The relationship between metrics and \mathcal{F}-equalities is investigated; the latter are a special case of \mathcal{F}-equivales, a natural generalization of the classical concept of an equivalence relation. It is shown that in the construction of metrics from \mathcal{F}-equalities triangular norms with an additive generator play a key role. Conversely, in the construction of \mathcal{F}-equalities from metrics this role is played by triangular norms with a continuous additive generator or, equivalently, by continuous Archimedean triangular norms. These results are then applied to the biresidual operator \mathcal{E} of a triangular norm \mathcal{F}. It is shown that \mathcal{E} is a \mathcal{F}-equality on $[0, 1]$ if and only if \mathcal{F} is left-continuous. Furthermore, it is shown that to any left-continuous triangular norm \mathcal{F} there correspond two particular \mathcal{F}-equalities on $\mathcal{F}(X)$, the class of fuzzy sets in a given universe X; one of these \mathcal{F}-equalities is obtained from the biresidual operator \mathcal{E} by means of a natural extension procedure. These \mathcal{F}-equalities then give rise to interesting metrics on $\mathcal{F}(X)$.

Key Words: additive generator; Archimedean property; biresidual operator; metric; \mathcal{F}-equality; triangular norm.

1. INTRODUCTION

The concept of a similarity relation was introduced by Zadeh [17] as a generalization of the concept of an equivalence relation. Also, simi-
Larity relations have been generalized by replacing the min-transitivity with the more general \(\mathcal{T} \)-transitivity, with \(\mathcal{T} \) an arbitrary triangular norm (t-norm) [12].

Definition 1 ([4]). Consider a t-norm \(\mathcal{T} \). A binary fuzzy relation \(E \) in a universe \(X \) is called a \(\mathcal{T} \)-equivalence on \(X \) if it is reflexive, symmetric, and \(\mathcal{T} \)-transitive, i.e., if for any \((x, y, z)\) in \(X^3 \),

\[
\begin{align*}
(E1) & \quad E(x, x) = 1; \\
(E2) & \quad E(x, y) = E(y, x); \quad \text{and} \\
(E3) & \quad \mathcal{T}(E(x, y), E(y, z)) \leq E(x, z).
\end{align*}
\]

\(\mathcal{T} \)-equivalences are also called indistinguishability operators [13], fuzzy equalities [8], and equality relations [9]. Clearly, \(M \)-equivalences (with \(M \) the minimum operator) are nothing but similarity relations. \(W \)-equivalences (with \(W \) the Łukasiewicz t-norm defined by \(W(x, y) = \max(x + y - 1, 0) \)) are called likeness relations. A one-to-one correspondence between \(\mathcal{T} \)-equivalences and \(\mathcal{T} \)-partitions, a generalization of the concept of a partition, was recently exposed in [4].

In this paper, we deal with \(\mathcal{T} \)-equalities, a special type of \(\mathcal{T} \)-equivalence.

Definition 2. Consider a t-norm \(\mathcal{T} \). A \(\mathcal{T} \)-equivalence \(E \) in a universe \(X \) is called a \(\mathcal{T} \)-equality on \(X \) if for any \((x, y)\) in \(X^2 \),

\[
(E1') \quad E(x, y) = 1 \iff x = y.
\]

Recall that a t-norm \(\mathcal{T}^* \) is called weaker than a t-norm \(\mathcal{T} \), denoted \(\mathcal{T}^* \leq \mathcal{T} \), if \(\forall (x, y) \in [0, 1]^2 \) \(\mathcal{T}^*(x, y) \leq \mathcal{T}(x, y) \). The following proposition then is immediate.

Proposition 1. Consider a binary fuzzy relation \(E \) in a universe \(X \) and a t-norm \(\mathcal{T} \). If \(E \) is a \(\mathcal{T} \)-equivalence (resp., \(\mathcal{T} \)-equality), then it is also a \(\mathcal{T}^* \)-equivalence (resp., \(\mathcal{T}^* \)-equality) for any t-norm \(\mathcal{T}^* \) that is weaker than \(\mathcal{T} \).

Bezdek and Harris [1] have discussed the relationship between likeness relations and pseudo-metrics. More general investigations into the relationship between pseudo-metrics and \(\mathcal{T} \)-equivalences were done by Wagenknecht [15]. A complete study was carried out by De Baets and Mesiar [5].

Definition 3. An \(X^2 \to [0, \infty] \) mapping \(d \) is called a pseudo-metric on \(X \) if for any \((x, y, z)\) in \(X^3 \),

\[
\begin{align*}
(P1) & \quad d(x, x) = 0; \\
(P2) & \quad d(x, y) = d(y, x); \quad \text{and} \\
(P3) & \quad d(x, z) \leq d(x, y) + d(y, z).
\end{align*}
\]
In this paper, we will show that \mathcal{T}-equalities are related to metrics as \mathcal{T}-equivalences are to pseudo-metrics.

Definition 4. A pseudo-metric d on X is called a metric if for any (x, y) in X^2,

\[(P1') \quad d(x, y) = 0 \iff x = y.\]

2. ADDITIVE GENERATORS AND ARCHIMEDEAN t-NORMS

In this section, we recall some important results concerning additive generators of t-norms (see e.g. [10–12]) and the relationship to the Archimedean property.

Definition 5. A strictly decreasing $[0, 1] \to [0, \infty]$ mapping f with $\text{Rng}(f)$ relatively closed under addition, i.e.,

\[(\forall (u, v) \in \text{Rng}(f)^2) (u + v \in \text{Rng}(f) \lor u + v > f(0)),\]

such that $f(1) = 0$, is called an additive generator.

Definition 6. Consider a $[0, 1] \to [0, \infty]$ mapping f; then the pseudo-inverse of f is the $[0, \infty] \to [0, 1]$ mapping f^{-1} defined by

\[f^{-1}(x) = \inf \{ t \mid t \in [0, 1] \land f(t) \leq x \}.\]

Note that this pseudo-inverse is always decreasing. The pseudo-inverse f^{-1} of a continuous additive generator f is given by

\[f^{-1}(x) = f^{-1}(\min(f(0), x)).\]

Theorem 1. Consider an additive generator f; then the $[0, 1]^2 \to [0, 1]$ mapping \mathcal{T} defined by

\[\mathcal{T}(x, y) = g(f(x) + f(y)),\]

where g is an arbitrary $[0, \infty] \to [0, 1]$ mapping such that

\[g(x) = \begin{cases} f^{-1}(x), & \text{if } x \in \text{Rng}(f), \\ 0, & \text{if } x > f(0), \end{cases}\]

is a t-norm.

