the construction of \mathcal{T} -equalities from metrics this role is played by triangular norms with a continuous additive generator or, equivalently, by continuous Archimedean triangular norms. These results are then applied to the biresidual operator $\mathcal{E}_{\mathcal{T}}$ of a triangular norm \mathcal{T} . It is shown that $\mathcal{E}_{\mathcal{T}}$ is a \mathcal{T} -equality on [0,1] if and only if \mathcal{T} is left-continuous. Furthermore, it is shown that to any left-continuous triangular norm \mathcal{T} there correspond two particular \mathcal{T} -equalities on $\mathcal{T}(X)$, the class of fuzzy sets in a given universe X; one of these \mathcal{T} -equalities is obtained from the biresidual operator $\mathcal{E}_{\mathcal{T}}$ by means of a natural extension procedure. These \mathcal{T} -equalities then give rise to interesting metrics on $\mathcal{T}(X)$. © 2002 Elsevier Science (USA)

Key Words: additive generator; Archimedean property; biresidual operator; metric; \mathcal{T} -equality; triangular norm.

1. INTRODUCTION

The concept of a similarity relation was introduced by Zadeh [17] as a generalization of the concept of an equivalence relation. Also, simi-

larity relations have been generalized by replacing the min-transitivity with the more general \mathcal{T} -transitivity, with \mathcal{T} an arbitrary triangular norm (t-norm) [12].

DEFINITION 1 ([4]). Consider a t-norm \mathcal{T} . A binary fuzzy relation E in a universe X is called a \mathcal{T} -equivalence on X if it is reflexive, symmetric, and \mathcal{T} -transitive, i.e., if for any (x, y, z) in X^3 ,

- (E1) E(x, x) = 1;
- (E2) E(x, y) = E(y, x); and
- (E3) $\mathcal{I}(E(x, y), E(y, z)) \leq E(x, z)$.

 \mathcal{T} -equivalences are also called indistinguishability operators [13], fuzzy equalities [8], and equality relations [9]. Clearly, M-equivalences (with M the minimum operator) are nothing but similarity relations. W-equivalences (with W the Łukasiewicz t-norm defined by $W(x,y) = \max(x+y-1,0)$) are called likeness relations. A one-to-one correspondence between \mathcal{T} -equivalences and \mathcal{T} -partitions, a generalization of the concept of a partition, was recently exposed in [4].

In this paper, we deal with \mathcal{T} -equalities, a special type of \mathcal{T} -equivalence.

DEFINITION 2. Consider a t-norm \mathcal{T} . A \mathcal{T} -equivalence E in a universe X is called a \mathcal{T} -equality on X if for any (x, y) in X^2 ,

(E1')
$$E(x, y) = 1 \Leftrightarrow x = y$$
.

Recall that a t-norm \mathcal{T}^* is called weaker than a t-norm \mathcal{T} , denoted $\mathcal{T}^* \leq \mathcal{T}$, if $(\forall (x,y) \in [0,1]^2)$ $(\mathcal{T}^*(x,y) \leq \mathcal{T}(x,y))$. The following proposition then is immediate.

PROPOSITION 1. Consider a binary fuzzy relation E in a universe X and a t-norm \mathcal{T} . If E is a \mathcal{T} -equivalence (resp., \mathcal{T} -equality), then it is also a \mathcal{T}^* -equivalence (resp., \mathcal{T}^* -equality) for any t-norm \mathcal{T}^* that is weaker than \mathcal{T} .

Bezdek and Harris [1] have discussed the relationship between likeness relations and pseudo-metrics. More general investigations into the relationship between pseudo-metrics and \mathcal{T} -equivalences were done by Wagenknecht [15]. A complete study was carried out by De Baets and Mesiar [5] (see Section 3).

DEFINITION 3. An $X^2 \to [0, \infty]$ mapping d is called a pseudo-metric on X if for any (x, y, z) in X^3 ,

- $(P1) \quad d(x,x) = 0;$
- (P2) d(x, y) = d(y, x); and
- (P3) $d(x, z) \le d(x, y) + d(y, z)$.

In this paper, we will show that \mathcal{T} -equalities are related to metrics as \mathcal{T} -equivalences are to pseudo-metrics.

DEFINITION 4. A pseudo-metric d on X is called a metric if for any (x, y) in X^2 ,

$$(P1') \quad d(x, y) = 0 \Leftrightarrow x = y.$$

2. ADDITIVE GENERATORS AND ARCHIMEDEAN t-NORMS

In this section, we recall some important results concerning additive generators of t-norms (see e.g. [10–12]) and the relationship to the Archimedean property.

DEFINITION 5. A strictly decreasing $[0,1] \to [0,\infty]$ mapping f with $\operatorname{Rng}(f)$ relatively closed under addition, i.e.,

$$(\forall (u, v) \in \operatorname{Rng}(f)^2)(u + v \in \operatorname{Rng}(f) \lor u + v > f(0)),$$

such that f(1) = 0, is called an additive generator.

DEFINITION 6. Consider a $[0,1] \to [0,\infty]$ mapping f; then the pseudo-inverse of f is the $[0,\infty] \to [0,1]$ mapping $f^{(-1)}$ defined by

$$f^{(-1)}(x) = \inf\{t \mid t \in [0,1] \land f(t) \le x\}.$$

Note that this pseudo-inverse is always decreasing. The pseudo-inverse $f^{(-1)}$ of a continuous additive generator f is given by

$$f^{(-1)}(x) = f^{-1}(\min(f(0), x)).$$

Theorem 1. Consider an additive generator f; then the $[0,1]^2 \rightarrow [0,1]$ mapping \mathcal{T} defined by

$$\mathcal{I}(x, y) = g(f(x) + f(y)),$$

where g is an arbitrary $[0, \infty] \rightarrow [0, 1]$ mapping such that

$$g(x) = \begin{cases} f^{-1}(x), & \text{if } x \in \text{Rng}(f), \\ 0, & \text{if } x > f(0), \end{cases}$$

is a t-norm.

A suitable candidate for the mapping g in the foregoing theorem is the pseudo-inverse $f^{(-1)}$ of f.

The continuity of an additive generator f is equivalent with its left-continuity in the point 1 and with the continuity of the generated t-norm \mathcal{T} . Note that if a continuous t-norm \mathcal{T} has an additive generator f, then this additive generator is uniquely determined up to a nonzero positive multiplicative constant.

EXAMPLE 1. (i) The mapping f defined by $f(x) = -\log x$ is an additive generator of the algebraic product, i.e., of the t-norm P defined by P(x, y) = xy.

