# Metrics and $\mathscr{T}$-Equalities 

Bernard De Baets<br>Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Coupure links 653, B-9000 Ghent, Belgium<br>E-mail: bernard.debaets@rug.ac.be<br>and<br>Radko Mesiar<br>Department of Mathematics, Slovak Technical University, Radlinského 11, 81368 Bratislava, Slovakia<br>Submitted by Antonio di Nola<br>Received May 25, 1999

The relationship between metrics and $\mathscr{T}$-equalities is investigated; the latter are a special case of $\mathscr{T}$-equivalences, a natural generalization of the classical concept of an equivalence relation. It is shown that in the construction of metrics from $\mathscr{I}$-equalities triangular norms with an additive generator play a key role. Conversely, in the construction of $\mathscr{T}$-equalities from metrics this role is played by triangular norms with a continuous additive generator or, equivalently, by continuous Archimedean triangular norms. These results are then applied to the biresidual operator $\mathscr{E}_{\mathscr{G}}$ of a triangular norm $\mathscr{T}$. It is shown that $\mathscr{E}_{\mathscr{G}}$ is a $\mathscr{T}$-equality on $[0,1]$ if and only if $\mathscr{T}$ is left-continuous. Furthermore, it is shown that to any left-continuous triangular norm $\mathscr{T}$ there correspond two particular $\mathscr{T}$-equalities on $\mathscr{F}(X)$, the class of fuzzy sets in a given universe $X$; one of these $\mathscr{T}$-equalities is obtained from the biresidual operator $\mathscr{E}_{\mathscr{I}}$ by means of a natural extension procedure. These $\mathscr{T}$ equalities then give rise to interesting metrics on $\mathscr{F}(X)$. © 2002 Elsevier Science (USA)

Key Words: additive generator; Archimedean property; biresidual operator; metric; $\mathscr{J}$-equality; triangular norm.

## 1. INTRODUCTION

The concept of a similarity relation was introduced by Zadeh [17] as a generalization of the concept of an equivalence relation. Also, simi-
larity relations have been generalized by replacing the min-transitivity with the more general $\mathscr{T}$-transitivity, with $\mathscr{T}$ an arbitrary triangular norm (t-norm) [12].

Definition 1 ([4]). Consider a t-norm $\mathscr{T}$. A binary fuzzy relation $E$ in a universe $X$ is called a $\mathscr{T}$-equivalence on $X$ if it is reflexive, symmetric, and $\mathscr{G}$-transitive, i.e., if for any $(x, y, z)$ in $X^{3}$,
(E1) $E(x, x)=1$;
(E2) $\quad E(x, y)=E(y, x)$; and
(E3) $\mathscr{T}(E(x, y), E(y, z)) \leq E(x, z)$.
$\mathscr{T}$-equivalences are also called indistinguishability operators [13], fuzzy equalities [8], and equality relations [9]. Clearly, $M$-equivalences (with $M$ the minimum operator) are nothing but similarity relations. $W$-equivalences (with $W$ the Łukasiewicz t -norm defined by $W(x, y)=\max (x+y-1,0)$ ) are called likeness relations. A one-to-one correspondence between $\mathscr{T}$-equivalences and $\mathscr{T}$-partitions, a generalization of the concept of a partition, was recently exposed in [4].

In this paper, we deal with $\mathscr{T}$-equalities, a special type of $\mathscr{T}$-equivalence.
Definition 2. Consider a t-norm $\mathscr{T}$. A $\mathscr{T}$-equivalence $E$ in a universe $X$ is called a $\mathscr{T}$-equality on $X$ if for any $(x, y)$ in $X^{2}$,
(E1') $\quad E(x, y)=1 \Leftrightarrow x=y$.
Recall that a t-norm $\mathscr{T}^{*}$ is called weaker than a t-norm $\mathscr{T}$, denoted $\mathscr{T}^{*} \leq$ $\mathscr{T}$, if $\left(\forall(x, y) \in[0,1]^{2}\right)\left(\mathscr{T}^{*}(x, y) \leq \mathscr{T}(x, y)\right)$. The following proposition then is immediate.

Proposition 1. Consider a binary fuzzy relation $E$ in a universe $X$ and a t -norm $\mathscr{T}$. If $E$ is a $\mathscr{T}$-equivalence (resp., $\mathscr{T}$-equality), then it is also a $\mathscr{T}^{*}$-equivalence (resp., $\mathscr{T}^{*}$-equality) for any t -norm $\mathscr{T}^{*}$ that is weaker than $\mathscr{T}$.

Bezdek and Harris [1] have discussed the relationship between likeness relations and pseudo-metrics. More general investigations into the relationship between pseudo-metrics and $\mathscr{T}$-equivalences were done by Wagenknecht [15]. A complete study was carried out by De Baets and Mesiar [5] (see Section 3).

Definition 3. An $X^{2} \rightarrow[0, \infty]$ mapping $d$ is called a pseudo-metric on $X$ if for any $(x, y, z)$ in $X^{3}$,
(P1) $d(x, x)=0$;
(P2) $d(x, y)=d(y, x)$; and
(P3) $d(x, z) \leq d(x, y)+d(y, z)$.

In this paper, we will show that $\mathscr{T}$-equalities are related to metrics as $\mathscr{T}$-equivalences are to pseudo-metrics.

Definition 4. A pseudo-metric $d$ on $X$ is called a metric if for any $(x, y)$ in $X^{2}$,
$\left(\mathrm{P} 1^{\prime}\right) d(x, y)=0 \Leftrightarrow x=y$.

## 2. ADDITIVE GENERATORS AND ARCHIMEDEAN t-NORMS

In this section, we recall some important results concerning additive generators of t -norms (see e.g. [10-12]) and the relationship to the Archimedean property.

Definition 5. A strictly decreasing $[0,1] \rightarrow[0, \infty]$ mapping $f$ with $\operatorname{Rng}(f)$ relatively closed under addition, i.e.,

$$
\left(\forall(u, v) \in \operatorname{Rng}(f)^{2}\right)(u+v \in \operatorname{Rng}(f) \vee u+v>f(0)),
$$

such that $f(1)=0$, is called an additive generator.
Definition 6. Consider a $[0,1] \rightarrow[0, \infty]$ mapping $f$; then the pseudoinverse of $f$ is the $[0, \infty] \rightarrow[0,1]$ mapping $f^{(-1)}$ defined by

$$
f^{(-1)}(x)=\inf \{t \mid t \in[0,1] \wedge f(t) \leq x\} .
$$

Note that this pseudo-inverse is always decreasing. The pseudo-inverse $f^{(-1)}$ of a continuous additive generator $f$ is given by

$$
f^{(-1)}(x)=f^{-1}(\min (f(0), x))
$$

Theorem 1. Consider an additive generator $f$; then the $[0,1]^{2} \rightarrow[0,1]$ mapping $\mathscr{T}$ defined by

$$
\mathscr{T}(x, y)=g(f(x)+f(y)),
$$

where $g$ is an arbitrary $[0, \infty] \rightarrow[0,1]$ mapping such that

$$
g(x)= \begin{cases}f^{-1}(x), & \text { if } x \in \operatorname{Rng}(f), \\ 0, & \text { if } x>f(0),\end{cases}
$$

is a t-norm.
A suitable candidate for the mapping $g$ in the foregoing theorem is the pseudo-inverse $f^{(-1)}$ of $f$.