A suitable candidate for the mapping g in the foregoing theorem is the pseudo-inverse f^{-1} of f.

The continuity of an additive generator f is equivalent with its left-continuity in the point 1 and with the continuity of the generated t-norm \mathcal{T}. Note that if a continuous t-norm \mathcal{T} has an additive generator f, then this additive generator is uniquely determined up to a nonzero positive multiplicative constant.
Example 1. (i) The mapping \(f \) defined by \(f(x) = -\log x \) is an additive generator of the algebraic product, i.e., of the t-norm \(P \) defined by \(P(x, y) = xy \).

(ii) The mapping \(f \) defined by \(f(x) = 1 - x \) is an additive generator of the Łukasiewicz t-norm \(W \).

(iii) The mapping \(f \) defined by
\[
 f(x) = \begin{cases}
 2 - x, & \text{if } x \in [0, 1[, \\
 0, & \text{if } x = 1,
\end{cases}
\]
is an additive generator of the weakest t-norm \(Z \) defined by
\[
 Z(x, y) = \begin{cases}
 \min(x, y), & \text{if } \max(x, y) = 1, \\
 0, & \text{otherwise}.
\end{cases}
\]

Not all t-norms have an additive generator. An example of such a t-norm is the minimum operator \(M \). The fact that a t-norm has an additive generator is closely related to the Archimedean property.

Definition 7. A t-norm \(T \) is called Archimedean if
\[
(\forall (x, y) \in]0, 1[) (\exists n \in \mathbb{N}) (x^n < y),
\]
where \(x^n \) stands for \(T(x, \ldots, x) \) (\(n \) times).

Proposition 2. A continuous t-norm \(T \) is Archimedean if and only if
\[
(\forall x \in]0, 1[) (T(x, x) < x).
\]

Each t-norm with an additive generator is Archimedean. The converse is not true in general, but holds for instance for continuous t-norms.

Theorem 2. A \([0, 1]^2 \to [0, 1]\) mapping \(T \) is a continuous Archimedean t-norm if and only if there exists a continuous additive generator \(f \) such that
\[
 T(x, y) = f^{-1}(f(x) + f(y)).
\]

3. PSEUDO-METRICS AND \(T \)-EQUIVALENCES

In this section, we briefly recall our previous results concerning the construction of pseudo-metrics from \(T \)-equivalences, and vice versa.

If the cardinality of the universe \(X \) is smaller than 3, then for any t-norm \(T \), any \(T \)-equivalence \(E \) on \(X \), and any additive generator \(f \) it holds that the mapping \(d = f \circ E \) is a pseudo-metric on \(X \); in fact, any \([0, 1] \to [0, \infty]\) mapping \(f \) such that \(f(1) = 0 \) will do here. Therefore, only universes with higher cardinality are of interest to us.

Theorem 3 ([5]). Consider a universe \(X \) with \(\#X > 2 \), a t-norm \(T^* \) with additive generator \(f \), and a t-norm \(T \). Then the following statements
are equivalent:

(i) \mathcal{T}^* is weaker than \mathcal{T}; i.e., $\mathcal{T}^* \leq \mathcal{T}$.

(ii) For any \mathcal{T}-equality E on X, the $X^2 \to [0, \infty]$ mapping $d = f \circ E$ is a pseudo-metric on X.

In the converse problem, namely the construction of \mathcal{T}-equivalences from pseudo-metrics, continuous additive generators play an important role. In a counterexample, we have shown that this continuity requirement cannot be dropped [5].

Proposition 3 ([5]). Consider a pseudo-metric d on a universe X and a continuous Archimedean t-norm \mathcal{T}^* with additive generator f; then the binary fuzzy relation $E = f^{(-1)} \circ d$ in X is a \mathcal{T}^*-equivalence on X.

4. METRICS AND \mathcal{T}-EQUALITIES

The results from the previous section can be made more specific for metrics and \mathcal{T}-equalities. We will show how to construct metrics from \mathcal{T}-equalities and vice versa.

Theorem 4. Consider a universe X with $\#X > 2$, a t-norm \mathcal{T}^* with additive generator f, and a t-norm \mathcal{T}. Then the following statements are equivalent:

(i) \mathcal{T}^* is weaker than \mathcal{T}; i.e., $\mathcal{T}^* \leq \mathcal{T}$.

(ii) For any \mathcal{T}-equality E on X, the $X^2 \to [0, \infty]$ mapping $d = f \circ E$ is a metric on X.

Proof. We will first prove the implication (i) \Rightarrow (ii). Suppose that $\mathcal{T}^* \leq \mathcal{T}$. Since any \mathcal{T}-equality is a \mathcal{T}-equivalence, it follows from Theorem 3 that d is a pseudo-metric on X. Now consider x and y in X such that $d(x, y) = 0$; then we have to show that $x = y$. From $d(x, y) = 0$ it follows that $f(E(x, y)) = 0$. Since f is strictly decreasing and $f(1) = 0$, it follows that $E(x, y) = 1$, whence $x = y$.

Next, we prove the implication (ii) \Rightarrow (i). Consider $(a, b) \in [0, 1]^2$; then we have to show that $\mathcal{T}^*(a, b) \leq \mathcal{T}(a, b)$. If $a = 1$ or $b = 1$, then always $\mathcal{T}^*(a, b) = \mathcal{T}(a, b)$. We can therefore assume that $(a, b) \in [0, 1]^2$. We construct the following binary fuzzy relation E in X: First, for all u in X we put $E(u, u) = 1$. Next, we consider three different elements x, y, and z of X and define

$$
E(x, y) = a,
$$
$$
E(y, z) = b,
$$
$$
E(x, z) = \mathcal{T}(a, b).
$$
Furthermore, for any u and v in $X\setminus\{x, y, z\}$, $u \neq v$, we put $E(u, v) = 0$. One easily verifies that E is a \mathcal{T}-equality on X. It then holds that the mapping $d = f \circ E$ is a metric on X. This means in particular that

$$f(E(x, z)) \leq f(E(x, y)) + f(E(y, z)).$$

Since $f^{(-1)}$ is decreasing, it follows that

$$f^{(-1)}(f(E(x, z))) \geq f^{(-1)}(f(E(x, y)) + f(E(y, z))).$$

Since $f^{(-1)}(f(E(x, z))) = E(x, z)$, it then follows that $\mathcal{T}(a, b) \geq \mathcal{T}^*(a, b)$.