- (ii) The mapping f defined by f(x) = 1 x is an additive generator of the Łukasiewicz t-norm W.
 - (iii) The mapping f defined by

$$f(x) = \begin{cases} 2 - x, & \text{if } x \in [0, 1[, \\ 0, & \text{if } x = 1, \end{cases}$$

is an additive generator of the weakest t-norm Z defined by

$$Z(x, y) = \begin{cases} \min(x, y), & \text{if } \max(x, y) = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Not all t-norms have an additive generator. An example of such a t-norm is the minimum operator M. The fact that a t-norm has an additive generator is closely related to the Archimedean property.

Definition 7. A t-norm \mathcal{T} is called Archimedean if

$$(\forall (x, y) \in]0, 1[^2) (\exists n \in \mathbb{N})(x^{(n)} < y),$$

where $x^{(n)}$ stands for $\mathcal{T}(x,\ldots,x)$ (*n* times).

PROPOSITION 2. A continuous t-norm \mathcal{T} is Archimedean if and only if $(\forall x \in]0, 1[) (\mathcal{T}(x, x) < x)$.

Each t-norm with an additive generator is Archimedean. The converse is not true in general, but holds for instance for continuous t-norms.

THEOREM 2. $A[0,1]^2 \rightarrow [0,1]$ mapping \mathcal{T} is a continuous Archimedean t-norm if and only if there exists a continuous additive generator f such that

$$\mathcal{T}(x, y) = f^{(-1)}(f(x) + f(y)).$$

3. PSEUDO-METRICS AND T-EQUIVALENCES

In this section, we briefly recall our previous results concerning the construction of pseudo-metrics from \mathcal{T} -equivalences, and *vice versa*.

If the cardinality of the universe X is smaller than 3, then for any t-norm \mathcal{T} , any \mathcal{T} -equivalence E on X, and any additive generator f it holds that the mapping $d = f \circ E$ is a pseudo-metric on X; in fact, any $[0, 1] \to [0, \infty]$ mapping f such that f(1) = 0 will do here. Therefore, only universes with higher cardinality are of interest to us.

THEOREM 3 ([5]). Consider a universe X with #X > 2, a t-norm \mathcal{I}^* with additive generator f, and a t-norm \mathcal{I} . Then the following statements

are equivalent:

- (i) \mathcal{T}^* is weaker than \mathcal{T} ; i.e., $\mathcal{T}^* \leq \mathcal{T}$.
- (ii) For any \mathcal{T} -equivalence E on X, the $X^2 \to [0, \infty]$ mapping $d = f \circ E$ is a pseudo-metric on X.

In the converse problem, namely the construction of \mathcal{T} -equivalences from pseudo-metrics, continuous additive generators play an important role. In a counterexample, we have shown that this continuity requirement cannot be dropped [5].

PROPOSITION 3 ([5]). Consider a pseudo-metric d on a universe X and a continuous Archimedean t-norm \mathcal{T}^* with additive generator f; then the binary fuzzy relation $E = f^{(-1)} \circ d$ in X is a \mathcal{T}^* -equivalence on X.

4. METRICS AND T-EQUALITIES

The results from the previous section can be made more specific for metrics and \mathcal{T} -equalities. We will show how to construct metrics from \mathcal{T} -equalities and $vice\ versa$.

THEOREM 4. Consider a universe X with #X > 2, a t-norm \mathcal{T}^* with additive generator f, and a t-norm \mathcal{T} . Then the following statements are equivalent:

- (i) \mathcal{T}^* is weaker than \mathcal{T} ; i.e., $\mathcal{T}^* \leq \mathcal{T}$.
- (ii) For any \mathcal{T} -equality E on X, the $X^2 \to [0, \infty]$ mapping $d = f \circ E$ is a metric on X.

Proof. We will first prove the implication (i) \Rightarrow (ii). Suppose that $\mathcal{T}^* \leq \mathcal{T}$. Since any \mathcal{T} -equality is a \mathcal{T} -equivalence, it follows from Theorem 3 that d is a pseudo-metric on X. Now consider x and y in X such that d(x,y)=0; then we have to show that x=y. From d(x,y)=0 it follows that f(E(x,y))=0. Since f is strictly decreasing and f(1)=0, it follows that E(x,y)=1, whence x=y.

Next, we prove the implication (ii) \Rightarrow (i). Consider $(a, b) \in [0, 1]^2$; then we have to show that $\mathcal{T}^*(a, b) \leq \mathcal{T}(a, b)$. If a = 1 or b = 1, then always $\mathcal{T}^*(a, b) = \mathcal{T}(a, b)$. We can therefore assume that $(a, b) \in [0, 1]^2$. We construct the following binary fuzzy relation E in X: First, for all u in X we put E(u, u) = 1. Next, we consider three different elements x, y, and z of X and define

$$E(x, y) = a,$$

$$E(y, z) = b,$$

$$E(x, z) = \mathcal{T}(a, b).$$

Furthermore, for any u and v in $X\setminus\{x,y,z\}$, $u\neq v$, we put E(u,v)=0. One easily verifies that E is a \mathcal{T} -equality on X. It then holds that the mapping $d=f\circ E$ is a metric on X. This means in particular that

$$f(E(x, z)) \le f(E(x, y)) + f(E(y, z)).$$

Since $f^{(-1)}$ is decreasing, it follows that

$$f^{(-1)}(f(E(x,z))) \ge f^{(-1)}(f(E(x,y)) + f(E(y,z))).$$

Since $f^{(-1)}(f(E(x,z))) = E(x,z)$, it then follows that $\mathcal{T}(a,b) \geq \mathcal{T}^*(a,b)$.

COROLLARY 1. (i) Consider an M-equality E on X; then for any additive generator f it holds that the mapping $d = f \circ E$ is a metric on X.

- (ii) Consider an arbitrary t-norm $\mathcal T$ and a $\mathcal T$ -equality E on X; then the mapping $d=f\circ E$, with f an additive generator of the weakest t-norm Z, is a metric on X.
- (iii) Consider a t-norm \mathcal{T} such that $W \leq \mathcal{T}$ and a \mathcal{T} -equality E on X; then the mapping d = 1 E is a metric on X.

PROPOSITION 4. Consider a metric d on a universe X and a continuous Archimedean t-norm \mathcal{T}^* with additive generator f; then the binary fuzzy relation $E = f^{(-1)} \circ d$ in X is a \mathcal{T}^* -equality on X.

