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An analysis of plane-strain bending at large strains for the rigid/plastic incompressible material model
including arbitrary strain-hardening and damage evolution laws is performed. The fracture criterion is
based on a critical value of the damage parameter. Numerical treatment is reduced to the system of
two partial differential equations written in characteristic coordinates. The through-thickness distribu-
tion of the principal stresses and damage parameter as well as the variation of the bending moment with
the radius of curvature of the concave surface are found for Swift’s hardening law and one specific dam-
age evolution law. General tendencies in solution behaviour are in agreement with physical expectations.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction found. A review of models of this group is given in Atkins (1996).
Pure plane-strain bending at large strains is one of the classical
problems in plasticity theory. A number of analytical and semi-
analytical solutions have been proposed for various rigid- and elas-
tic–plastic models in the literature (Dadras and Majless, 1982; Gao,
1994; Hill, 1950; Lyamina, 2006; Tan et al., 1995; Verguts and
Sowerby, 1975; Wang et al., 1993). Individual approaches for solv-
ing the boundary value problem dependent of the material model
adopted have been developed in these papers. In contrast to these
approaches, a unified method for isotropic materials has been pro-
posed in Alexandrov et al. (2006). The only requirement imposed
on the system of constitutive equations is that the material is
incompressible. The method has been extended to a class of aniso-
tropic materials in Alexandrov and Hwang (2009) and has been
successfully used for springback calculation in the case of elas-
tic–plastic non-linear hardening materials in Alexandrov and
Hwang (2010). In particular, it has been shown in Alexandrov
and Hwang (2009, 2010) that an effect of elasticity at large strains
is negligible, even though the distribution of stress is discontinu-
ous in rigid plastic solutions, unless the stage of unloading is of
interest. Therefore, a rigid plastic model is adopted in the present
paper. A great number of material models have been proposed to
account for damage evolution at large strains. One of most impor-
tant areas of application of such models is ductile fracture predic-
tion in metal forming processes. These models can be divided into
three groups. The first group includes uncoupled models in the
sense that the damage evolution equation should be solved after
the solution to the boundary value problem of plasticity theory is
ll rights reserved.

+7 499 7399531.
Alexandrov).
Models of the second group are partly coupled in the sense that
the damage parameter reduces the yield surface but material is
plastically incompressible. The present paper deals with this group
of models and a short review of such models is provided below.
Finally, models of the third group are fully coupled in the sense
that the damage parameter enters all the constitutive equations
of the original model of plasticity theory. In particular, the equa-
tion of incompressibility is not satisfied in this case. A typical mod-
el of this group has been proposed by Gurson (1977) and then
modified by Tvergaard and Needleman (1984) among others. Even
though models of the third group are most sophisticated, models of
the second group result in better predictions for some applications
(Hambli, 2001). Also, models of the second group provide reliable
predictions of ductile fracture in metal forming (Behrens and Just,
2002). Therefore, the second group of models is considered in the
present paper. Since the equation of incompressibility is valid for
such models, the approach developed in Alexandrov et al. (2006)
can be adopted to study the pure bending process. The main differ-
ence between various damage evolution models of the second
group is the damage evolution equation. The most widely used
damage evolution equation has been proposed by Lemaitre
(1985). The original version of this model includes elastic com-
pressibility but its rigid plastic version is also used in application
to metal forming processes (Andrade Pires et al., 2003). Other dam-
age evolution equations coupled with rigid plastic models have
been proposed, for example, in Bonora (1997), Chandrakanth and
Pandey (1993), Hartley et al. (1997), and Tai (1990). The present
paper deals with an extension of the approach to analysis of
plane-strain pure bending proposed in Alexandrov et al. (2006)
to include quite an arbitrary damage evolution equation in the case
of rigid-plastic incompressible materials. An advantage of this ap-

https://core.ac.uk/display/81129191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ijsolstr.2011.02.012
mailto:sergei_alexandrov@yahoo.com
http://dx.doi.org/10.1016/j.ijsolstr.2011.02.012
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


1638 S. Alexandrov, J.-C. Gelin / International Journal of Solids and Structures 48 (2011) 1637–1643
proach is that the original boundary value problem is reduced to a
simple system of two partial hyperbolic differential equations
written in characteristic coordinates. The key point of this success-
ful transformation is a simple mapping between Lagrangian and
Eulerian coordinate systems found in Alexandrov et al. (2006).
The general analytic derivation and the numerical code developed
are valid for any model of the class considered. Specific illustrative
calculation is carried out for the damage evolution equation given
in Hartley et al. (1997).