Corollary 1. (i) Consider an M-equality E on X; then for any additive generator f it holds that the mapping $d = f \circ E$ is a metric on X.

(ii) Consider an arbitrary t-norm \mathcal{T} and a \mathcal{T}-equality E on X; then the mapping $d = f \circ E$, with f an additive generator of the weakest t-norm Z, is a metric on X.

(iii) Consider a t-norm \mathcal{T} such that $W \leq \mathcal{T}$ and a \mathcal{T}-equality E on X; then the mapping $d = 1 - E$ is a metric on X.

Proposition 4. Consider a metric d on a universe X and a continuous Archimedean t-norm \mathcal{T}^* with additive generator f; then the binary fuzzy relation $E = f^{(-1)} \circ d$ in X is a \mathcal{T}^*-equality on X.

Proof. According to Proposition 3, E is a \mathcal{T}^*-equivalence on X. Now consider x and y in X such that $E(x, y) = 1$; then we have to show that $x = y$. From $E(x, y) = 1$ it follows that $f^{(-1)}(d(x, y)) = 1$; i.e., $f^{-1}(\min(f(0), d(x, y))) = 1$. Since f is strictly decreasing and $f(1) = 0$, it follows that $\min(f(0), d(x, y)) = 0$. Since $f(0) > f(1) = 0$, we can conclude that $d(x, y) = 0$, whence $x = y$.

Corollary 2. Consider a metric d on X, then the binary fuzzy relation $E = \max(1 - d, 0)$ is a W-equality on X.

5. THE BIRESIDUAL OPERATOR OF A t-NORM

5.1. Definition and Properties

In the following section we study two particular \mathcal{T}-equalities on $\mathcal{F}(X)$. One of them is based on the biresidual operator \mathcal{E}_f of a t-norm \mathcal{T} that is used for measuring the degree of equality of real numbers taken from the unit interval. In fact, we show that the biresidual operator \mathcal{E}_f of a t-norm \mathcal{T} is a \mathcal{T}-equality on $[0, 1]$ if and only if \mathcal{T} is left-continuous. Note that by a left-continuous t-norm we mean a t-norm with left-continuous partial mappings.
Consider a t-norm \mathcal{T}. The residual implicator $\mathcal{I}_\mathcal{T}$ of \mathcal{T} is the binary operator on $[0, 1]$ defined by

$$\mathcal{I}_\mathcal{T}(x, y) = \sup\{z \mid z \in [0, 1] \wedge \mathcal{T}(x, z) \leq y\}.$$

Note that the residual implicator $\mathcal{I}_\mathcal{T}$ is hybrid monotonous; i.e., it has decreasing first and increasing second partial mappings.

Proposition 5 ([6]). Consider a continuous Archimedean t-norm \mathcal{T} with an additive generator f; then its residual implicator $\mathcal{I}_\mathcal{T}$ is given by

$$\mathcal{I}_\mathcal{T}(x, y) = f^{-1}(\max(0, f(y) - f(x))).$$

Proposition 6 ([6]). Consider a t-norm \mathcal{T}; then the following properties hold, for any (x, y) in $[0, 1]^2$:

(i) $x \leq y \Rightarrow \mathcal{I}_\mathcal{T}(x, y) = 1$;
(ii) $\mathcal{I}_\mathcal{T}(1, y) = y$ (the neutrality principle); and
(iii) $\mathcal{I}_\mathcal{T}(x, \mathcal{T}(x, y)) \geq y$.

Proposition 7 ([6]). Consider a left-continuous t-norm \mathcal{T}; then the following equivalence holds, for any (x, y) in $[0, 1]^2$:

$$x \leq y \Leftrightarrow \mathcal{I}_\mathcal{T}(x, y) = 1.$$

Theorem 5. Consider a t-norm \mathcal{T}; then the following statements are equivalent:

(i) \mathcal{T} is left-continuous;
(ii) $(\forall (x, y) \in [0, 1]^2) (\mathcal{T}(x, \mathcal{I}_\mathcal{T}(x, y)) \leq y)$; and
(iii) $(\forall (x, y, z) \in [0, 1]^3) (\mathcal{T}(\mathcal{I}_\mathcal{T}(x, y), \mathcal{I}_\mathcal{T}(y, z)) \leq \mathcal{I}_\mathcal{T}(x, z)).$

Proof. The implication (i) \Rightarrow (ii) is well-known (see e.g. [2]). We will prove the converse implication. For \mathcal{T} to be left-continuous, it suffices to show that for any x in $[0, 1]$ and for any nonempty family $(y_i)_{i \in I}$ in $[0, 1]$ the following equality holds:

$$\mathcal{T}\left(x, \sup_{i \in I} y_i\right) = \sup_{i \in I} \mathcal{T}(x, y_i).$$

For any $i \in I$ it holds that $\mathcal{T}(x, y_i) \leq \sup_{i \in I} \mathcal{T}(x, y_i)$, whence

$$y_i \leq \mathcal{I}_\mathcal{T}\left(x, \sup_{i \in I} \mathcal{T}(x, y_i)\right)$$

and also

$$\sup_{i \in I} y_i \leq \mathcal{I}_\mathcal{T}\left(x, \sup_{i \in I} \mathcal{T}(x, y_i)\right).$$
The monotonicity of \mathcal{T} and (ii) then imply that

$$\mathcal{T}\left(x, \sup_{i \in I} y_i\right) \leq \mathcal{T}\left(x, \mathcal{I}_x(x, \sup_{i \in I} \mathcal{T}(x, y_i))\right) \leq \sup_{i \in I} \mathcal{T}(x, y_i).$$

The converse inequality,

$$\mathcal{T}\left(x, \sup_{i \in I} y_i\right) \geq \sup_{i \in I} \mathcal{T}(x, y_i),$$

follows immediately from the monotonicity of \mathcal{T}.