Proof. According to Proposition 3, E is a \mathcal{T}^* -equivalence on X. Now consider x and y in X such that E(x,y)=1; then we have to show that x=y. From E(x,y)=1 it follows that $f^{(-1)}(d(x,y))=1$; i.e., $f^{-1}(\min(f(0),d(x,y)))=1$. Since f is strictly decreasing and f(1)=0, it follows that $\min(f(0),d(x,y))=0$. Since f(0)>f(1)=0, we can conclude that d(x,y)=0, whence x=y.

COROLLARY 2. Consider a metric d on X, then the binary fuzzy relation $E = \max(1 - d, 0)$ is a W-equality on X.

5. THE BIRESIDUAL OPERATOR OF A t-NORM

5.1. Definition and Properties

In the following section we study two particular \mathcal{T} -equalities on $\mathcal{F}(X)$. One of them is based on the biresidual operator $\mathcal{E}_{\mathcal{T}}$ of a t-norm \mathcal{T} that is used for measuring the degree of equality of real numbers taken from the unit interval. In fact, we show that the biresidual operator $\mathcal{E}_{\mathcal{T}}$ of a t-norm \mathcal{T} is a \mathcal{T} -equality on [0, 1] if and only if \mathcal{T} is left-continuous. Note that by a left-continuous t-norm we mean a t-norm with left-continuous partial mappings.

DEFINITION 8 (see e.g. [6]). Consider a t-norm \mathcal{T} . The residual implicator $\mathcal{I}_{\mathcal{T}}$ of \mathcal{T} is the binary operator on [0, 1] defined by

$$\mathcal{I}_{\mathcal{T}}(x, y) = \sup\{z \mid z \in [0, 1] \land \mathcal{T}(x, z) \le y\}.$$

Note that the residual implicator $\mathcal{I}_{\mathcal{T}}$ is hybrid monotonous; i.e., it has decreasing first and increasing second partial mappings.

PROPOSITION 5 ([6]). Consider a continuous Archimedean t-norm \mathcal{T} with an additive generator f; then its residual implicator $\mathcal{I}_{\mathcal{T}}$ is given by

$$\mathcal{I}_{\mathcal{T}}(x,y) = f^{-1}(\max(0, f(y) - f(x))).$$

PROPOSITION 6 ([6]). Consider a t-norm \mathcal{I} ; then the following properties hold, for any (x, y) in $[0, 1]^2$:

- (i) $x \le y \Rightarrow \mathcal{I}_{\mathcal{T}}(x, y) = 1;$
- (ii) $\mathcal{I}_{\mathcal{T}}(1, y) = y$ (the neutrality principle); and
- (iii) $\mathcal{I}_{\mathcal{T}}(x,\mathcal{T}(x,y)) \geq y$.

PROPOSITION 7 ([6]). Consider a left-continuous t-norm \mathcal{T} ; then the following equivalence holds, for any (x, y) in $[0, 1]^2$:

$$x \le y \Leftrightarrow \mathcal{I}_{\mathcal{T}}(x, y) = 1.$$

Theorem 5. Consider a t-norm \mathcal{T} ; then the following statements are equivalent:

- (i) \mathcal{T} is left-continuous;
- (ii) $(\forall (x, y) \in [0, 1]^2) (\mathcal{T}(x, \mathcal{I}_{\mathcal{T}}(x, y)) \leq y)$; and
- (iii) $(\forall (x, y, z) \in [0, 1]^3) (\mathcal{T}(\mathcal{I}_{\mathcal{T}}(x, y), \mathcal{I}_{\mathcal{T}}(y, z)) \leq \mathcal{I}_{\mathcal{T}}(x, z)).$

Proof. The implication (i) \Rightarrow (ii) is well-known (see e.g. [2]). We will prove the converse implication. For \mathcal{T} to be left-continuous, it suffices to show that for any x in [0, 1] and for any nonempty family $(y_i)_{i \in I}$ in [0, 1] the following equality holds:

$$\mathcal{I}\left(x,\sup_{i\in I}y_i\right)=\sup_{i\in I}\mathcal{I}(x,y_i).$$

For any $i \in I$ it holds that $\mathcal{T}(x, y_i) \leq \sup_{i \in I} \mathcal{T}(x, y_i)$, whence

$$y_i \le \mathcal{I}_{\mathcal{I}}\left(x, \sup_{i \in I} \mathcal{I}(x, y_i)\right)$$

and also

$$\sup_{i \in I} y_i \le \mathcal{I}_{\mathcal{T}}\left(x, \sup_{i \in I} \mathcal{T}(x, y_i)\right).$$

The monotonicity of \mathcal{T} and (ii) then imply that

$$\mathcal{T}\left(x, \sup_{i \in I} y_i\right) \leq \mathcal{T}\left(x, \mathcal{I}_{\mathcal{T}}\left(x, \sup_{i \in I} \mathcal{T}(x, y_i)\right)\right) \leq \sup_{i \in I} \mathcal{T}(x, y_i).$$

The converse inequality,

$$\mathcal{T}\left(x, \sup_{i \in I} y_i\right) \ge \sup_{i \in I} \mathcal{T}(x, y_i),$$

follows immediately from the monotonicity of \mathcal{T} .

The implication (i) \Rightarrow (iii) is also well-known (see e.g. [2, 7]). The implication (iii) \Rightarrow (ii) follows easily by applying (iii) to the triplet (1, x, y) and using the neutrality principle. This completes the proof.

DEFINITION 9 ([4, 9]). Consider a t-norm \mathcal{T} . The biresidual operator $\mathcal{E}_{\mathcal{T}}$ of \mathcal{T} is the binary operator on [0, 1] defined by

$$\mathscr{E}_{\mathscr{T}}(x, y) = \min(\mathscr{I}_{\mathscr{T}}(x, y), \mathscr{I}_{\mathscr{T}}(y, x)).$$

In the foregoing definition, the minimum operator could, without effect, be replaced with the t-norm \mathcal{T} (due to Proposition 6(i)). Note that the biresidual operator $\mathcal{E}_{\mathcal{T}}$ of a t-norm \mathcal{T} can also be written as

$$\mathcal{E}_{\mathcal{T}}(x,y) = \mathcal{I}_{\mathcal{T}}(\max(x,y),\min(x,y)).$$

PROPOSITION 8. Consider two t-norms \mathcal{T}^* and \mathcal{T} ; then the following implication holds:

$$\mathcal{I}^* \leq \mathcal{I} \Rightarrow \mathcal{E}_{\mathcal{I}^*} \geq \mathcal{E}_{\mathcal{I}}.$$

Proof. If $\mathcal{T}^* \leq \mathcal{T}$, then it easily follows that $\mathcal{I}_{\mathcal{T}^*} \geq \mathcal{I}_{\mathcal{T}}$, whence also that $\mathcal{E}_{\mathcal{T}^*} \geq \mathcal{E}_{\mathcal{T}}$.