The continuity of an additive generator $f$ is equivalent with its leftcontinuity in the point 1 and with the continuity of the generated $t$-norm $\mathcal{T}$. Note that if a continuous t -norm $\mathscr{T}$ has an additive generator $f$, then this additive generator is uniquely determined up to a nonzero positive multiplicative constant.

Example 1. (i) The mapping $f$ defined by $f(x)=-\log x$ is an additive generator of the algebraic product, i.e., of the t-norm $P$ defined by $P(x, y)=x y$.
(ii) The mapping $f$ defined by $f(x)=1-x$ is an additive generator of the Łukasiewicz t-norm $W$.
(iii) The mapping $f$ defined by

$$
f(x)= \begin{cases}2-x, & \text { if } x \in[0,1[ \\ 0, & \text { if } x=1,\end{cases}
$$

is an additive generator of the weakest t -norm $Z$ defined by

$$
Z(x, y)= \begin{cases}\min (x, y), & \text { if } \max (x, y)=1 \\ 0, & \text { otherwise }\end{cases}
$$

Not all t-norms have an additive generator. An example of such a t-norm is the minimum operator $M$. The fact that a t-norm has an additive generator is closely related to the Archimedean property.

Definition 7. A t -norm $\mathscr{T}$ is called Archimedean if

$$
(\forall(x, y) \in] 0,1\left[^{2}\right)(\exists n \in \mathbb{N})\left(x^{(n)}<y\right),
$$

where $x^{(n)}$ stands for $\mathscr{T}(x, \ldots, x)$ ( $n$ times).
Proposition 2. A continuous t-norm $\mathcal{T}$ is Archimedean if and only if $(\forall x \in] 0,1[)(\mathscr{T}(x, x)<x)$.

Each t-norm with an additive generator is Archimedean. The converse is not true in general, but holds for instance for continuous t -norms.

THEOREM 2. $A[0,1]^{2} \rightarrow[0,1]$ mapping $\mathscr{T}$ is a continuous Archimedean t -norm if and only if there exists a continuous additive generator $f$ such that

$$
\mathscr{T}(x, y)=f^{(-1)}(f(x)+f(y)) .
$$

## 3. PSEUDO-METRICS AND $\mathscr{T}$-EQUIVALENCES

In this section, we briefly recall our previous results concerning the construction of pseudo-metrics from $\mathscr{T}$-equivalences, and vice versa.

If the cardinality of the universe $X$ is smaller than 3, then for any t-norm $\mathscr{T}$, any $\mathscr{T}$-equivalence $E$ on $X$, and any additive generator $f$ it holds that the mapping $d=f \circ E$ is a pseudo-metric on $X$; in fact, any $[0,1] \rightarrow[0, \infty]$ mapping $f$ such that $f(1)=0$ will do here. Therefore, only universes with higher cardinality are of interest to us.

Theorem 3 ([5]). Consider a universe $X$ with $\# X>2$, a t-norm It $^{*}$ with additive generator $f$, and a t -norm $\mathcal{T}$. Then the following statements
are equivalent:
(i) $\mathscr{T}^{*}$ is weaker than $\mathscr{T}$; i.e., $\mathscr{T}^{*} \leq \mathscr{T}$.
(ii) For any $\mathscr{T}$-equivalence $E$ on $X$, the $X^{2} \rightarrow[0, \infty]$ mapping $d=$ $f \circ E$ is a pseudo-metric on $X$.

In the converse problem, namely the construction of $\mathscr{T}$-equivalences from pseudo-metrics, continuous additive generators play an important role. In a counterexample, we have shown that this continuity requirement cannot be dropped [5].

Proposition 3 ([5]). Consider a pseudo-metric $d$ on a universe $X$ and a continuous Archimedean t -norm $\mathscr{T}^{*}$ with additive generator $f$; then the binary fuzzy relation $E=f^{(-1)} \circ d$ in $X$ is a $\mathscr{T}^{*}$-equivalence on $X$.

## 4. METRICS AND $\mathscr{T}$-EQUALITIES

The results from the previous section can be made more specific for metrics and $\mathscr{T}$-equalities. We will show how to construct metrics from $\mathscr{T}$-equalities and vice versa.

Theorem 4. Consider a universe $X$ with $\# X>2, a \mathrm{t}$-norm $\mathscr{G}^{*}$ with additive generator $f$, and a t -norm $\mathcal{T}$. Then the following statements are equivalent:
(i) $\mathscr{T}^{*}$ is weaker than $\mathscr{T}$; i.e., $\mathscr{T}^{*} \leq \mathscr{T}$.
(ii) For any $\mathscr{T}$-equality $E$ on $X$, the $X^{2} \rightarrow[0, \infty]$ mapping $d=f \circ E$ is a metric on $X$.
Proof. We will first prove the implication (i) $\Rightarrow$ (ii). Suppose that $\mathscr{T}^{*} \leq \mathscr{T}$. Since any $\mathscr{T}$-equality is a $\mathscr{T}$-equivalence, it follows from Theorem 3 that $d$ is a pseudo-metric on $X$. Now consider $x$ and $y$ in $X$ such that $d(x, y)=0$; then we have to show that $x=y$. From $d(x, y)=0$ it follows that $f(E(x, y))=0$. Since $f$ is strictly decreasing and $f(1)=0$, it follows that $E(x, y)=1$, whence $x=y$.

Next, we prove the implication (ii) $\Rightarrow$ (i). Consider $(a, b) \in[0,1]^{2}$; then we have to show that $\mathscr{T}^{*}(a, b) \leq \mathscr{T}(a, b)$. If $a=1$ or $b=1$, then always $\mathscr{T}^{*}(a, b)=\mathscr{T}(a, b)$. We can therefore assume that $(a, b) \in\left[0,1\left[{ }^{2}\right.\right.$. We construct the following binary fuzzy relation $E$ in $X$ : First, for all $u$ in $X$ we put $E(u, u)=1$. Next, we consider three different elements $x, y$, and $z$ of $X$ and define

$$
\begin{aligned}
& E(x, y)=a \\
& E(y, z)=b \\
& E(x, z)=\mathscr{T}(a, b) .
\end{aligned}
$$

Furthermore, for any $u$ and $v$ in $X \backslash\{x, y, z\}, u \neq v$, we put $E(u, v)=0$. One easily verifies that $E$ is a $\mathscr{T}$-equality on $X$. It then holds that the mapping $d=f \circ E$ is a metric on $X$. This means in particular that

$$
f(E(x, z)) \leq f(E(x, y))+f(E(y, z)) .
$$

Since $f^{(-1)}$ is decreasing, it follows that

$$
f^{(-1)}(f(E(x, z))) \geq f^{(-1)}(f(E(x, y))+f(E(y, z)))
$$

Since $f^{(-1)}(f(E(x, z)))=E(x, z)$, it then follows that $\mathscr{T}(a, b) \geq \mathscr{T}^{*}(a, b)$.