The implication (i) \Rightarrow (iii) is also well-known (see e.g. [2, 7]). The implication (iii) \Rightarrow (ii) follows easily by applying (iii) to the triplet $(1, x, y)$ and using the neutrality principle. This completes the proof.

Definition 9 ([4, 9]). Consider a t-norm \mathcal{T}. The biresidual operator $\mathcal{E}_{\mathcal{T}}$ of \mathcal{T} is the binary operator on $[0, 1]$ defined by

$$\mathcal{E}_{\mathcal{T}}(x, y) = \min(\mathcal{I}_x(x, y), \mathcal{I}_y(y, x)).$$

In the foregoing definition, the minimum operator could, without effect, be replaced with the t-norm \mathcal{T} (due to Proposition 6(i)). Note that the biresidual operator $\mathcal{E}_{\mathcal{T}}$ of a t-norm \mathcal{T} can also be written as

$$\mathcal{E}_{\mathcal{T}}(x, y) = \mathcal{I}_x(x, \min(x, y)).$$

Proposition 8. Consider two t-norms \mathcal{T}^* and \mathcal{T}; then the following implication holds:

$$\mathcal{T}^* \leq \mathcal{T} \Rightarrow \mathcal{E}_{\mathcal{T}^*} \geq \mathcal{E}_{\mathcal{T}}.$$

Proof. If $\mathcal{T}^* \leq \mathcal{T}$, then it easily follows that $\mathcal{I}_y \geq \mathcal{I}_x$, whence also that $\mathcal{E}_{\mathcal{T}^*} \geq \mathcal{E}_{\mathcal{T}}$.

Proposition 9. Consider two t-norms \mathcal{T}^* and \mathcal{T}. If \mathcal{T}^* is left-continuous, then the following implication holds:

$$\mathcal{E}_{\mathcal{T}^*} \geq \mathcal{E}_{\mathcal{T}} \Rightarrow \mathcal{T}^* \leq \mathcal{T}.$$

Proof. Let $\mathcal{E}_{\mathcal{T}^*} \geq \mathcal{E}_{\mathcal{T}}$ and suppose there exists $(x, y) \in [0, 1]^2$ such that $\mathcal{T}^*(x, y) > \mathcal{T}(x, y)$. Due to the left-continuity of \mathcal{T}^*, it then follows that

$$\mathcal{I}_{\mathcal{T}^*}(x, \mathcal{T}(x, y)) = \sup\{z \mid z \in [0, 1] \land \mathcal{T}^*(x, z) \leq \mathcal{T}(x, y)\} < y.$$

On the other hand, we have that

$$\mathcal{I}_{\mathcal{T}}(x, \mathcal{T}(x, y)) = \sup\{z \mid z \in [0, 1] \land \mathcal{T}(x, z) \leq \mathcal{T}(x, y)\} \geq y.$$

It then easily follows, since $\mathcal{T}(x, y) \leq x$, that

$$\mathcal{E}_{\mathcal{T}}(x, \mathcal{T}(x, y)) = \mathcal{I}_{\mathcal{T}}(x, \mathcal{T}(x, y)) < y \leq \mathcal{I}_{\mathcal{T}^*}(x, \mathcal{T}(x, y)) = \mathcal{E}_{\mathcal{T}^*}(x, \mathcal{T}(x, y)),$$

a contradiction.

5.2. The Biresidual Operator as a \mathcal{F}-Equality

Lemma 1. Consider a t-norm \mathcal{F}; then the following properties are equivalent:

(i) $(\forall (x, y, z) \in [0, 1]^3) \ (\mathcal{F}(\mathcal{I}_x(x, y), \mathcal{I}_x(y, z)) \leq \mathcal{I}_x(x, z))$.

(ii) $(\forall (x, y, z) \in [0, 1]^3) \ (z < y < x \Rightarrow \mathcal{F}(\mathcal{I}_x(x, y), \mathcal{I}_x(y, z)) \leq \mathcal{I}_x(x, z))$.

Proof. The implication (i) \Rightarrow (ii) is trivial. For the implication (ii) \Rightarrow (i) to hold, it suffices to show that for any $(x, y, z) \in [0, 1]^3$ such that $z < y < x$ the inequality

$$\mathcal{F}(\mathcal{I}_x(x, y), \mathcal{I}_x(y, z)) \leq \mathcal{I}_x(x, z) \quad (1)$$

always holds. We consider the following cases.

(i) The case $x \leq z$. Since $\mathcal{I}_x(x, z) = 1$, the inequality (1) is trivially fulfilled.

(ii) The case $z < x$ and $x \leq y$. Since the first partial mappings of \mathcal{I}_x are decreasing, it follows that $\mathcal{I}_x(y, z) \leq \mathcal{I}_x(x, z)$. Together with $\mathcal{I}_x(x, y) = 1$, the inequality (1) follows.

(iii) The case $z < x$, $y < x$, and $y \leq z$. Since the second partial mappings of \mathcal{I}_y are increasing, it follows that $\mathcal{I}_y(x, y) \leq \mathcal{I}_y(x, z)$. Together with $\mathcal{I}_y(y, z) = 1$, this means the inequality (1) again follows.

Theorem 6. Consider a t-norm \mathcal{F}; then its biresidual \mathcal{E}_x is a \mathcal{F}-equality on $[0, 1]$ if and only if \mathcal{F} is left-continuous.