Even though strains in the pure bending process are in general
rather small, a special technique has been developed in Boers et al.
(2010) that allows for large strains in this process. Therefore, the
theoretical solution given in the present paper can be combined
with this technique to result in a theoretical/experimental method
for determining material properties.

2. Kinematics

The approach proposed in Alexandrov et al. (2006) is based on
the mapping between Eulerian Cartesian coordinates (x,y) and
Lagrangian coordinates (f,g) in the form

x
H
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f
a
þ s

a2

r
cosð2agÞ �

ffiffi
s
p

a
and

y
H
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f
a
þ s

a2

r
sinð2agÞ; ð1Þ

where H is the initial thickness of the sheet, s is an arbitrary func-
tion of a, a is a function of the time, t, and a = 0 at t = 0. At the initial
instant, a = 0,

s ¼ 1=4: ð2Þ

Substituting Eq. (2) into Eq. (1) and applying l’Hospital’s rule
gives x = fH and y = gH at the initial instant when the shape of
the specimen is the rectangle defined by the equations x = �H,
x = 0 and y = ±L. The initial shape and the Cartesian coordinate sys-
tem are shown in Fig. 1. It is possible to assume, with no loss of
generality, that the origin of this coordinate system is located at
the intersection of the axis of symmetry and surface AB throughout
the process of deformation. An intermediate shape is also shown in
Fig. 1. It is obvious that f = 0 for AB and f = �1 for CD throughout
the process of deformation. According to Eq. (1), any intermediate
shape is determined by two circular arcs, AB and CD, and two
straight lines, AD and CB. These circular arcs coincide with coordi-
nate curves of the plane polar coordinate system rh defined by the
following transformation equations

r
H
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f
a
þ s

a2

r
and h ¼ 2ag: ð3Þ

Geometric parameters of the shape at any instant are given by
(Fig. 1)
Fig. 1. Coordinate systems, initial shape and intermediate shape in pure bending.
RAB

H
¼

ffiffi
s
p

a
;

RCD

H
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

a2 �
1
a

r
;

h
H
¼

ffiffi
s
p
�

ffiffiffiffiffiffiffiffiffiffiffi
s� a
p

a
; ð4Þ

where RAB is the radius of surface AB, RCD is the radius of surface CD,
and h is the current thickness.

It is possible to verify by inspection that the Lagrangian coordi-
nates coincide with trajectories of the principal strain rates and
that the mapping (1) satisfies the equation of incompressibility
at any instant. It will be shown in the next section that the assump-
tion that the Lagrangian coordinates coincide with the trajectories
of the stress tensor allows one to solve the stress equations. In the
case under consideration these two conditions (coincidence of the
trajectories for the principal stress and principal strain rate tensors
and the equation of incompressibility) are equivalent to the associ-
ated flow rule of the classical rate formulation of plasticity theory.

The strain rate components can be found from Eq. (1) and, then,
the position of the neutral line is determined by

f ¼ fn ¼ �
ds
da

; ð5Þ

the equivalent strain rate by

neq ¼
jfþ ds=dajffiffiffi

3
p
ðfaþ sÞ

da
dt

ð6Þ

and the equivalent strain by

eeq ¼
1ffiffiffi
3
p ln½4ðfaþ sÞ�;

eeq ¼
1ffiffiffi
3
p ln

faþ s

4½facðfÞ þ scðfÞ�2

( )
; ð7Þ

eeq ¼ �
1ffiffiffi
3
p ln½4ðfaþ sÞ�

in regions 1, 2 and 3, respectively. In region 1, 0 P f P �1/2, the
principal strain rate nff < 0 (and ngg > 0) during the entire process.
In region 3, �1 6 f 6 ff