Corollary 1. (i) Consider an $M$-equality $E$ on $X$; then for any additive generator $f$ it holds that the mapping $d=f \circ E$ is a metric on $X$.
(ii) Consider an arbitrary t-norm $\mathcal{T}$ and $a \mathscr{T}$-equality $E$ on $X$; then the mapping $d=f \circ E$, with $f$ an additive generator of the weakest $t$-norm $Z$, is a metric on $X$.
(iii) Consider a t -norm $\mathscr{I}$ such that $W \leq \mathscr{T}$ and a $\mathscr{T}$-equality $E$ on $X$; then the mapping $d=1-E$ is a metric on $X$.

Proposition 4. Consider a metric $d$ on a universe $X$ and a continuous Archimedean t -norm $\mathscr{T}^{*}$ with additive generator $f$; then the binary fuzzy relation $E=f^{(-1)} \circ d$ in $X$ is a $\mathscr{T}^{*}$-equality on $X$.

Proof. According to Proposition 3, $E$ is a $\mathscr{T}^{*}$-equivalence on $X$. Now consider $x$ and $y$ in $X$ such that $E(x, y)=1$; then we have to show that $x=y$. From $E(x, y)=1$ it follows that $f^{(-1)}(d(x, y))=1$; i.e., $f^{-1}(\mathrm{~min}$ $(f(0), d(x, y)))=1$. Since $f$ is strictly decreasing and $f(1)=0$, it follows that $\min (f(0), d(x, y))=0$. Since $f(0)>f(1)=0$, we can conclude that $d(x, y)=0$, whence $x=y$.

Corollary 2. Consider a metric $d$ on $X$, then the binary fuzzy relation $E=\max (1-d, 0)$ is a $W$-equality on $X$.

## 5. THE BIRESIDUAL OPERATOR OF A t-NORM

### 5.1. Definition and Properties

In the following section we study two particular $\mathscr{T}$-equalities on $\mathscr{F}(X)$. One of them is based on the biresidual operator $\mathscr{E}_{\mathscr{F}}$ of a $t$-norm $\mathscr{T}$ that is used for measuring the degree of equality of real numbers taken from the unit interval. In fact, we show that the biresidual operator $\mathscr{E}_{\mathscr{I}}$ of a $t$-norm $\mathscr{T}$ is a $\mathscr{T}$-equality on $[0,1]$ if and only if $\mathscr{T}$ is left-continuous. Note that by a left-continuous $t$-norm we mean a $t$-norm with left-continuous partial mappings.

Definition 8 (see e.g. [6]). Consider a t-norm $\mathscr{T}$. The residual implicator $\mathscr{I}_{\mathscr{J}}$ of $\mathscr{T}$ is the binary operator on $[0,1]$ defined by

$$
\mathscr{I}_{\mathscr{T}}(x, y)=\sup \{z \mid z \in[0,1] \wedge \mathscr{T}(x, z) \leq y\} .
$$

Note that the residual implicator $\mathscr{I}_{\mathscr{J}}$ is hybrid monotonous; i.e., it has decreasing first and increasing second partial mappings.

Proposition 5 ([6]). Consider a continuous Archimedean t-norm $\mathcal{T}$ with an additive generator $f$; then its residual implicator $\mathscr{J}_{\text {g }}$ is given by

$$
\mathscr{I}_{\mathscr{T}}(x, y)=f^{-1}(\max (0, f(y)-f(x))) .
$$

Proposition 6 ([6]). Consider a t-norm $\mathscr{T}$; then the following properties hold, for any $(x, y)$ in $[0,1]^{2}$ :
(i) $x \leq y \Rightarrow \mathscr{I}_{\mathscr{T}}(x, y)=1$;
(ii) $\mathscr{I}_{\mathscr{T}}(1, y)=y$ (the neutrality principle); and
(iii) $\mathscr{I}_{\mathscr{T}}(x, \mathscr{T}(x, y)) \geq y$.

Proposition 7 ([6]). Consider a left-continuous t -norm $\mathcal{T}$; then the following equivalence holds, for any $(x, y)$ in $[0,1]^{2}$ :

$$
x \leq y \Leftrightarrow \mathscr{I}_{\mathscr{T}}(x, y)=1 .
$$

Theorem 5. Consider a t-norm $\mathscr{T}$; then the following statements are equivalent:
(i) $\mathcal{I}$ is left-continuous;
(ii) $\quad\left(\forall(x, y) \in[0,1]^{2}\right)\left(\mathscr{T}\left(x, \mathcal{I}_{\mathscr{T}}(x, y)\right) \leq y\right)$; and
(iii) $\quad\left(\forall(x, y, z) \in[0,1]^{3}\right)\left(\mathscr{T}\left(\mathscr{F}_{\mathscr{T}}(x, y), \mathscr{F}_{\mathscr{T}}(y, z)\right) \leq \mathscr{F}_{\mathscr{F}}(x, z)\right)$.

Proof. The implication (i) $\Rightarrow$ (ii) is well-known (see e.g. [2]). We will prove the converse implication. For $\mathscr{T}$ to be left-continuous, it suffices to show that for any $x$ in $[0,1]$ and for any nonempty family $\left(y_{i}\right)_{i \in I}$ in $[0,1]$ the following equality holds:

$$
\mathscr{T}\left(x, \sup _{i \in I} y_{i}\right)=\sup _{i \in I} \mathscr{T}\left(x, y_{i}\right) .
$$

For any $i \in I$ it holds that $\mathscr{T}\left(x, y_{i}\right) \leq \sup _{i \in I} \mathscr{T}\left(x, y_{i}\right)$, whence

$$
y_{i} \leq \mathscr{F}_{\mathscr{T}}\left(x, \sup _{i \in I} \mathscr{T}\left(x, y_{i}\right)\right)
$$

and also

$$
\sup _{i \in I} y_{i} \leq \mathcal{I}_{\mathscr{T}}\left(x, \sup _{i \in I} \mathscr{T}\left(x, y_{i}\right)\right) .
$$

The monotonicity of $\mathscr{T}$ and (ii) then imply that

$$
\mathscr{T}\left(x, \sup _{i \in I} y_{i}\right) \leq \mathscr{T}\left(x, \mathscr{F}_{\mathscr{T}}\left(x, \sup _{i \in I} \mathscr{T}\left(x, y_{i}\right)\right)\right) \leq \sup _{i \in I} \mathscr{T}\left(x, y_{i}\right) .
$$

The converse inequality,

$$
\mathscr{T}\left(x, \sup _{i \in I} y_{i}\right) \geq \sup _{i \in I} \mathscr{T}\left(x, y_{i}\right),
$$

follows immediately from the monotonicity of $\mathscr{T}$.
The implication (i) $\Rightarrow$ (iii) is also well-known (see e.g. [2, 7]). The implication (iii) $\Rightarrow$ (ii) follows easily by applying (iii) to the triplet ( $1, x, y$ ) and using the neutrality principle. This completes the proof.
Definition 9 ([4, 9]). Consider a t-norm $\mathscr{T}$. The biresidual operator $\mathscr{E}_{\mathscr{y}}$ of $\mathscr{T}$ is the binary operator on $[0,1]$ defined by

$$
\mathscr{E}_{\mathscr{T}}(x, y)=\min \left(\mathscr{F}_{\mathscr{T}}(x, y), \mathscr{I}_{\mathscr{F}}(y, x)\right) .
$$

In the foregoing definition, the minimum operator could, without effect, be replaced with the t-norm $\mathscr{T}$ (due to Proposition 6(i)). Note that the biresidual operator $\mathscr{E}_{\mathscr{g}}$ of a t-norm $\mathscr{T}$ can also be written as

$$
\mathscr{E}_{\mathscr{F}}(x, y)=\mathscr{I}_{\mathscr{T}}(\max (x, y), \min (x, y)) .
$$

Proposition 8. Consider two $\mathfrak{t}$-norms $\mathscr{T}^{*}$ and $\mathscr{T}$; then the following implication holds:

$$
\mathscr{T}^{*} \leq \mathscr{T} \Rightarrow \mathscr{E}_{\mathscr{T}} \geq \mathscr{E}_{\mathscr{T}} .
$$

Proof. If $\mathscr{T}^{*} \leq \mathscr{T}$, then it easily follows that $\mathscr{F}_{\mathscr{T}^{*}} \geq \mathcal{I}_{\mathscr{T}}$, whence also that $\mathscr{B}_{\text {g* }} \geq \mathscr{B}_{\text {g }}$.