Proof. We will first give the proof from right to left. From Proposition 7 it immediately follows that $\mathcal{E}_x(x, y) = 1$ if and only if $x = y$. The symmetry of \mathcal{E}_x is trivially fulfilled. We will now show the \mathcal{F}-transitivity of \mathcal{E}_x. Consider $(x, y, z) \in [0, 1]^3$; then

$$\mathcal{F}(\mathcal{E}_x(x, y), \mathcal{E}_x(y, z)) = \mathcal{F}(\min(\mathcal{I}_x(x, y), \mathcal{I}_x(y, x)), \min(\mathcal{I}_x(y, z), \mathcal{I}_x(z, y))) \leq \min(\mathcal{F}(\mathcal{I}_x(x, y), \mathcal{I}_x(y, z)), \mathcal{F}(\mathcal{I}_x(z, y), \mathcal{I}_x(y, x))).$$

With Theorem 5 it then follows that

$$\mathcal{F}(\mathcal{E}_x(x, y), \mathcal{E}_x(y, z)) \leq \min(\mathcal{I}_x(x, z), \mathcal{I}_x(z, x)) = \mathcal{E}_x(x, z).$$

Next, we give the proof from left to right. Consider an arbitrary $(x, y, z) \in [0, 1]^3$ such that $z < y < x$. Then it holds that $\mathcal{E}_x(x, y) = \mathcal{I}_x(x, y)$, $\mathcal{E}_x(y, z) = \mathcal{I}_x(y, z)$, and $\mathcal{E}_x(x, z) = \mathcal{I}_x(x, z)$. Since \mathcal{E}_x is \mathcal{F}-transitive, it follows that

$$\mathcal{F}(\mathcal{I}_x(x, y), \mathcal{I}_x(y, z)) \leq \mathcal{I}_x(x, z).$$

From this, with Lemma 1 and Theorem 5, the left-continuity of \mathcal{F} follows.
In the following proposition we consider a left-continuous t-norm \mathcal{T} with an additive generator f. This implies, however, the left-continuity and hence also the continuity of f. Consequently, \mathcal{T} is a continuous Archimedean t-norm.

Proposition 10. Consider a continuous Archimedean t-norm \mathcal{T} with additive generator f; then the $[0, 1]^2 \to [0, \infty]$ mapping $d = f \circ \mathcal{E}_\mathcal{T}$ is a metric on $[0, 1]$. Moreover, it holds that

$$d(x, y) = |f(x) - f(y)|.$$

Proof. It follows immediately from Theorems 4 and 6 that d is a metric on $[0, 1]$. Consider $(x, y) \in [0, 1]^2$; then it follows with Proposition 5 that

$$\mathcal{E}_\mathcal{T}(x, y) = \min(f^{-1}(\max(0, f(y) - f(x))), f^{-1}(\max(0, f(x) - f(y)))) .$$

Since f is decreasing, it then follows that

$$d(x, y) = f(\mathcal{E}_\mathcal{T}(x, y)) = \max(f(y) - f(x), f(x) - f(y), 0)$$

$$= |f(x) - f(y)| .$$

\[\square\]

Example 2. Consider the Łukasiewicz t-norm W with additive generator $f(x) = 1 - x$; then the metric $d = f \circ \mathcal{E}_W$ on $[0, 1]$ is given by $d(x, y) = |x - y|$.

The foregoing proposition can be generalized as follows.

Proposition 11. Consider a t-norm \mathcal{T}^* with additive generator f and a left-continuous t-norm \mathcal{T}. If $\mathcal{T}^* \leq \mathcal{T}$, then the $[0, 1]^2 \to [0, \infty]$ mapping $d = f \circ \mathcal{E}_\mathcal{T}$ is a metric on $[0, 1]$.

Proof. It follows immediately from Theorems 4 and 6.

The following “converse” proposition is quite remarkable, as it allows one to decide, considering one particular (potential) \mathcal{T}-equality, whether one t-norm is weaker than another. Note that for any additive generator f and any t-norm \mathcal{T}, since $\mathcal{E}_\mathcal{T}$ is always reflexive and symmetric, the mapping $d = f \circ \mathcal{E}_\mathcal{T}$ satisfies (P1) and (P2).

Proposition 12. Consider a t-norm with an additive generator f and a t-norm \mathcal{T}. If the $[0, 1]^2 \to [0, \infty]$ mapping $d = f \circ \mathcal{E}_\mathcal{T}$ is a pseudo-metric on $[0, 1]$, then $\mathcal{T}^* \leq \mathcal{T}$.
Proof. Suppose there exists \((a, b) \in [0, 1]^2\) such that \(\mathcal{T}^*(a, b) > \mathcal{T}(a, b)\). By assumption, it holds for any \((x, y, z) \in [0, 1]^3\) that
\[
 f\left(\mathcal{E}_\mathcal{T}(x, z)\right) \leq f\left(\mathcal{E}_\mathcal{T}(x, y)\right) + f\left(\mathcal{E}_\mathcal{T}(y, z)\right).
\]
Since \(f^{-1}\) is decreasing, it then follows that
\[
 f^{-1}\left(f\left(\mathcal{E}_\mathcal{T}(x, z)\right)\right) \geq f^{-1}\left(f\left(\mathcal{E}_\mathcal{T}(x, y)\right) + f\left(\mathcal{E}_\mathcal{T}(y, z)\right)\right)
\]
or, equivalently, that
\[
 \mathcal{E}_\mathcal{T}(x, z) \geq \mathcal{T}^*\left(\mathcal{E}_\mathcal{T}(x, y), \mathcal{E}_\mathcal{T}(y, z)\right). \tag{2}
\]
Now choose \(x = \mathcal{T}(a, b), y = b,\) and \(z = 1;\) then \(x \leq y \leq z\). One easily verifies that for this choice it holds that
\[
 \mathcal{E}_\mathcal{T}(x, z) = \mathcal{E}_\mathcal{T}(z, x) = \mathcal{E}_\mathcal{T}(1, \mathcal{T}(a, b)) = \mathcal{T}(a, b),
\]
\[
 \mathcal{E}_\mathcal{T}(x, y) = \mathcal{E}_\mathcal{T}(y, x) = \mathcal{E}_\mathcal{T}(b, \mathcal{T}(b, a)) \geq a,
\]
and
\[
 \mathcal{E}_\mathcal{T}(y, z) = \mathcal{E}_\mathcal{T}(z, y) = \mathcal{E}_\mathcal{T}(1, b) = b.
\]
Substituting the above results into (2), we obtain that \(\mathcal{T}(a, b) \geq \mathcal{T}^*(a, b),\) a contradiction. \(\blacksquare\)

Note that in the foregoing proposition it is not necessary to impose left-continuity on the t-norm \(\mathcal{T},\) since it is not required that \(\mathcal{E}_\mathcal{T}\) is a \(\mathcal{F}\)-equality, but only that \(d = f \circ \mathcal{E}_\mathcal{T}\) is a pseudo-metric. However, if we do impose left-continuity, then this proposition is a stronger version of the implication (ii) \(\Rightarrow\) (i) of Theorem 4, for the special case of \(X = [0, 1],\) since it allows one to conclude the comparability of t-norms by considering one particular \(\mathcal{F}\)-equality. We can then state the following corollary.