PROPOSITION 9. Consider two t-norms \mathcal{T}^* and \mathcal{T} . If \mathcal{T}^* is left-continuous, then the following implication holds:

$$\mathcal{E}_{\mathcal{I}^*} \geq \mathcal{E}_{\mathcal{I}} \Rightarrow \mathcal{I}^* \leq \mathcal{I}.$$

Proof. Let $\mathcal{E}_{\mathcal{I}^*} \geq \mathcal{E}_{\mathcal{I}}$ and suppose there exists $(x, y) \in [0, 1]^2$ such that $\mathcal{I}^*(x, y) > \mathcal{I}(x, y)$. Due to the left-continuity of \mathcal{I}^* , it then follows that

$$\mathcal{I}_{\mathcal{T}^*}(x,\mathcal{T}(x,y)) = \sup\{z \mid z \in [0,1] \land \mathcal{T}^*(x,z) \le \mathcal{T}(x,y)\} < y.$$

On the other hand, we have that

$$\mathcal{I}_{\mathcal{T}}(x,\mathcal{T}(x,y)) = \sup\{z \mid z \in [0,1] \land \mathcal{T}(x,z) \leq \mathcal{T}(x,y)\} \geq y.$$

It then easily follows, since $\mathcal{T}(x, y) \leq x$, that

$$\mathcal{E}_{\mathcal{T}^*}(x,\mathcal{T}(x,y)) = \mathcal{I}_{\mathcal{T}^*}(x,\mathcal{T}(x,y)) < y \leq \mathcal{I}_{\mathcal{T}}(x,\mathcal{T}(x,y)) = \mathcal{E}_{\mathcal{T}}(x,\mathcal{T}(x,y)),$$

a contradiction.

5.2. The Biresidual Operator as a T-Equality

Lemma 1. Consider a t-norm \mathcal{T} ; then the following properties are equivalent:

- (i) $(\forall (x, y, z) \in [0, 1]^3) (\mathcal{T}(\mathcal{I}_{\mathcal{T}}(x, y), \mathcal{I}_{\mathcal{T}}(y, z)) \leq \mathcal{I}_{\mathcal{T}}(x, z)).$
- (ii) $(\forall (x, y, z) \in [0, 1]^3) (z < y < x \Rightarrow \mathcal{T}(\mathcal{I}_{\mathcal{T}}(x, y), \mathcal{I}_{\mathcal{T}}(y, z)) \leq \mathcal{I}_{\mathcal{T}}(x, z)).$

Proof. The implication (i) \Rightarrow (ii) is trivial. For the implication (ii) \Rightarrow (i) to hold, it suffices to show that for any $(x, y, z) \in [0, 1]^3$ such that $\neg (z < y < x)$ the inequality

$$\mathcal{F}(\mathcal{I}_{\mathcal{T}}(x,y),\mathcal{I}_{\mathcal{T}}(y,z)) \le \mathcal{I}_{\mathcal{T}}(x,z) \tag{1}$$

always holds. We consider the following cases.

- (i) The case $x \le z$. Since $\mathcal{I}_{\mathcal{T}}(x, z) = 1$, the inequality (1) is trivially fulfilled.
- (ii) The case z < x and $x \le y$. Since the first partial mappings of $\mathcal{F}_{\mathcal{T}}$ are decreasing, it follows that $\mathcal{F}_{\mathcal{T}}(y,z) \le \mathcal{F}_{\mathcal{T}}(x,z)$. Together with $\mathcal{F}_{\mathcal{T}}(x,y) = 1$, the inequality (1) follows.
- (iii) The case z < x, y < x, and $y \le z$. Since the second partial mappings of $\mathcal{F}_{\mathcal{T}}$ are increasing, it follows that $\mathcal{F}_{\mathcal{T}}(x,y) \le \mathcal{F}_{\mathcal{T}}(x,z)$. Together with $\mathcal{F}_{\mathcal{T}}(y,z) = 1$, this means the inequality (1) again follows.

Theorem 6. Consider a t-norm \mathcal{T} ; then its biresidual operator $\mathcal{E}_{\mathcal{T}}$ is a \mathcal{T} -equality on [0, 1] if and only if \mathcal{T} is left-continuous.

Proof. We will first give the proof from right to left. From Proposition 7 it immediately follows that $\mathcal{E}_{\mathcal{T}}(x,y)=1$ if and only if x=y. The symmetry of $\mathcal{E}_{\mathcal{T}}$ is trivially fulfilled. We will now show the \mathcal{T} -transitivity of $\mathcal{E}_{\mathcal{T}}$. Consider $(x,y,z) \in [0,1]^3$; then

$$\mathcal{T}(\mathcal{E}_{\mathcal{T}}(x,y),\mathcal{E}_{\mathcal{T}}(y,z)) = \mathcal{T}(\min(\mathcal{I}_{\mathcal{T}}(x,y),\mathcal{I}_{\mathcal{T}}(y,x)), \min(\mathcal{I}_{\mathcal{T}}(y,z),\mathcal{I}_{\mathcal{T}}(z,y)))$$

$$\leq \min(\mathcal{T}(\mathcal{I}_{\mathcal{T}}(x,y),\mathcal{I}_{\mathcal{T}}(y,z)), \mathcal{T}(\mathcal{I}_{\mathcal{T}}(z,y),\mathcal{I}_{\mathcal{T}}(y,x))).$$

With Theorem 5 it then follows that

$$\mathcal{I}(\mathcal{E}_{\mathcal{I}}(x,y),\mathcal{E}_{\mathcal{I}}(y,z)) \leq \min(\mathcal{I}_{\mathcal{I}}(x,z),\mathcal{I}_{\mathcal{I}}(z,x)) = \mathcal{E}_{\mathcal{I}}(x,z).$$

Next, we give the proof from left to right. Consider an arbitrary $(x, y, z) \in [0, 1]^3$ such that z < y < x. Then it holds that $\mathcal{E}_{\mathcal{T}}(x, y) = \mathcal{I}_{\mathcal{T}}(x, y)$, $\mathcal{E}_{\mathcal{T}}(y, z) = \mathcal{I}_{\mathcal{T}}(y, z)$, and $\mathcal{E}_{\mathcal{T}}(x, z) = \mathcal{I}_{\mathcal{T}}(x, z)$. Since $\mathcal{E}_{\mathcal{T}}$ is \mathcal{T} -transitive, it follows that

$$\mathcal{I}(\mathcal{I}_{\mathcal{I}}(x,y),\mathcal{I}_{\mathcal{I}}(y,z)) \leq \mathcal{I}_{\mathcal{I}}(x,z).$$

From this, with Lemma 1 and Theorem 5, the left-continuity of $\mathcal T$ follows. \blacksquare

In the following proposition we consider a left-continuous t-norm $\mathcal T$ with an additive generator f. This implies, however, the left-continuity and hence also the continuity of f. Consequently, $\mathcal T$ is a continuous Archimedean t-norm.