Proposition 9. Consider two t-norms $\mathscr{T}^{*}$ and $\mathscr{T}$. If $\mathscr{T}^{*}$ is left-continuous, then the following implication holds:

$$
\mathscr{E}_{\mathscr{F}^{*}} \geq \mathscr{E}_{\mathscr{T}} \Rightarrow \mathscr{T}^{*} \leq \mathscr{T} .
$$

Proof. Let $\mathscr{C}_{\mathscr{y}} \geq \mathscr{C}_{\mathscr{T}}$ and suppose there exists $(x, y) \in[0,1]^{2}$ such that $\mathscr{T}^{*}(x, y)>\mathscr{T}(x, y)$. Due to the left-continuity of $\mathscr{T}^{*}$, it then follows that

$$
\mathscr{\mathscr { F }}_{\mathscr{}}(x, \mathscr{T}(x, y))=\sup \left\{z \mid z \in[0,1] \wedge \mathscr{T}^{*}(x, z) \leq \mathscr{T}(x, y)\right\}<y .
$$

On the other hand, we have that

$$
\mathscr{J}_{\mathscr{T}}(x, \mathscr{T}(x, y))=\sup \{z \mid z \in[0,1] \wedge \mathscr{T}(x, z) \leq \mathscr{T}(x, y)\} \geq y .
$$

It then easily follows, since $\mathscr{T}(x, y) \leq x$, that

$$
\mathscr{B}_{\mathscr{F}}(x, \mathscr{T}(x, y))=\mathscr{I}_{\mathscr{F}}(x, \mathscr{T}(x, y))<y \leq \mathscr{F}_{\mathscr{T}}(x, \mathscr{T}(x, y))=\mathscr{E}_{\mathscr{T}}(x, \mathscr{T}(x, y)),
$$

a contradiction.

### 5.2. The Biresidual Operator as a $\mathscr{T}$-Equality

Lemma 1. Consider a t-norm $\mathcal{T}$; then the following properties are equivalent:
(i) $\left.\left(\forall(x, y, z) \in[0,1]^{3}\right)\left(\mathscr{T}^{\left(\mathscr{I}_{\mathscr{T}}\right.}(x, y), \mathscr{I}_{\mathscr{T}}(y, z)\right) \leq \mathscr{I}_{\mathscr{T}}(x, z)\right)$.
(ii) $\quad\left(\forall(x, y, z) \in[0,1]^{3}\right)(z<y<x \Rightarrow$
$\left.\mathscr{T}\left(\mathscr{F}_{\mathscr{T}}(x, y), \mathscr{J}_{\mathscr{T}}(y, z)\right) \leq \mathscr{I}_{\mathscr{T}}(x, z)\right)$.
Proof. The implication (i) $\Rightarrow$ (ii) is trivial. For the implication (ii) $\Rightarrow$ (i) to hold, it suffices to show that for any $(x, y, z) \in[0,1]^{3}$ such that $\neg(z<$ $y<x$ ) the inequality

$$
\begin{equation*}
\mathscr{T}\left(\mathscr{F}_{\mathscr{T}}(x, y), \mathscr{F}_{\mathscr{T}}(y, z)\right) \leq \mathscr{F}_{\mathscr{T}}(x, z) \tag{1}
\end{equation*}
$$

always holds. We consider the following cases.
(i) The case $x \leq z$. Since $\mathscr{I}_{\mathscr{F}}(x, z)=1$, the inequality (1) is trivially fulfilled.
(ii) The case $z<x$ and $x \leq y$. Since the first partial mappings of $\mathscr{I}_{\mathscr{T}}$ are decreasing, it follows that $\mathscr{I}_{\mathscr{T}}(y, z) \leq \mathscr{I}_{\mathscr{T}}(x, z)$. Together with $\mathscr{I}_{\mathscr{T}}(x, y)=1$, the inequality (1) follows.
(iii) The case $z<x, y<x$, and $y \leq z$. Since the second partial mappings of $\mathscr{I}_{\mathcal{J}}$ are increasing, it follows that $\mathscr{F}_{\mathscr{T}}(x, y) \leq \mathscr{I}_{\mathscr{F}}(x, z)$. Together with $\mathcal{I}_{\mathscr{T}}(y, z)=1$, this means the inequality (1) again follows.

Theorem 6. Consider a t -norm $\mathscr{T}$; then its biresidual operator $\mathscr{E}_{\mathrm{g}}$ is a $\mathscr{T}$-equality on $[0,1]$ if and only if $\mathscr{T}$ is left-continuous.

Proof. We will first give the proof from right to left. From Proposition 7 it immediately follows that $\mathscr{E}_{\mathscr{F}}(x, y)=1$ if and only if $x=y$. The symmetry of $\mathscr{E}_{\mathscr{J}}$ is trivially fulfilled. We will now show the $\mathscr{T}$-transitivity of $\mathscr{E}_{\mathscr{J}}$. Consider $(x, y, z) \in[0,1]^{3}$; then

$$
\begin{aligned}
\mathscr{T}\left(\mathscr{E}_{\mathscr{F}}(x, y), \mathscr{E}_{\mathscr{F}}(y, z)\right) & =\mathscr{T}\left(\min \left(\mathscr{F}_{\mathscr{F}}(x, y), \mathscr{F}_{\mathscr{F}}(y, x)\right), \min \left(\mathscr{F}_{\mathscr{F}}(y, z), \mathscr{F}_{\mathscr{F}}(z, y)\right)\right) \\
& \leq \min \left(\mathscr{T}\left(\mathscr{F}_{\mathscr{F}}(x, y), \mathscr{F}_{\mathscr{T}}(y, z)\right), \mathscr{T}\left(\mathscr{F}_{\mathscr{T}}(z, y), \mathscr{F}_{\mathscr{F}}(y, x)\right)\right) .
\end{aligned}
$$

With Theorem 5 it then follows that

$$
\mathscr{T}\left(\mathscr{C}_{\mathscr{F}}(x, y), \mathscr{E}_{\mathscr{T}}(y, z)\right) \leq \min \left(\mathscr{F}_{\mathscr{T}}(x, z), \mathscr{F}_{\mathscr{T}}(z, x)\right)=\mathscr{E}_{\mathscr{T}}(x, z) .
$$

Next, we give the proof from left to right. Consider an arbitrary $(x, y, z) \in$ $[0,1]^{3}$ such that $z<y<x$. Then it holds that $\mathscr{E}_{\mathscr{T}}(x, y)=\mathscr{\mathscr { F }}_{\mathscr{T}}(x, y)$, $\mathscr{E}_{\mathscr{F}}(y, z)=\mathscr{I}_{\mathscr{F}}(y, z)$, and $\mathscr{E}_{\mathscr{T}}(x, z)=\mathscr{\mathscr { F }}_{\mathscr{T}}(x, z)$. Since $\mathscr{E}_{\mathscr{F}}$ is $\mathscr{T}$-transitive, it follows that

$$
\mathscr{T}\left(\mathscr{F}_{\mathscr{T}}(x, y), \mathscr{I}_{\mathscr{T}}(y, z)\right) \leq \mathscr{I}_{\mathscr{T}}(x, z) .
$$

From this, with Lemma 1 and Theorem 5, the left-continuity of $\mathscr{T}$ follows.