Corollary 3. Consider a t-norm \(\mathcal{T}^*\) with an additive generator \(f\) and a left-continuous t-norm \(\mathcal{T}.\) If for the \(\mathcal{F}\)-equality \(\mathcal{E}_\mathcal{T}\) on \([0, 1]\) it holds that the \([0, 1]^2 \rightarrow [0, \infty]\) mapping \(d = f \circ \mathcal{E}_\mathcal{T}\) is a metric on \([0, 1],\) then \(\mathcal{T}^* \leq \mathcal{T}\).

6. METRICS AND \(\mathcal{F}\)-EQUALITIES ON \(\mathcal{F}(X)\)

6.1. Two Particular \(\mathcal{F}\)-Equalities on \(\mathcal{F}(X)\)

In this subsection, we study two particular \(\mathcal{F}\)-equalities on \(\mathcal{F}(X),\) the class of fuzzy sets on a universe \(X.\)

Definition 10 ([4]). Consider a t-norm \(\mathcal{T}.\) The binary fuzzy relation \(E_\mathcal{F}\) in \(\mathcal{F}(X)\) is defined, for any two fuzzy sets \(A\) and \(B\) in \(X,\) as
\[
 E_\mathcal{F}(A, B) = \inf_{x \in X} \mathcal{E}_\mathcal{T}(A(x), B(x)).
\]
DEFINITION 11 ([7, 14, 16]). Consider a t-norm \(\mathcal{T} \). The binary fuzzy relation \(E_\mathcal{T} \) in \(\mathcal{T}(X) \) is defined, for any two fuzzy sets \(A \) and \(B \) in \(X \), as

\[
E_\mathcal{T}(A, B) = \mathcal{T} \left(\inf_{x \in X} \mathcal{J}_\mathcal{T}(A(x), B(x)), \inf_{x \in X} \mathcal{J}_\mathcal{T}(B(x), A(x)) \right),
\]

PROPOSITION 13. Consider a t-norm \(\mathcal{T} \); then it holds that \(E_\mathcal{T} \subseteq E^\mathcal{T} \).

Proof. Consider two fuzzy sets \(A \) and \(B \) in \(X \); then it holds that

\[
E_\mathcal{T}(A, B) = \mathcal{T} \left(\inf_{x \in X} \mathcal{J}_\mathcal{T}(A(x), B(x)), \inf_{x \in X} \mathcal{J}_\mathcal{T}(B(x), A(x)) \right)
\leq \inf_{x \in X} \mathcal{T} \left(\mathcal{J}_\mathcal{T}(A(x), B(x)), \mathcal{J}_\mathcal{T}(B(x), A(x)) \right)
= \inf_{x \in X} \mathcal{E}_\mathcal{T}(A(x), B(x)) = E^\mathcal{T}(A, B).
\]

Note that when \(\mathcal{T} = M \), it obviously holds that \(E_M = E^M \). Also, if \(\#X = 1 \), say \(X = \{x\} \), then for any t-norm \(\mathcal{T} \) it holds that \(E_\mathcal{T}(A, B) = E^\mathcal{T}(A, B) = \mathcal{E}_\mathcal{T}(A(x), B(x)) \).

In the following theorem, we show that any \(\mathcal{T} \)-equality on \([0, 1]\) can be extended, by means of the infimum operator, to a \(\mathcal{T} \)-equality on \(\mathcal{T}(X) \).

THEOREM 7. Consider a t-norm \(\mathcal{T} \) and a binary fuzzy relation \(E \) in \([0, 1]\). Define the binary fuzzy relation \(\mathcal{E}' \) in \(\mathcal{T}(X) \) as follows, for any two fuzzy sets \(A \) and \(B \) in \(X \):

\[
\mathcal{E}'(A, B) = \inf_{x \in X} E(A(x), B(x)).
\]

Then the following statements are equivalent:

(i) \(E \) is a \(\mathcal{T} \)-equality on \([0, 1]\),
(ii) \(\mathcal{E}' \) is a \(\mathcal{T} \)-equality on \(\mathcal{T}(X) \).

Proof. We will first prove the implication (i) \(\Rightarrow \) (ii).

(a) Consider two fuzzy sets \(A \) and \(B \) in \(X \); then the following chain of equivalences holds:

\[
\mathcal{E}'(A, B) = 1 \iff \inf_{x \in X} E(A(x), B(x)) = 1
\iff (\forall x \in X)(E(A(x), B(x)) = 1)
\iff (\forall x \in X)(A(x) = B(x)) \iff A = B.
\]

(b) The symmetry of \(\mathcal{E}' \) is obvious.
(c) Consider three fuzzy sets A, B, and C in X; then

$$\mathcal{T}(E'(A, B), E'(B, C)) = \mathcal{T}\left(\inf_{x \in X} E(A(x), B(x)), \inf_{x \in X} E(B(x), C(x))\right)$$

$$\leq \inf_{x \in X} \mathcal{T}(E(A(x), B(x)), E(B(x), C(x))).$$

Since E is \mathcal{T}-transitive, it follows that

$$\mathcal{T}(E'(A, B), E'(B, C)) \leq \inf_{x \in X} E(A(x), C(x)) = E'(A, C).$$

Next, we prove the implication (ii) \Rightarrow (i). Consider $(a, b, c) \in [0, 1]^3$ and the corresponding constant fuzzy sets $A(x) = a$, $B(x) = b$, and $C(x) = c$ in X. It then holds that $E'(A, B) = E(a, b)$, $E'(B, C) = E(b, c)$, and $E'(A, C) = E(a, c)$.

(a) Let $E(a, b) = 1$. Then also $E'(A, B) = 1$, which implies that $A = B$ and also that $a = b$.

(b) The symmetry of E follows immediately from the symmetry of E'.