PROPOSITION 10. Consider a continuous Archimedean t-norm \mathcal{T} with additive generator f; then the $[0,1]^2 \to [0,\infty]$ mapping $d=f\circ\mathscr{E}_{\mathcal{T}}$ is a metric on [0,1]. Moreover, it holds that

$$d(x, y) = |f(x) - f(y)|.$$

Proof. It follows immediately from Theorems 4 and 6 that d is a metric on [0, 1]. Consider $(x, y) \in [0, 1]^2$; then it follows with Proposition 5 that

$$\mathscr{E}_{\mathcal{T}}(x,y) = \min(f^{-1}(\max(0,f(y)-f(x))), f^{-1}(\max(0,f(x)-f(y)))).$$

Since f is decreasing, it then follows that

$$d(x, y) = f(\mathcal{E}_{\mathcal{T}}(x, y)) = \max(f(y) - f(x), f(x) - f(y), 0)$$

= $|f(x) - f(y)|$.

EXAMPLE 2. Consider the Łukasiewicz t-norm W with additive generator f(x) = 1 - x; then the metric $d = f \circ \mathcal{E}_W$ on [0, 1] is given by d(x, y) = |x - y|.

The foregoing proposition can be generalized as follows.

PROPOSITION 11. Consider a t-norm \mathcal{T}^* with additive generator f and a left-continuous t-norm \mathcal{T} . If $\mathcal{T}^* \leq \mathcal{T}$, then the $[0,1]^2 \to [0,\infty]$ mapping $d = f \circ \mathcal{E}_{\mathcal{T}}$ is a metric on [0,1].

Proof. It follows immediately from Theorems 4 and 6.

The following "converse" proposition is quite remarkable, as it allows one to decide, considering one particular (potential) \mathcal{T} -equality, whether one t-norm is weaker than another. Note that for any additive generator f and any t-norm \mathcal{T} , since $\mathcal{E}_{\mathcal{T}}$ is always reflexive and symmetric, the mapping $d = f \circ \mathcal{E}_{\mathcal{T}}$ satisfies (P1) and (P2).

PROPOSITION 12. Consider a t-norm with an additive generator f and a t-norm \mathcal{T} . If the $[0,1]^2 \to [0,\infty]$ mapping $d=f\circ \mathscr{E}_{\mathcal{T}}$ is a pseudo-metric on [0,1], then $\mathcal{T}^* \leq \mathcal{T}$.

Proof. Suppose there exists $(a, b) \in [0, 1]^2$ such that $\mathcal{T}^*(a, b) > \mathcal{T}(a, b)$. By assumption, it holds for any $(x, y, z) \in [0, 1]^3$ that

$$f(\mathscr{E}_{\mathscr{T}}(x,z)) \leq f(\mathscr{E}_{\mathscr{T}}(x,y)) + f(\mathscr{E}_{\mathscr{T}}(y,z)).$$

Since $f^{(-1)}$ is decreasing, it then follows that

$$f^{(-1)}(f(\mathcal{E}_{\mathcal{T}}(x,z))) \geq f^{(-1)}(f(\mathcal{E}_{\mathcal{T}}(x,y))) + f(\mathcal{E}_{\mathcal{T}}(y,z))$$

or, equivalently, that

$$\mathscr{E}_{\mathcal{T}}(x,z) \ge \mathscr{T}^*(\mathscr{E}_{\mathcal{T}}(x,y),\mathscr{E}_{\mathcal{T}}(y,z)). \tag{2}$$

Now choose $x = \mathcal{T}(a, b)$, y = b, and z = 1; then $x \le y \le z$. One easily verifies that for this choice it holds that

$$\begin{split} &\mathscr{E}_{\mathscr{T}}(x,z) = \mathscr{I}_{\mathscr{T}}(z,x) = \mathscr{I}_{\mathscr{T}}(1,\mathscr{T}(a,b)) = \mathscr{T}(a,b), \\ &\mathscr{E}_{\mathscr{T}}(x,y) = \mathscr{I}_{\mathscr{T}}(y,x) = \mathscr{I}_{\mathscr{T}}(b,\mathscr{T}(b,a)) \geq a, \end{split}$$

and

$$\mathcal{E}_{\mathcal{T}}(y,z) = \mathcal{I}_{\mathcal{T}}(z,y) = \mathcal{I}_{\mathcal{T}}(1,b) = b.$$

Substituting the above results into (2), we obtain that $\mathcal{I}(a,b) \geq \mathcal{I}^*(a,b)$, a contradiction.

Note that in the foregoing proposition it is not necessary to impose left-continuity on the t-norm \mathcal{T} , since it is not required that $\mathscr{E}_{\mathcal{T}}$ is a \mathcal{T} -equality, but only that $d=f\circ\mathscr{E}_{\mathcal{T}}$ is a pseudo-metric. However, if we do impose left-continuity, then this proposition is a stronger version of the implication (ii) \Rightarrow (i) of Theorem 4, for the special case of X=[0,1], since it allows one to conclude the comparability of t-norms by considering one particular \mathcal{T} -equality. We can then state the following corollary.

COROLLARY 3. Consider a t-norm \mathcal{T}^* with an additive generator f and a left-continuous t-norm \mathcal{T} . If for the \mathcal{T} -equality $\mathcal{E}_{\mathcal{T}}$ on [0, 1] it holds that the $[0, 1]^2 \to [0, \infty]$ mapping $d = f \circ \mathcal{E}_{\mathcal{T}}$ is a metric on [0, 1], then $\mathcal{T}^* \leq \mathcal{T}$.

6. METRICS AND \mathcal{T} -EQUALITIES ON $\mathcal{F}(X)$

6.1. Two Particular
$$\mathcal{T}$$
-Equalities on $\mathcal{F}(X)$

In this subsection, we study two particular \mathcal{T} -equalities on $\mathcal{F}(X)$, the class of fuzzy sets on a universe X.