In the following proposition we consider a left-continuous $t$-norm $\mathscr{T}$ with an additive generator $f$. This implies, however, the left-continuity and hence also the continuity of $f$. Consequently, $\mathscr{T}$ is a continuous Archimedean t-norm.

Proposition 10. Consider a continuous Archimedean t-norm $\mathcal{T}$ with additive generator $f$; then the $[0,1]^{2} \rightarrow[0, \infty]$ mapping $d=f \circ \mathscr{E}_{g}$ is $a$ metric on $[0,1]$. Moreover, it holds that

$$
d(x, y)=|f(x)-f(y)|
$$

Proof. It follows immediately from Theorems 4 and 6 that $d$ is a metric on $[0,1]$. Consider $(x, y) \in[0,1]^{2}$; then it follows with Proposition 5 that

$$
\mathscr{E}_{\mathscr{T}}(x, y)=\min \left(f^{-1}(\max (0, f(y)-f(x))), f^{-1}(\max (0, f(x)-f(y)))\right)
$$

Since $f$ is decreasing, it then follows that

$$
\begin{aligned}
d(x, y)=f\left(\mathscr{E}_{\mathscr{J}}(x, y)\right) & =\max (f(y)-f(x), f(x)-f(y), 0) \\
& =|f(x)-f(y)|
\end{aligned}
$$

Example 2. Consider the Łukasiewicz t-norm $W$ with additive generator $f(x)=1-x$; then the metric $d=f \circ \mathscr{E}_{W}$ on [0, 1] is given by $d(x, y)=|x-y|$.

The foregoing proposition can be generalized as follows.
Proposition 11. Consider a t-norm $\mathscr{G}^{*}$ with additive generator $f$ and a left-continuous $\mathfrak{t}$-norm $\mathscr{T}$. If $\mathscr{T}^{*} \leq \mathscr{T}$, then the $[0,1]^{2} \rightarrow[0, \infty]$ mapping $d=f \circ \mathscr{E}_{\mathrm{g}}$ is a metric on $[0,1]$.

Proof. It follows immediately from Theorems 4 and 6.
The following "converse" proposition is quite remarkable, as it allows one to decide, considering one particular (potential) $\mathscr{T}$-equality, whether one t -norm is weaker than another. Note that for any additive generator $f$ and any t-norm $\mathscr{T}$, since $\mathscr{E}_{\mathscr{J}}$ is always reflexive and symmetric, the mapping $d=f \circ \mathscr{E}_{\mathscr{T}}$ satisfies ( P 1 ) and ( P 2 ).

Proposition 12. Consider a t-norm with an additive generator $f$ and a t -norm $\mathscr{T}$. If the $[0,1]^{2} \rightarrow[0, \infty]$ mapping $d=f \circ \mathscr{E}_{\mathrm{g}}$ is a pseudo-metric on $[0,1]$, then $\mathscr{T}^{*} \leq \mathscr{T}$.

Proof. Suppose there exists $(a, b) \in[0,1]^{2}$ such that $\mathscr{T}^{*}(a, b)>\mathscr{T}$ $(a, b)$. By assumption, it holds for any $(x, y, z) \in[0,1]^{3}$ that

$$
f\left(\mathscr{C}_{\mathscr{F}}(x, z)\right) \leq f\left(\mathscr{C}_{\mathscr{F}}(x, y)\right)+f\left(\mathscr{C}_{\mathscr{F}}(y, z)\right) .
$$

Since $f^{(-1)}$ is decreasing, it then follows that

$$
f^{(-1)}\left(f\left(\mathscr{E}_{\mathscr{F}}(x, z)\right)\right) \geq f^{(-1)}\left(f\left(\mathscr{C}_{\mathscr{F}}(x, y)\right)\right)+f\left(\mathscr{C}_{\mathscr{F}}(y, z)\right)
$$

or, equivalently, that

$$
\begin{equation*}
\mathscr{C}_{\mathscr{F}}(x, z) \geq \mathscr{T}^{*}\left(\mathscr{C}_{\mathscr{T}}(x, y), \mathscr{C}_{\mathscr{T}}(y, z)\right) . \tag{2}
\end{equation*}
$$

Now choose $x=\mathscr{T}(a, b), y=b$, and $z=1$; then $x \leq y \leq z$. One easily verifies that for this choice it holds that

$$
\begin{aligned}
& \mathscr{C}_{\mathscr{J}}(x, z)=\mathscr{I}_{\mathscr{T}}(z, x)=\mathscr{I}_{\mathscr{T}}(1, \mathscr{T}(a, b))=\mathscr{T}(a, b), \\
& \mathscr{B}_{\mathscr{T}}(x, y)=\mathscr{I}_{\mathscr{T}}(y, x)=\mathscr{I}_{\mathscr{T}}(b, \mathscr{T}(b, a)) \geq a,
\end{aligned}
$$

and

$$
\mathscr{E}_{\mathscr{T}}(y, z)=\mathscr{I}_{\mathscr{T}}(z, y)=\mathscr{I}_{\mathscr{T}}(1, b)=b .
$$

Substituting the above results into (2), we obtain that $\mathscr{T}(a, b) \geq \mathscr{T}^{*}(a, b)$, a contradiction.

Note that in the foregoing proposition it is not necessary to impose leftcontinuity on the $t$-norm $\mathscr{T}$, since it is not required that $\mathscr{E}_{\mathscr{F}}$ is a $\mathscr{T}$-equality, but only that $d=f \circ \mathscr{C}_{\text {g }}$ is a pseudo-metric. However, if we do impose left-continuity, then this proposition is a stronger version of the implication (ii) $\Rightarrow$ (i) of Theorem 4, for the special case of $X=[0,1]$, since it allows one to conclude the comparability of $t$-norms by considering one particular $\mathscr{T}$-equality. We can then state the following corollary.

Corollary 3. Consider a t -norm $\mathfrak{G}^{*}$ with an additive generator $f$ and a left-continuous t -norm $\mathcal{T}$. If for the $\mathscr{\mathscr { T }}$-equality $\mathscr{E}_{5}$ on $[0,1]$ it holds that the $[0,1]^{2} \rightarrow[0, \infty]$ mapping $d=f \circ \mathscr{E}_{\mathscr{G}}$ is a metric on $[0,1]$, then $\mathscr{T}^{*} \leq \mathscr{T}$.