n, the principal strain rate nff > 0 (and
ngg < 0) during the entire process. A property of all curves f = const
in region 2, ff

n 6 f 6 �1=2, is that each of these curves coincides
with the neutral line at one time instant. Consider any f-curve of
this class and denote ac the value of a at which the curve coincides
with the neutral line. Then, nff < 0 (ngg > 0) at a < ac and nff > 0
(ngg < 0) at a > ac for this curve. Obviously, the time instant at which
the sign is changed depends on the curve such that ac = ac(f). The
corresponding value of s will be denoted by sc(f) where
sc(f) = s[ac(f)]. These values of ac(f) and sc(f) are involved in Eq.
(7). Also, ff

n is the f-coordinate of the neutral surface at the end of
the process. The general structure of the solution in the fa-space
is illustrated in Fig. 2. If s(a) were known, Eq. (5) would determine
ac(f) and, therefore, sc(f). Thus, s(a) is the only unknown function in
the analysis of kinematics and this function should be found from
the analysis of stress and damage.

3. Stress analysis and damage evolution

The only non-trivial equilibrium equation in the plane polar
coordinate system rh in terms of the radial and circumferential
stresses has the form

@rr

@r
þ rr � rh

r
¼ 0: ð8Þ

It is obvious that rr � rff and rh � rgg. The plane-strain yield
condition in the case under consideration is

rr � rh ¼ �
2ffiffiffi
3
p r0UðeeqÞð1� DÞ; ð9Þ

where the upper sign corresponds to the region �1 6 f 6 fn and the
lower sign to the region fn 6 f 6 0. Also, the function U(eeq) satisfies



Fig. 2. General structure of the solution.
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the condition U(0) = 1, r0 is the initial yield stress in tension, and D
is the damage parameter. Using Eq. (3) it is possible to replace r and
differentiation with respect to r with f and differentiation with re-
spect to f in Eq. (8). Then, with using Eq. (9),

@rr

@f
¼ � ar0UðeeqÞð1� DÞffiffiffi

3
p
ðfaþ sÞ

: ð10Þ

The function U(eeq) should be prescribed and eeq can be ex-
cluded by means of Eq. (7). The boundary conditions on the radial
stress are

rr ¼ 0 ð11Þ
for f = �1 and f = 0. Since there are the two boundary conditions for
the differential equation of first order, the function s(a) and, conse-
quently, the neutral line position (see Eq. (5)) should be found from
the solution to Eq. (10) simultaneously with constant of integration.
Also, the radial stress must be continuous across the boundary of
the aforementioned regions (Fig. 2). For material models with no
damage parameter Eq. (10) is the only equation to be integrated
numerically. In the case under consideration, Eq. (10) should be
supplemented with a damage evolution law. A wide class of phe-
nomenological damage evolution laws can be written in the form

_D ¼ K
r
req

; eeq;D
� �

neq; ð12Þ

where the overdot denotes the material derivative. In the case of
plane strain deformation, the flow rule associated with the yield
condition (9) gives rz = r = (rr + rh)/2. Since the shear stresses in
the cylindrical coordinate system vanish, the equivalent stress in-
volved in (12) is given by req ¼

ffiffiffi
3
p

=2
� �

jrr � rhj. In the Lagrangian
coordinates, Eq. (12) can be rewritten, with the use of Eq. (6), as

@D
@a
¼ 1ffiffiffi

3
p K

r
req

; eeq;D
� �

jfþ ds=daj
ðfaþ sÞ : ð13Þ

The initial distribution of the damage parameter should be pre-
scribed. A widely used assumption is

D ¼ D0 ð14Þ

for a = 0. Here D0 is constant.
Once the solution for stress has been found, the bending mo-

ment per unit length is determined by integration (Alexandrov
et al., 2006)