(c) The \mathcal{T}-transitivity of E' implies that

$$\mathcal{T}(E'(A, B), E'(B, C)) \leq E'(A, C)$$

and hence also that

$$\mathcal{T}(E(a, b), E(b, c)) \leq E(a, c).$$

\textbf{Corollary 4.} Consider a t-norm \mathcal{T}. The binary fuzzy relation $E^\mathcal{T}$ is a \mathcal{T}-equality on $\mathcal{F}(X)$ if and only if \mathcal{T} is left-continuous.

\textbf{Proof.} It follows immediately from Theorems 6 and 7.

\textbf{Theorem 8.} Consider a t-norm \mathcal{T}. The binary fuzzy relation $E_\mathcal{T}$ is a \mathcal{T}-equality on $\mathcal{F}(X)$ if and only if \mathcal{T} is left-continuous.

\textbf{Proof.} The proof from right to left was given by Gottwald [7]. Indeed, he has shown that for a left-continuous t-norm \mathcal{T}, $E_\mathcal{T}$ is a \mathcal{T}-equivalence on $\mathcal{F}(X)$. He further demonstrated that in this case $E_\mathcal{T}(A, B) = 1$ if and only if $A = B$. This means that $E_\mathcal{T}$ is a \mathcal{T}-equality on $\mathcal{F}(X)$.

For the proof from left to right, consider $(a, b, c) \in [0, 1]^3$ such that $c < b < a$. Consider x_0 in X and construct the fuzzy sets A, B, and C in X as follows:

$$A(x) = \begin{cases}
 a, & \text{if } x = x_0, \\
 0, & \text{elsewhere.}
\end{cases}$$

$$B(x) = \begin{cases}
 b, & \text{if } x = x_0, \\
 0, & \text{elsewhere.}
\end{cases}$$

$$C(x) = \begin{cases}
 c, & \text{if } x = x_0, \\
 0, & \text{elsewhere.}
\end{cases}$$
One easily verifies that in this case \(\mathcal{E}_{\overline{T}}(A, B) = \mathcal{R}_{\overline{T}}(a, b) \), \(\mathcal{E}_{\overline{T}}(B, C) = \mathcal{R}_{\overline{T}}(b, c) \), and \(\mathcal{E}_{\overline{T}}(A, C) = \mathcal{R}_{\overline{T}}(a, c) \). Since \(\mathcal{E}_{\overline{T}} \) is \(\overline{T} \)-transitive, it then follows that

\[
\mathcal{I}_{\overline{T}}(\mathcal{R}_{\overline{T}}(A, B), \mathcal{R}_{\overline{T}}(B, C)) \leq \mathcal{R}_{\overline{T}}(A, C)
\]

and hence also that

\[
\mathcal{I}_{\overline{T}}(\mathcal{R}_{\overline{T}}(a, b), \mathcal{R}_{\overline{T}}(b, c)) \leq \mathcal{R}_{\overline{T}}(a, c).
\]

With Lemma 1 and Theorem 5, it then follows that \(\mathcal{I} \) is left-continuous.

The fuzzy relation \(\mathcal{E}_{\overline{T}} \) is inspired by the following classical equivalence, for any two sets \(A \) and \(B \) in \(X \):

\[
A = B \iff A \subseteq B \land B \subseteq A.
\]

The inclusion of a fuzzy set \(A \) in \(X \) in a fuzzy set \(B \) in \(X \) is then measured by \(\inf_{x \in X} \mathcal{I}(\mathcal{R}_{\overline{T}}(A(x), B(x))) \), with \(\mathcal{I} \) a fuzzy implication operator, such as the residual implicator \(\mathcal{I} \) (see e.g. [3, 14]).

6.2. Metrics on \(\mathcal{F}(X) \) Based on \(\mathcal{E}_{\overline{T}} \)

Proposition 14. Consider a \(\overline{T} \)-norm \(\overline{\mathcal{T}}^* \) with an additive generator \(f \) and a left-continuous \(\overline{T} \)-norm \(\mathcal{T} \) such that

\[\overline{\mathcal{T}}^* \leq \mathcal{T} \]; then the \(\mathcal{F}(X)^2 \rightarrow [0, \infty] \) mapping \(d = f \circ \mathcal{E}_{\overline{T}} \) is a metric on \(\mathcal{F}(X) \).

Proof. It follows immediately from Theorems 4 and 8.

Note that for any additive generator \(f \) and any \(\overline{T} \)-norm \(\mathcal{T} \), since \(\mathcal{E}_{\overline{T}} \) is always reflexive and symmetric, the mapping \(d = f \circ \mathcal{E}_{\overline{T}} \) satisfies (P1) and (P2).

Theorem 9. Consider a \(\overline{T} \)-norm \(\overline{\mathcal{T}}^* \) with additive generator \(f \) and a \(\overline{T} \)-norm \(\mathcal{T} \). If the \(\mathcal{F}(X)^2 \rightarrow [0, \infty] \) mapping \(d = f \circ \mathcal{E}_{\overline{T}} \) is a pseudo-metric on \(\mathcal{F}(X) \), then \(\overline{\mathcal{T}}^* \leq \mathcal{T} \).

Proof. Suppose there exists \((a, b) \in [0, 1]^2 \) such that \(\overline{\mathcal{T}}^*(a, b) > \mathcal{T}(a, b) \). By assumption, it holds for any \((A, B, C) \in \mathcal{F}(X)^3 \) that

\[
f(\mathcal{E}_{\overline{T}}(A, C)) \leq f(\mathcal{E}_{\overline{T}}(A, B)) + f(\mathcal{E}_{\overline{T}}(B, C)).
\]

As in the proof of Proposition 12, it then follows that

\[
\mathcal{E}_{\overline{T}}(A, C) \geq \overline{\mathcal{T}}^*(\mathcal{E}_{\overline{T}}(A, B), \mathcal{E}_{\overline{T}}(B, C)).
\]
Now consider two different elements \(x_0 \) and \(y_0 \) of \(X \) and construct the fuzzy sets \(A, B, \) and \(C \) in \(X \) as

\[
A(x) = \begin{cases}
1, & \text{if } x = x_0, \\
0, & \text{elsewhere}.
\end{cases}
\]

\[
B(x) = \begin{cases}
0, & \text{if } x = x_0, \\
1, & \text{if } x = y_0, \\
0, & \text{elsewhere}.
\end{cases}
\]

\[
C(x) = \begin{cases}
0, & \text{if } x = y_0.
\end{cases}
\]

One easily verifies that for this choice it holds that \(E_T(A, B) = a \), \(E_T(B, C) = b \), and \(E_T(A, C) = f(a, b) \). Substituting these results in (3), we obtain that \(\mathcal{F}(a, b) \leq \mathcal{F}^*(a, b) \), a contradiction.