## 6. METRICS AND $\mathscr{T}$-EQUALITIES ON $\mathscr{F}(X)$

### 6.1. Two Particular $\mathscr{T}$-Equalities on $\mathscr{F}(X)$

In this subsection, we study two particular $\mathscr{T}$-equalities on $\mathscr{F}(X)$, the class of fuzzy sets on a universe $X$.

Definition 10 ([4]). Consider a t-norm $\mathscr{T}$. The binary fuzzy relation $E^{\mathscr{G}}$ in $\mathscr{F}(X)$ is defined, for any two fuzzy sets $A$ and $B$ in $X$, as

$$
E^{\mathscr{G}}(A, B)=\inf _{x \in X} \mathscr{E}_{\mathscr{T}}(A(x), B(x)) .
$$

Definition 11 ([7, 14, 16]). Consider a t-norm $\mathscr{T}$. The binary fuzzy relation $E_{\mathscr{T}}$ in $\mathscr{F}(X)$ is defined, for any two fuzzy sets $A$ and $B$ in $X$, as

$$
E_{\mathscr{T}}(A, B)=\mathscr{T}\left(\inf _{x \in X} \mathscr{I}_{\mathscr{T}}(A(x), B(x)), \inf _{x \in X} \mathscr{I}_{\mathscr{T}}(B(x), A(x))\right)
$$

Proposition 13. Consider at-norm $\mathscr{T}$; then it holds that $E_{\mathscr{T}} \subseteq E^{\mathscr{G}}$.
Proof. Consider two fuzzy sets $A$ and $B$ in $X$; then it holds that

$$
\begin{aligned}
E_{\mathscr{T}}(A, B) & =\mathscr{T}\left(\inf _{x \in X} \mathscr{J}_{\mathscr{T}}(A(x), B(x)), \inf _{x \in X} \mathscr{I}_{\mathscr{T}}(B(x), A(x))\right) \\
& \leq \inf _{x \in X} \mathscr{T}\left(\mathscr{I}_{\mathscr{T}}(A(x), B(x)), \mathscr{J}_{\mathscr{T}}(B(x), A(x))\right) \\
& =\inf _{x \in X} \mathscr{C}_{\mathscr{T}}(A(x), B(x))=E^{\mathscr{T}}(A, B) .
\end{aligned}
$$

Note that when $\mathcal{T}=M$, it obviously holds that $E_{M}=E^{M}$. Also, if $\# X=1$, say $X=\{x\}$, then for any t-norm $\mathscr{T}$ it holds that $E_{\mathscr{T}}(A, B)=E^{\mathscr{G}}(A, B)=$ $\mathscr{E}_{\mathscr{F}}(A(x), B(x))$.

In the following theorem, we show that any $\mathscr{T}$-equality on $[0,1]$ can be extended, by means of the infimum operator, to a $\mathscr{T}$-equality on $\mathscr{F}(X)$.

Theorem 7. Consider a t -norm $\mathscr{T}$ and a binary fuzzy relation $E$ in $[0,1]$. Define the binary fuzzy relation $E^{\prime}$ in $\mathscr{F}(X)$ as follows, for any two fuzzy sets $A$ and $B$ in $X$ :

$$
E^{\prime}(A, B)=\inf _{x \in X} E(A(x), B(x))
$$

Then the following statements are equivalent:
(i) $E$ is a $\mathscr{T}$-equality on $[0,1]$.
(ii) $E^{\prime}$ is a $\mathscr{T}$-equality on $\mathscr{F}(X)$.

Proof. We will first prove the implication (i) $\Rightarrow$ (ii).
(a) Consider two fuzzy sets $A$ and $B$ in $X$; then the following chain of equivalences holds:

$$
\begin{aligned}
E^{\prime}(A, B)=1 & \Leftrightarrow \inf _{x \in X} E(A(x), B(x))=1 \\
& \Leftrightarrow(\forall x \in X)(E(A(x), B(x))=1) \\
& \Leftrightarrow(\forall x \in X)(A(x)=B(x)) \Leftrightarrow A=B .
\end{aligned}
$$

(b) The symmetry of $E^{\prime}$ is obvious.
(c) Consider three fuzzy sets $A, B$, and $C$ in $X$; then

$$
\begin{aligned}
\mathscr{T}\left(E^{\prime}(A, B), E^{\prime}(B, C)\right) & =\mathscr{T}\left(\inf _{x \in X} E(A(x), B(x)), \inf _{x \in X} E(B(x), C(x))\right) \\
& \leq \inf _{x \in X} \mathscr{T}(E(A(x), B(x)), E(B(x), C(x))) .
\end{aligned}
$$

Since $E$ is $\mathscr{T}$-transitive, it follows that

$$
\mathscr{T}\left(E^{\prime}(A, B), E^{\prime}(B, C)\right) \leq \inf _{x \in X} E(A(x), C(x))=E^{\prime}(A, C) .
$$

Next, we prove the implication (ii) $\Rightarrow$ (i). Consider $(a, b, c) \in[0,1]^{3}$ and the corresponding constant fuzzy sets $A(x)=a, B(x)=b$, and $C(x)=$ $c$ in $X$. It then holds that $E^{\prime}(A, B)=E(a, b), E^{\prime}(B, C)=E(b, c)$, and $E^{\prime}(A, C)=E(a, c)$.
(a) Let $E(a, b)=1$. Then also $E^{\prime}(A, B)=1$, which implies that $A=B$ and also that $a=b$.
(b) The symmetry of $E$ follows immediately from the symmetry of $E^{\prime}$.
(c) The $\mathscr{T}$-transitivity of $E^{\prime}$ implies that

$$
\mathscr{T}\left(E^{\prime}(A, B), E^{\prime}(B, C)\right) \leq E^{\prime}(A, C)
$$

and hence also that

$$
\mathscr{T}(E(a, b), E(b, c)) \leq E(a, c) .
$$

Corollary 4. Consider a t-norm $\mathcal{T}$. The binary fuzzy relation $E^{\mathscr{T}}$ is a $\mathscr{T}$-equality on $\mathscr{F}(X)$ if and only if $\mathscr{T}$ is left-continuous.

Proof. It follows immediately from Theorems 6 and 7.
Theorem 8. Consider a t-norm $\mathcal{T}$. The binary fuzzy relation $E_{\mathscr{J}}$ is a $\mathscr{T}$-equality on $\mathscr{F}(X)$ if and only if $\mathscr{T}$ is left-continuous.
Proof. The proof from right to left was given by Gottwald [7]. Indeed, he has shown that for a left-continuous t-norm $\mathscr{T}, E_{\mathscr{J}}$ is a $\mathscr{T}$-equivalence on $\mathscr{F}(X)$. He further demonstrated that in this case $E_{\mathscr{F}}(A, B)=1$ if and only if $A=B$. This means that $E_{\mathscr{J}}$ is a $\mathscr{T}$-equality on $\mathscr{F}(X)$.