M ¼ H2

2a

Z 0

�1
rhhdf: ð15Þ

At the initial instant when D = D0 and eeq = 0, the solution re-
duces to that for the rigid perfectly plastic material model. The lat-
ter is given in Hill (1950). It can be immediately found from this
solution that fn = �1/2 at a = 0. Then, it follows from Eq. (5) that
ds=da ¼ 1=2 ð16Þ

at a = 0. Moreover, at the initial instant

rr ¼ 0 everywhere

rh ¼
2ffiffiffi
3
p r0ð1� D0Þ in the range � 1 6 f < �1=2 ð17Þ

rh ¼ �
2ffiffiffi
3
p r0ð1� D0Þ in the range � 1=2 < f 6 0:

The bending moment per unit length is determined from this
equation as

M0 ¼
r0ð1� D0ÞH2

2
ffiffiffi
3
p : ð18Þ

In the case of the rigid perfectly plastic material model the
bending moment is constant throughout the process of deforma-
tion (Hill, 1950).

In order to facilitate numerical solution of Eqs. (10) and (13), the
second derivative d2s/da2 at the initial instant can be found analyt-
ically. In particular, the solution of Eq. (10) in region 3 (Fig. 2) sat-
isfying the boundary condition (11) at f = �1 can be written in the
form

rr ¼ �
ar0ffiffiffi

3
p

Z f

�1

UðeeqÞð1� DÞ
ðzaþ sÞ dz; ð19Þ

where z is an auxiliary variable of integration. Then, the radial stress
acting at f = fn is

r32 ¼ �
ar0ffiffiffi

3
p

Z fn

�1

UðeeqÞð1� DÞ
ðzaþ sÞ dz: ð20Þ

The solution of Eq. (10) in region 2 (Fig. 2) satisfying the
boundary condition rr = r32 at f = fn can be written in the form

rr ¼ r32 þ
ar0ffiffiffi

3
p

Z z

fn

UðeeqÞð1� DÞ
ðzaþ sÞ dz: ð21Þ

Then, the radial stress acting at f = �1/2 is

r21 ¼ r32 þ
ar0ffiffiffi

3
p

Z �1=2

fn

UðeeqÞð1� DÞ
ðzaþ sÞ dz: ð22Þ

Finally, the solution of Eq. (10) in region 1 (Fig. 2) satisfying the
boundary condition rr = r21 at f = �1/2 can be written in the form

rr ¼ r21 þ
ar0ffiffiffi

3
p

Z z

�1=2

UðeeqÞð1� DÞ
ðzaþ sÞ dz: ð23Þ

Substituting the boundary condition (11) at f = 0 into Eq. (23)
gives

r21 þ
ar0ffiffiffi

3
p

Z 0

�1=2

UðeeqÞð1� DÞ
ðzaþ sÞ dz ¼ 0: ð24Þ

Using Eqs. (5), (20) and (22) Eq. (24) can be transformed to

I1 þ I2 � I3 ¼ 0; ð25Þ

where

I1 ¼
Z �1=2

�ds=da

UðeeqÞð1� DÞ
ðzaþ sÞ dz; I2 ¼

Z 0

�1=2

UðeeqÞð1� DÞ
ðzaþ sÞ dz;

I3 ¼
Z �ds=da

�1

UðeeqÞð1� DÞ
ðzaþ sÞ dz: ð26Þ

Differentiating each of these integrals with respect to a and,
then, putting a = 0 and taking into account Eqs. (2), (14) and (16)
as well as the conditions eeq = 0 at the initial instant and U(0) = 1
gives
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@I1

@a

����
a¼0
¼4ð1�D0Þ

d2s

da2

�����
a¼0

þ16
Z �1=2

�1=2
ð1�D0Þ

dU
deeq

@eeq

@a

����
a¼0

�	

�@D
@a

����
a¼0



1
4
� zþ1

2

� �
ð1�D0Þ

�
dz¼4ð1�D0Þ

d2s

da2

�����
a¼0

@I2

@a

����
a¼0
¼16

Z 0

�1=2
ð1�D0Þ

dU
deeq

@eeq

@a

����
a¼0
�@D
@a

����
a¼0

� 

1
4

	