DEFINITION 10 ([4]). Consider a t-norm \mathcal{T} . The binary fuzzy relation $E^{\mathcal{T}}$ in $\mathcal{F}(X)$ is defined, for any two fuzzy sets A and B in X, as

$$E^{\mathcal{I}}(A,B) = \inf_{x \in X} \mathscr{E}_{\mathcal{I}}(A(x),B(x)).$$

DEFINITION 11 ([7, 14, 16]). Consider a t-norm \mathcal{T} . The binary fuzzy relation $E_{\mathcal{T}}$ in $\mathcal{F}(X)$ is defined, for any two fuzzy sets A and B in X, as

$$E_{\mathcal{T}}(A,B) = \mathcal{T}\left(\inf_{x \in X} \mathcal{I}_{\mathcal{T}}(A(x),B(x)), \inf_{x \in X} \mathcal{I}_{\mathcal{T}}(B(x),A(x))\right),$$

PROPOSITION 13. Consider a t-norm \mathcal{T} ; then it holds that $E_{\mathcal{T}} \subseteq E^{\mathcal{T}}$.

Proof. Consider two fuzzy sets A and B in X; then it holds that

$$E_{\mathcal{T}}(A, B) = \mathcal{T}\left(\inf_{x \in X} \mathcal{I}_{\mathcal{T}}(A(x), B(x)), \inf_{x \in X} \mathcal{I}_{\mathcal{T}}(B(x), A(x))\right)$$

$$\leq \inf_{x \in X} \mathcal{T}(\mathcal{I}_{\mathcal{T}}(A(x), B(x)), \mathcal{I}_{\mathcal{T}}(B(x), A(x)))$$

$$= \inf_{x \in X} \mathcal{E}_{\mathcal{T}}(A(x), B(x)) = E^{\mathcal{T}}(A, B).$$

Note that when $\mathcal{T}=M$, it obviously holds that $E_M=E^M$. Also, if #X=1, say $X=\{x\}$, then for any t-norm \mathcal{T} it holds that $E_{\mathcal{T}}(A,B)=E^{\mathcal{T}}(A,B)=\mathcal{E}_{\mathcal{T}}(A(x),B(x))$.

In the following theorem, we show that any \mathcal{T} -equality on [0, 1] can be extended, by means of the infimum operator, to a \mathcal{T} -equality on $\mathcal{F}(X)$.

THEOREM 7. Consider a t-norm \mathcal{T} and a binary fuzzy relation E in [0, 1]. Define the binary fuzzy relation E' in $\mathcal{F}(X)$ as follows, for any two fuzzy sets A and B in X:

$$E'(A, B) = \inf_{x \in X} E(A(x), B(x)).$$

Then the following statements are equivalent:

- (i) E is a \mathcal{T} -equality on [0, 1].
- (ii) E' is a \mathcal{T} -equality on $\mathcal{F}(X)$.

Proof. We will first prove the implication (i) \Rightarrow (ii).

(a) Consider two fuzzy sets A and B in X; then the following chain of equivalences holds:

$$E'(A, B) = 1 \Leftrightarrow \inf_{x \in X} E(A(x), B(x)) = 1$$

$$\Leftrightarrow (\forall x \in X)(E(A(x), B(x)) = 1)$$

$$\Leftrightarrow (\forall x \in X)(A(x) = B(x)) \Leftrightarrow A = B.$$

(b) The symmetry of E' is obvious.

(c) Consider three fuzzy sets A, B, and C in X; then

$$\mathcal{T}(E'(A,B),E'(B,C)) = \mathcal{T}\left(\inf_{x \in X} E(A(x),B(x)), \inf_{x \in X} E(B(x),C(x))\right)$$

$$\leq \inf_{x \in X} \mathcal{T}(E(A(x),B(x)),E(B(x),C(x))).$$

Since E is \mathcal{T} -transitive, it follows that

$$\mathcal{T}(E'(A,B),E'(B,C)) \leq \inf_{x \in X} E(A(x),C(x)) = E'(A,C).$$

Next, we prove the implication (ii) \Rightarrow (i). Consider $(a, b, c) \in [0, 1]^3$ and the corresponding constant fuzzy sets A(x) = a, B(x) = b, and C(x) = c in X. It then holds that E'(A, B) = E(a, b), E'(B, C) = E(b, c), and E'(A, C) = E(a, c).

- (a) Let E(a, b) = 1. Then also E'(A, B) = 1, which implies that A = B and also that a = b.
 - (b) The symmetry of E follows immediately from the symmetry of E'.
 - (c) The \mathcal{T} -transitivity of E' implies that

$$\mathcal{T}(E'(A,B),E'(B,C)) \leq E'(A,C)$$

and hence also that

$$\mathcal{T}(E(a,b),E(b,c)) \leq E(a,c).$$

COROLLARY 4. Consider a t-norm \mathcal{T} . The binary fuzzy relation $E^{\mathcal{T}}$ is a \mathcal{T} -equality on $\mathcal{F}(X)$ if and only if \mathcal{T} is left-continuous.

Proof. It follows immediately from Theorems 6 and 7.

THEOREM 8. Consider a t-norm \mathcal{T} . The binary fuzzy relation $E_{\mathcal{T}}$ is a \mathcal{T} -equality on $\mathcal{F}(X)$ if and only if \mathcal{T} is left-continuous.

Proof. The proof from right to left was given by Gottwald [7]. Indeed, he has shown that for a left-continuous t-norm \mathcal{T} , $E_{\mathcal{T}}$ is a \mathcal{T} -equivalence on $\mathcal{F}(X)$. He further demonstrated that in this case $E_{\mathcal{T}}(A,B)=1$ if and only if A=B. This means that $E_{\mathcal{T}}$ is a \mathcal{T} -equality on $\mathcal{F}(X)$.

For the proof from left to right, consider $(a, b, c) \in [0, 1]^3$ such that c < b < a. Consider x_0 in X and construct the fuzzy sets A, B, and C in X as follows:

$$A(x) = \begin{cases} a, & \text{if } x = x_0, \\ 0, & \text{elsewhere.} \end{cases}$$

$$B(x) = \begin{cases} b, & \text{if } x = x_0, \\ 0, & \text{elsewhere.} \end{cases}$$

$$C(x) = \begin{cases} c, & \text{if } x = x_0, \\ 0, & \text{elsewhere.} \end{cases}$$

One easily verifies that in this case $E_{\mathcal{T}}(A,B) = \mathcal{I}_{\mathcal{T}}(a,b)$, $E_{\mathcal{T}}(B,C) = \mathcal{I}_{\mathcal{T}}(b,c)$, and $E_{\mathcal{T}}(A,C) = \mathcal{I}_{\mathcal{T}}(a,c)$. Since $E_{\mathcal{T}}$ is \mathcal{T} -transitive, it then follows that

$$\mathcal{T}(E_{\mathcal{T}}(A,B),E_{\mathcal{T}}(B,C)) \leq E_{\mathcal{T}}(A,C)$$

and hence also that

$$\mathcal{F}(\mathcal{I}_{\mathcal{T}}(a,b),\mathcal{I}_{\mathcal{T}}(b,c)) \leq \mathcal{I}_{\mathcal{T}}(a,c).$$

With Lemma 1 and Theorem 5, it then follows that \mathcal{T} is left-continuous.