Corollary 5. Consider a \(T \)-norm \(\mathcal{T}^* \) with an additive generator \(f \) and a left-continuous \(T \)-norm \(\mathcal{T} \). If for the \(T \)-equality \(E_T \) on \(\mathcal{F}(X) \) it holds that the \(\mathcal{F}(X)^2 \to [0, \infty] \) mapping \(d = f \circ E_T \) is a metric on \(\mathcal{F}(X) \), then \(\mathcal{T}^* \leq \mathcal{T} \).

As a corollary of Proposition 14 and Theorem 9, we rediscover the main theorem of Gottwald in [7].

Corollary 6 ([7]). Consider a left-continuous \(T \)-norm \(\mathcal{T} \). The \(\mathcal{F}(X)^2 \to [0, \infty] \) mapping \(d = 1 - E_T \) is a metric on \(\mathcal{F}(X) \) if and only if \(W \leq \mathcal{T} \).

We cite Gottwald here [7]: “The intuition behind that relation comes from the interpretation of \(E_T \) as a graded measure of the equality of fuzzy sets or of their indistinguishability. The negation of such an indistinguishability relation \(E_T \) hence should be a kind of graded distinguishability and thus (perhaps) even a kind of ‘distance’.”

An important remark should be made here: In Corollary 6, the operation \(1– \) should not be interpreted as the standard negation, but as an additive generator of the Łukasiewicz \(T \)-norm. Only this insight can lead to the more general results presented in this paper.

6.3. Metrics on \(\mathcal{F}(X) \) Based on \(E_T^2 \)

Propositions similar to those in the previous subsection can be written for the \(T \)-equality \(E_T^2 \). The first proposition is an extended version of Proposition 10.

Proposition 15. Consider a continuous Archimedean \(T \)-norm \(\mathcal{T} \) with an additive generator \(f \); then the \(\mathcal{F}(X)^2 \to [0, \infty] \) mapping \(d = f \circ E_T^2 \) is a metric on \(\mathcal{F}(X) \). Moreover, it holds, for any two fuzzy sets \(A \) and \(B \) in \(X \), that

\[
d(A, B) = \sup_{x \in X} |f(A(x)) - f(B(x))|.
\]
Proposition 12. Since f is continuous and decreasing, it then follows that

$$d(A, B) = f(E^\tau (A, B)) = \left(\inf_{x \in X} E^\tau_x (A(x), B(x)) \right).$$

Proof. It follows immediately from Corollary 4 and Theorem 4 that d is a metric on $\mathcal{F}(X)$. Consider $(A, B) \in \mathcal{F}(X)^2$; then

$$d(A, B) = \sup_{x \in X} f(\varepsilon^\tau_x (A(x), B(x))).$$

As in the proof of Proposition 10, it then follows that

$$d(A, B) = \sup_{x \in X} |f(A(x)) - f(B(x))|.$$

Example 3. Consider the Łukasiewicz t-norm W with an additive generator $f(x) = 1 - x$; then the metric $d = f \circ E_W$ on $\mathcal{F}(X)$ is given by, for any two fuzzy sets A and B in X,

$$d(A, B) = \sup_{x \in X} |A(x) - B(x)|.$$

Proposition 16. Consider a t-norm \mathcal{T}^* with an additive generator f and a left-continuous t-norm \mathcal{T} such that $\mathcal{T}^* \leq \mathcal{T}$; then the $\mathcal{T}(X)^2 \rightarrow [0, \infty]$ mapping $d = f \circ E^\mathcal{T}$ is a metric on $\mathcal{T}(X)$.

Proof. It follows immediately from Corollary 4 and Theorem 4.

The following theorem (also its proof) is an extended version of Proposition 12.

Theorem 10. Consider a t-norm \mathcal{T}^* with an additive generator f and a t-norm \mathcal{T}. If the $\mathcal{T}(X)^2 \rightarrow [0, \infty]$ mapping $d = f \circ E^\mathcal{T}$ is a pseudo-metric on $\mathcal{T}(X)$, then $\mathcal{T}^* \leq \mathcal{T}$.

Proof. Suppose there exists $(a, b) \in [0, 1]^2$ such that $\mathcal{T}^*(a, b) > \mathcal{T}(a, b)$. As in the proof of Proposition 12, it follows that for any $(A, B, C) \in \mathcal{T}(X)^3$ it holds that

$$E^\mathcal{T}(A, C) \geq \mathcal{T}^*(E^\mathcal{T}(A, B), E^\mathcal{T}(B, C)).$$

Now consider x_0 in X and construct the fuzzy sets $A, B,$ and C in X as follows:

$$A(x) = \begin{cases} \mathcal{T}(a, b), & \text{if } x = x_0, \\ 0, & \text{elsewhere}. \end{cases}$$

$$B(x) = \begin{cases} b, & \text{if } x = x_0, \\ 0, & \text{elsewhere}. \end{cases}$$

$$C(x) = \begin{cases} 1, & \text{if } x = x_0, \\ 0, & \text{elsewhere}. \end{cases}$$
One easily verifies that for this choice it holds that $E^\mathcal{F}(A, C) = \mathcal{F}(a, b)$, $E^\mathcal{F}(A, B) \geq a$, and $E^\mathcal{F}(B, C) = b$. Substituting these findings in (4) we obtain $\mathcal{F}(a, b) \geq \mathcal{F}^*(a, b)$, a contradiction.

Corollary 7. Consider a t-norm \mathcal{F}^* with an additive generator f and a left-continuous t-norm \mathcal{F}. If for the \mathcal{F}-equality $E^\mathcal{F}$ on $\mathcal{F}(X)$ the $\mathcal{F}(X)^2 \to [0, \infty]$ mapping $d = f \circ E^\mathcal{F}$ is a metric on $\mathcal{F}(X)$, then $\mathcal{F}^* \leq \mathcal{F}$.

REFERENCES