For the proof from left to right, consider $(a, b, c) \in[0,1]^{3}$ such that $c<b<a$. Consider $x_{0}$ in $X$ and construct the fuzzy sets $A, B$, and $C$ in $X$ as follows:

$$
\begin{aligned}
& A(x)= \begin{cases}a, & \text { if } x=x_{0} \\
0, & \text { elsewhere }\end{cases} \\
& B(x)= \begin{cases}b, & \text { if } x=x_{0}, \\
0, & \text { elsewhere }\end{cases} \\
& C(x)= \begin{cases}c, & \text { if } x=x_{0}, \\
0, & \text { elsewhere }\end{cases}
\end{aligned}
$$

One easily verifies that in this case $E_{\mathscr{T}}(A, B)=\mathscr{I}_{\mathscr{T}}(a, b), E_{\mathscr{T}}(B, C)=\mathscr{I}_{\mathscr{T}}$ $(b, c)$, and $E_{\mathscr{J}}(A, C)=\mathscr{I}_{\mathscr{T}}(a, c)$. Since $E_{\mathscr{J}}$ is $\mathscr{T}$-transitive, it then follows that

$$
\mathscr{T}\left(E_{\mathscr{T}}(A, B), E_{\mathscr{T}}(B, C)\right) \leq E_{\mathscr{T}}(A, C)
$$

and hence also that

$$
\mathscr{T}\left(\mathscr{F}_{\mathscr{T}}(a, b), \mathscr{F}_{\mathscr{T}}(b, c)\right) \leq \mathscr{I}_{\mathscr{T}}(a, c) .
$$

With Lemma 1 and Theorem 5, it then follows that $\mathscr{T}$ is left-continuous.

The fuzzy relation $E_{\mathscr{J}}$ is inspired by the following classical equivalence, for any two sets $A$ and $B$ in $X$ :

$$
A=B \Leftrightarrow A \subseteq B \wedge B \subseteq A .
$$

The inclusion of a fuzzy set $A$ in $X$ in a fuzzy set $B$ in $X$ is then measured by $\inf _{x \in X} \mathscr{F}(A(x), B(x))$, with $\mathscr{F}$ a fuzzy implication operator, such as the residual implicator $\mathscr{I}_{\mathscr{g}}$ (see e.g. [3, 14]).

### 6.2. Metrics on $\mathscr{F}(X)$ Based on $E_{\mathscr{T}}$

Proposition 14. Consider a t -norm $\mathscr{T}^{*}$ with an additive generator $f$ and a left-continuous t -norm $\mathscr{T}$ such that $\mathscr{T}^{*} \leq \mathscr{T}$; then the $\mathscr{F}(X)^{2} \rightarrow[0, \infty]$ mapping $d=f \circ E_{\mathscr{J}}$ is a metric on $\mathscr{F}(X)$.

Proof. It follows immediately from Theorems 4 and 8. 【
Note that for any additive generator $f$ and any t -norm $\mathscr{T}$, since $E_{\mathscr{T}}$ is always reflexive and symmetric, the mapping $d=f \circ E_{\mathscr{J}}$ satisfies ( P 1 ) and (P2).

Theorem 9. Consider a t-norm $\mathscr{T}^{*}$ with additive generator $f$ and a t -norm $\mathscr{T}$. If the $\mathscr{F}(X)^{2} \rightarrow[0, \infty]$ mapping $d=f \circ E_{T}$ is a pseudo-metric on $\mathscr{F}(X)$, then $\mathscr{T}^{*} \leq \mathscr{F}$.

Proof. Suppose there exists $(a, b) \in[0,1]^{2}$ such that $\mathscr{T}^{*}(a, b)>$ $\mathscr{T}(a, b)$. By assumption, it holds for any $(A, B, C) \in \mathscr{F}(X)^{3}$ that

$$
f\left(E_{\mathscr{J}}(A, C)\right) \leq f\left(E_{\mathscr{J}}(A, B)\right)+f\left(E_{\mathscr{J}}(B, C)\right) .
$$

As in the proof of Proposition 12, it then follows that

$$
\begin{equation*}
E_{\mathscr{T}}(A, C) \geq \mathscr{T}^{*}\left(E_{\mathscr{T}}(A, B), E_{\mathscr{T}}(B, C)\right) . \tag{3}
\end{equation*}
$$

Now consider two different elements $x_{0}$ and $y_{0}$ of $X$ and construct the fuzzy sets $A, B$, and $C$ in $X$ as

$$
\begin{aligned}
& A(x)= \begin{cases}1, & \text { if } x=x_{0}, \\
b, & \text { if } x=y_{0}, \\
0, & \text { elsewhere }\end{cases} \\
& B(x)= \begin{cases}a, & \text { if } x=x_{0}, \\
b, & \text { if } x=y_{0}, \\
0, & \text { elsewhere }\end{cases} \\
& C(x)= \begin{cases}a, & \text { if } x=x_{0}, \\
1, & \text { if } x=y_{0}, \\
0, & \text { elsewhere }\end{cases}
\end{aligned}
$$

One easily verifies that for this choice it holds that $E_{\mathscr{T}}(A, B)=a$, $E_{\mathscr{J}}(B, C)=b$, and $E_{\mathscr{T}}(A, C)=\mathscr{T}(a, b)$. Substituting these results in (3), we obtain that $\mathscr{T}(a, b) \geq \mathscr{T}^{*}(a, b)$, a contradiction.

Corollary 5. Consider a $\mathfrak{t}$-norm $\mathscr{T}^{*}$ with an additive generator $f$ and a left-continuous t -norm $\mathcal{T}$. If for the $\mathscr{T}$-equality $E_{\mathscr{T}}$ on $\mathscr{F}(X)$ it holds that the $\mathscr{F}(X)^{2} \rightarrow[0, \infty]$ mapping $d=f \circ E_{\mathscr{T}}$ is a metric on $\mathscr{F}(X)$, then $\mathscr{T}^{*} \leq \mathscr{T}$.

As a corollary of Proposition 14 and Theorem 9, we rediscover the main theorem of Gottwald in [7].

Corollary 6 ([7]). Consider a left-continuous t-norm $\mathcal{T}$. The $\mathscr{F}(X)^{2} \rightarrow$ $[0, \infty]$ mapping $d=1-E_{\mathscr{F}}$ is a metric on $\mathscr{F}(X)$ if and only if $W \leq \mathscr{T}$.

We cite Gottwald here [7]: "The intuition behind that relation comes from the interpretation of $E_{\Im}$ as a graded measure of the equality of fuzzy sets or of their indistinguishability. The negation of such an indistinguishability relation $E_{厅}$ hence should be a kind of graded distinguishability and thus (perhaps) even a kind of 'distance'."

An important remark should be made here: In Corollary 6, the operation 1 - should not be interpreted as the standard negation, but as an additive generator of the Łukasiewicz t-norm. Only this insight can lead to the more general results presented in this paper.