The fuzzy relation $E_{\mathcal{T}}$ is inspired by the following classical equivalence, for any two sets A and B in X:

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$
.

The inclusion of a fuzzy set A in X in a fuzzy set B in X is then measured by $\inf_{x \in X} \mathcal{F}(A(x), B(x))$, with \mathcal{F} a fuzzy implication operator, such as the residual implicator $\mathcal{F}_{\mathcal{F}}$ (see e.g. [3, 14]).

6.2. Metrics on
$$\mathcal{F}(X)$$
 Based on $E_{\mathcal{T}}$

PROPOSITION 14. Consider a t-norm \mathcal{T}^* with an additive generator f and a left-continuous t-norm \mathcal{T} such that $\mathcal{T}^* \leq \mathcal{T}$; then the $\mathcal{F}(X)^2 \to [0, \infty]$ mapping $d = f \circ E_{\mathcal{T}}$ is a metric on $\mathcal{F}(X)$.

Proof. It follows immediately from Theorems 4 and 8. ■

Note that for any additive generator f and any t-norm \mathcal{T} , since $E_{\mathcal{T}}$ is always reflexive and symmetric, the mapping $d = f \circ E_{\mathcal{T}}$ satisfies (P1) and (P2).

THEOREM 9. Consider a t-norm \mathcal{T}^* with additive generator f and a t-norm \mathcal{T} . If the $\mathcal{F}(X)^2 \to [0,\infty]$ mapping $d=f\circ E_T$ is a pseudo-metric on $\mathcal{F}(X)$, then $\mathcal{T}^* \leq \mathcal{T}$.

Proof. Suppose there exists $(a,b) \in [0,1]^2$ such that $\mathcal{T}^*(a,b) > \mathcal{T}(a,b)$. By assumption, it holds for any $(A,B,C) \in \mathcal{T}(X)^3$ that

$$f(E_{\mathcal{T}}(A,C)) \leq f(E_{\mathcal{T}}(A,B)) + f(E_{\mathcal{T}}(B,C)).$$

As in the proof of Proposition 12, it then follows that

$$E_{\mathcal{T}}(A,C) \ge \mathcal{T}^*(E_{\mathcal{T}}(A,B), E_{\mathcal{T}}(B,C)). \tag{3}$$

Now consider two different elements x_0 and y_0 of X and construct the fuzzy sets A, B, and C in X as

$$A(x) = \begin{cases} 1, & \text{if } x = x_0, \\ b, & \text{if } x = y_0, \\ 0, & \text{elsewhere.} \end{cases}$$

$$B(x) = \begin{cases} a, & \text{if } x = x_0, \\ b, & \text{if } x = y_0, \\ 0, & \text{elsewhere.} \end{cases}$$

$$C(x) = \begin{cases} a, & \text{if } x = x_0, \\ 1, & \text{if } x = y_0, \\ 0, & \text{elsewhere.} \end{cases}$$

One easily verifies that for this choice it holds that $E_{\mathcal{T}}(A, B) = a$, $E_{\mathcal{T}}(B, C) = b$, and $E_{\mathcal{T}}(A, C) = \mathcal{T}(a, b)$. Substituting these results in (3), we obtain that $\mathcal{T}(a, b) \geq \mathcal{T}^*(a, b)$, a contradiction.

COROLLARY 5. Consider a t-norm \mathcal{T}^* with an additive generator f and a left-continuous t-norm \mathcal{T} . If for the \mathcal{T} -equality $E_{\mathcal{T}}$ on $\mathcal{F}(X)$ it holds that the $\mathcal{F}(X)^2 \to [0,\infty]$ mapping $d=f \circ E_{\mathcal{T}}$ is a metric on $\mathcal{F}(X)$, then $\mathcal{T}^* \leq \mathcal{T}$.

As a corollary of Proposition 14 and Theorem 9, we rediscover the main theorem of Gottwald in [7].

COROLLARY 6 ([7]). Consider a left-continuous t-norm \mathcal{T} . The $\mathcal{F}(X)^2 \to [0, \infty]$ mapping $d = 1 - E_{\mathcal{T}}$ is a metric on $\mathcal{F}(X)$ if and only if $W \leq \mathcal{T}$.

We cite Gottwald here [7]: "The intuition behind that relation comes from the interpretation of $E_{\mathcal{T}}$ as a graded measure of the equality of fuzzy sets or of their indistinguishability. The negation of such an indistinguishability relation $E_{\mathcal{T}}$ hence should be a kind of graded distinguishability and thus (perhaps) even a kind of 'distance'."

An important remark should be made here: In Corollary 6, the operation 1– should not be interpreted as the standard negation, but as an additive generator of the Łukasiewicz t-norm. Only this insight can lead to the more general results presented in this paper.

6.3. Metrics on
$$\mathcal{F}(X)$$
 Based on $E^{\mathcal{T}}$

Propositions similar to those in the previous subsection can be written for the \mathcal{T} -equality $E^{\mathcal{T}}$. The first proposition is an extended version of Proposition 10.

PROPOSITION 15. Consider a continuous Archimedean t-norm \mathcal{T} with an additive generator f; then the $\mathcal{F}(X)^2 \to [0, \infty]$ mapping $d = f \circ E^{\mathcal{T}}$ is a metric on $\mathcal{F}(X)$. Moreover, it holds, for any two fuzzy sets A and B in X, that

$$d(A, B) = \sup_{x \in X} |f(A(x)) - f(B(x))|.$$

Proof. It follows immediately from Corollary 4 and Theorem 4 that d is a metric on $\mathcal{F}(X)$. Consider $(A, B) \in \mathcal{F}(X)^2$; then

$$d(A,B) = f(E^{\mathcal{I}}(A,B)) = f\left(\inf_{x \in X} \mathcal{E}_{\mathcal{I}}(A(x),B(x))\right).$$

Since f is continuous and decreasing, it then follows that

$$d(A,B) = \sup_{x \in X} f(\mathcal{E}_{\mathcal{T}}(A(x),B(x))).$$

As in the proof of Proposition 10, it then follows that

$$d(A, B) = \sup_{x \in X} |f(A(x)) - f(B(x))|.$$

EXAMPLE 3. Consider the Łukasiewicz t-norm W with an additive generator f(x) = 1 - x; then the metric $d = f \circ E_W$ on $\mathcal{F}(X)$ is given by, for any two fuzzy sets A and B in X,

$$d(A, B) = \sup_{x \in X} |A(x) - B(x)|.$$

PROPOSITION 16. Consider a t-norm \mathcal{T}^* with an additive generator f and a left-continuous t-norm \mathcal{T} such that $\mathcal{T}^* \leq \mathcal{T}$; then the $\mathcal{F}(X)^2 \to [0, \infty]$ mapping $d = f \circ E^{\mathcal{T}}$ is a metric on $\mathcal{F}(X)$.

Proof. It follows immediately from Corollary 4 and Theorem 4.

The following theorem (also its proof) is an extended version of Proposition 12.

THEOREM 10. Consider a t-norm \mathcal{T}^* with an additive generator f and a t-norm \mathcal{T} . If the $\mathcal{F}(X)^2 \to [0,\infty]$ mapping $d=f \circ E^{\mathcal{T}}$ is a pseudo-metric on $\mathcal{F}(X)$, then $\mathcal{T}^* \leq \mathcal{T}$.

Proof. Suppose there exists $(a,b) \in [0,1]^2$ such that $\mathcal{T}^*(a,b) > \mathcal{T}(a,b)$. As in the proof of Proposition 12, it follows that for any $(A,B,C) \in \mathcal{T}(X)^3$ it holds that

$$E^{\mathcal{I}}(A,C) \ge \mathcal{I}^*(E^{\mathcal{I}}(A,B), E^{\mathcal{I}}(B,C)). \tag{4}$$

Now consider x_0 in X and construct the fuzzy sets A, B, and C in X as follows:

$$A(x) = \begin{cases} \mathcal{T}(a, b), & \text{if } x = x_0, \\ 0, & \text{elsewhere.} \end{cases}$$

$$B(x) = \begin{cases} b, & \text{if } x = x_0, \\ 0, & \text{elsewhere.} \end{cases}$$

$$C(x) = \begin{cases} 1, & \text{if } x = x_0, \\ 0, & \text{elsewhere.} \end{cases}$$

One easily verifies that for this choice it holds that $E^{\mathcal{I}}(A,C) = \mathcal{I}(a,b)$, $E^{\mathcal{I}}(A,B) \geq a$, and $E^{\mathcal{I}}(B,C) = b$. Substituting these findings in (4) we obtain $\mathcal{I}(a,b) \geq \mathcal{I}^*(a,b)$, a contradiction.

COROLLARY 7. Consider a t-norm \mathcal{T}^* with an additive generator f and a left-continuous t-norm \mathcal{T} . If for the \mathcal{T} -equality $E^{\mathcal{T}}$ on $\mathcal{F}(X)$ the $\mathcal{F}(X)^2 \to [0,\infty]$ mapping $d=f\circ E^{\mathcal{T}}$ is a metric on $\mathcal{F}(X)$, then $\mathcal{T}^*\leq \mathcal{T}$.

REFERENCES

- J. Bezdek and J. Harris, Fuzzy partitions and relations: an axiomatic basis for clustering, Fuzzy Sets and Systems 1 (1978), 111–127.
- 2. B. De Baets, "Solving Fuzzy Relational Equations: An Order-Theoretic Approach," Ph.D. dissertation, Universiteit Gent, 1995 [in Dutch].
- B. De Baets and E. Kerre, Fuzzy inclusions and the inverse problems, in "Proceedings of EUFIT '94, Second European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany" (H.-J. Zimmermann, Ed.), Vol. 2, pp. 940–945, ELITE, 1994.
- 4. B. De Baets and R. Mesiar, T-partitions, Fuzzy Sets and Systems 97 (1998), 211–223.
- B. De Baets and R. Mesiar, Pseudo-metrics and T-equivalences, Fuzzy Math. 5 (1997), 471–481.
- B. De Baets and R. Mesiar, Residual implicators of continuous *t*-norms, *in* "Proceedings of EUFIT '96, Fourth European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany" (H.-J. Zimmermann, Ed.), Vol. 1, pp. 27–31, ELITE, 1996.
- S. Gottwald, Approximate solutions of fuzzy relational equations and a characterization of t-norms that define metrics for fuzzy sets, Fuzzy Sets and Systems 75 (1995), 189–201.
- 8. U. Höhle, Fuzzy equalities and indistinguishability, *in* "Proceedings of EUFIT '93, First European Congress on Fuzzy and Intelligent Technologies, Aachen, Germany" (H.-J. Zimmermann, Ed.), Vol. 1, pp. 358–363, ELITE, 1993.
- 9. F. Klawonn and R. Kruse, From fuzzy sets to indistinguishability and back, *in* "Proceedings of ISFL '95, First ICSC International Symposium on Fuzzy Logic, Zürich, Switzerland (N. Steele, Ed.), pp. A57–A59, ICSC Academic Press, 1995.
- 10. E.-P. Klement, R. Mesiar, and E. Pap, Triangular norms, "Trends in Logic," Vol. 8, Kluwer Academic Publishers, Dordrecht, 2000.
- 11. C. Ling, Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189–212.
- B. Schweizer and A. Sklar, "Probabilistic Metric Spaces," Elsevier Science, New York, 1983.
- E. Trillas and L. Valverde, An inquiry into indistinguishability operators, in "Aspects of Vagueness" (H. Skala, S. Termini, and E. Trillas, Eds.), pp. 231–256, Reidel, Dordrecht, 1984.
- E. Tsiporkova-Hristoskova, B. De Baets, and E. Kerre, A fuzzy inclusion based approach to upper inverse images under fuzzy multivalued mappings, *Fuzzy Sets and Systems* 85 (1997), 93–108.
- 15. M. Wagenknecht, On some relations between fuzzy similarities and metrics under Archimedean *t*-norms, *J. Fuzzy Math.* **3** (1995), 563–572.
- X. Wang, B. De Baets, and E. Kerre, A comparative study of similarity measures, Fuzzy Sets and Systems 73 (1995), 259–268.
- 17. L. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci. 3 (1971), 177–200.