### 6.3. Metrics on $\mathscr{F}(X)$ Based on $E^{\mathscr{G}}$

Propositions similar to those in the previous subsection can be written for the $\mathscr{T}$-equality $E^{\mathscr{T}}$. The first proposition is an extended version of Proposition 10.
Proposition 15. Consider a continuous Archimedean t-norm $\mathcal{T}$ with an additive generator $f$; then the $\mathscr{F}(X)^{2} \rightarrow[0, \infty]$ mapping $d=f \circ E^{\mathcal{G}}$ is a metric on $\mathscr{F}(X)$. Moreover, it holds, for any two fuzzy sets $A$ and $B$ in $X$, that

$$
d(A, B)=\sup _{x \in X}|f(A(x))-f(B(x))| .
$$

Proof. It follows immediately from Corollary 4 and Theorem 4 that $d$ is a metric on $\mathscr{F}(X)$. Consider $(A, B) \in \mathscr{F}(X)^{2}$; then

$$
d(A, B)=f\left(E^{\mathscr{T}}(A, B)\right)=f\left(\inf _{x \in X}^{\mathscr{C}_{\mathscr{T}}}(A(x), B(x))\right) .
$$

Since $f$ is continuous and decreasing, it then follows that

$$
d(A, B)=\sup _{x \in X} f\left(\mathscr{E}_{\mathscr{T}}(A(x), B(x))\right) .
$$

As in the proof of Proposition 10, it then follows that

$$
d(A, B)=\sup _{x \in X}|f(A(x))-f(B(x))| .
$$

Example 3. Consider the Łukasiewicz t-norm $W$ with an additive generator $f(x)=1-x$; then the metric $d=f \circ E_{W}$ on $\mathscr{F}(X)$ is given by, for any two fuzzy sets $A$ and $B$ in $X$,

$$
d(A, B)=\sup _{x \in X}|A(x)-B(x)| .
$$

Proposition 16. Consider a t -norm $\mathscr{T}^{*}$ with an additive generator $f$ and a left-continuous t -norm $\mathscr{T}$ such that $\mathscr{T}^{*} \leq \mathscr{T}$; then the $\mathscr{F}(X)^{2} \rightarrow[0, \infty]$ mapping $d=f \circ E^{9}$ is a metric on $\mathscr{F}(X)$.
Proof. It follows immediately from Corollary 4 and Theorem 4.
The following theorem (also its proof) is an extended version of Proposition 12.

Theorem 10. Consider a t -norm $\mathscr{T}^{*}$ with an additive generator $f$ and a t -norm $\mathscr{T}$. If the $\mathscr{F}(X)^{2} \rightarrow[0, \infty]$ mapping $d=f \circ E^{\mathscr{T}}$ is a pseudo-metric on $\mathscr{F}(X)$, then $\mathscr{T}^{*} \leq \mathscr{T}$.

Proof. Suppose there exists $(a, b) \in[0,1]^{2}$ such that $\mathscr{T}^{*}(a, b)>\mathscr{T}$ $(a, b)$. As in the proof of Proposition 12, it follows that for any $(A, B, C) \in$ $\mathscr{F}(X)^{3}$ it holds that

$$
\begin{equation*}
E^{\mathscr{G}}(A, C) \geq \mathscr{T}^{*}\left(E^{\mathscr{G}}(A, B), E^{\mathscr{G}}(B, C)\right) . \tag{4}
\end{equation*}
$$

Now consider $x_{0}$ in $X$ and construct the fuzzy sets $A, B$, and $C$ in $X$ as follows:

$$
\begin{aligned}
& A(x)= \begin{cases}\mathscr{F}(a, b), & \text { if } x=x_{0} \\
0, & \text { elsewhere }\end{cases} \\
& B(x)= \begin{cases}b, & \text { if } x=x_{0} \\
0, & \text { elsewhere }\end{cases} \\
& C(x)= \begin{cases}1, & \text { if } x=x_{0} \\
0, & \text { elsewhere }\end{cases}
\end{aligned}
$$

One easily verifies that for this choice it holds that $E^{\mathscr{T}}(A, C)=\mathscr{T}(a, b)$, $E^{\mathscr{G}}(A, B) \geq a$, and $E^{\mathscr{G}}(B, C)=b$. Substituting these findings in (4) we obtain $\mathscr{T}(a, b) \geq \mathscr{T}^{*}(a, b)$, a contradiction.

Corollary 7. Consider at-norm $\mathscr{T}^{*}$ with an additive generator $f$ and a left-continuous t-norm $\mathscr{T}$. If for the $\mathscr{T}$-equality $E^{\mathscr{G}}$ on $\mathscr{F}(X)$ the $\mathscr{F}(X)^{2} \rightarrow$ $[0, \infty]$ mapping $d=f \circ E^{\mathcal{T}}$ is a metric on $\mathscr{F}(X)$, then $\mathscr{G}^{*} \leq \mathscr{F}$.

## REFERENCES

1. J. Bezdek and J. Harris, Fuzzy partitions and relations: an axiomatic basis for clustering, Fuzzy Sets and Systems 1 (1978), 111-127.
2. B. De Baets, "Solving Fuzzy Relational Equations: An Order-Theoretic Approach," Ph.D. dissertation, Universiteit Gent, 1995 [in Dutch].
3. B. De Baets and E. Kerre, Fuzzy inclusions and the inverse problems, in "Proceedings of EUFIT '94, Second European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany" (H.-J. Zimmermann, Ed.), Vol. 2, pp. 940-945, ELITE, 1994.
4. B. De Baets and R. Mesiar, $\mathcal{T}$-partitions, Fuzzy Sets and Systems 97 (1998), 211-223.
5. B. De Baets and R. Mesiar, Pseudo-metrics and $\mathscr{T}$-equivalences, Fuzzy Math. 5 (1997), 471-481.
6. B. De Baets and R. Mesiar, Residual implicators of continuous $t$-norms, in "Proceedings of EUFIT '96, Fourth European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany" (H.-J. Zimmermann, Ed.), Vol. 1, pp. 27-31, ELITE, 1996.
7. S. Gottwald, Approximate solutions of fuzzy relational equations and a characterization of t-norms that define metrics for fuzzy sets, Fuzzy Sets and Systems 75 (1995), 189-201.
8. U. Höhle, Fuzzy equalities and indistinguishability, in "Proceedings of EUFIT '93, First European Congress on Fuzzy and Intelligent Technologies, Aachen, Germany" (H.-J. Zimmermann, Ed.), Vol. 1, pp. 358-363, ELITE, 1993.
9. F. Klawonn and R. Kruse, From fuzzy sets to indistinguishability and back, in "Proceedings of ISFL '95, First ICSC International Symposium on Fuzzy Logic, Zürich, Switzerland (N. Steele, Ed.), pp. A57-A59, ICSC Academic Press, 1995.
10. E.-P. Klement, R. Mesiar, and E. Pap, Triangular norms, "Trends in Logic," Vol. 8, Kluwer Academic Publishers, Dordrecht, 2000.
11. C. Ling, Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189-212.
12. B. Schweizer and A. Sklar, "Probabilistic Metric Spaces," Elsevier Science, New York, 1983.
13. E. Trillas and L. Valverde, An inquiry into indistinguishability operators, in "Aspects of Vagueness" (H. Skala, S. Termini, and E. Trillas, Eds.), pp. 231-256, Reidel, Dordrecht, 1984.
14. E. Tsiporkova-Hristoskova, B. De Baets, and E. Kerre, A fuzzy inclusion based approach to upper inverse images under fuzzy multivalued mappings, Fuzzy Sets and Systems 85 (1997), 93-108.
15. M. Wagenknecht, On some relations between fuzzy similarities and metrics under Archimedean $t$-norms, J. Fuzzy Math. 3 (1995), 563-572.
16. X. Wang, B. De Baets, and E. Kerre, A comparative study of similarity measures, Fuzzy Sets and Systems 73 (1995), 259-268.
17. L. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci. 3 (1971), 177-200.