� zþ1
2

� �
ð1�D0Þ

�
dz¼4ð1�D0Þ

dU
deeq

Z 0

�1=2

@eeq

@a

����
a¼0

dz�4
Z 0

�1=2

@D
@a

����
a¼0

dz�2ð1�D0Þ;

@I3

@a

����
a¼0
¼�4ð1�D0Þ

d2s

da2

�����
a¼0

þ16
Z �1=2

�1
ð1�D0Þ

dU
deeq

@eeq

@a

����
a¼0

�	

�@D
@a

����
a¼0



1
4
� zþ1

2

� �
ð1�D0Þ

�
dz¼�4ð1�D0Þ

d2s

da2

�����
a¼0

þ4ð1�D0Þ
dU
deeq

Z �1=2

�1

@eeq

@a

����
a¼0

dz�4
Z �1=2

�1

@D
@a

����
a¼0

dzþ2ð1�D0Þ:

ð27Þ

Here the derivative dU/deeq has been taken out the integral sign
because it is solely a function eeq and eeq = 0 at the initial instant.
Since, by definition, @eeq/@t = neq in the Lagrangian coordinates,
the derivative @eeq/@a at the initial instant is determined with the
use of Eqs. (2), (6), and (16) as

@eeq

@a

����
a¼0
¼ 4ffiffiffi

3
p fþ 1

2

����
����: ð28Þ

Substituting Eq. (28) into Eq. (27) and, then, Eq. (27) into Eq.
(25) differentiated with respect to a leads to

2ð1� D0Þ
d2s

da2

�����
a¼0

�
Z 0

�1=2

@D
@a

����
a¼0

dzþ
Z �1=2

�1

@D
@a

����
a¼0

dz� ð1� D0Þ ¼ 0:

ð29Þ

In the case of many damage evolution laws the function
K(r/req,eeq,D) involved in Eq. (12) vanishes for eeq = 0. For such
laws Eq. (29) simplifies to

d2s

da2

�����
a¼0

� sð0Þ2 ¼
1
2
: ð30Þ
4. Numerical solution

The approach developed is illustrated by numerical solution for
the damage evolution law proposed in Hartley et al. (1997) assum-
ing that D0 = 0 in Eq. (14). In this case

K
r
req

; eeq;D
� �

¼ a exp
3
2

r
req

� �
e2=n

eq ; ð31Þ

where a and n are material constants and, therefore, Eq. (30) is va-
lid. The value of n is usually related to the hardening exponent. It is
assumed in all calculations that n = 0.25 and the effect of a-value on
the solution is studied. The function U(eeq) involved in Eq. (9) is ta-
ken in the form of Swift’s law

UðeeqÞ ¼ 1þ eeq

0:222

� �0:25
: ð32Þ

The fracture criterion is

D ¼ Dc; ð33Þ

where Dc is a material constant. It is assumed in all calculations that
Dc = 0.3.
Suppose that the through thickness distribution of stress and
damage parameter is known at a = aj, i.e.. those can be represented,
in particular, as discrete functions of f. Also, the values of
s ¼ sðjÞ; ds=da ¼ sðjÞ1 , and d2s=da2 ¼ sðjÞ2 are supposed to be known
at a = aj. The function s(a) in the interval aj 6 a 6 aj + Da = aj+1 can
be approximated as

sðaÞ ¼ sðjÞ þ sðjÞ1 ða� ajÞ þ
1
4

sðjÞ2 þ sðjþ1Þ
2

� �
ða� ajÞ2; ð34Þ

where sðjþ1Þ
2 , the second derivative d2s/da2 at a = aj+1, is unknown. It

follows from Eq. (34) that

sðjþ1Þ ¼ sðjÞ þ sðjÞ1 Daþ 1
4 sðjÞ2 þ sðjþ1Þ

2

� �
ðDaÞ2;

sðjþ1Þ
1 ¼ sðjÞ1 þ 1

2 sðjÞ2 þ sðjþ1Þ
2

� �
Da:

ð35Þ

Using Eqs. (7) and (31) as well as the solution at a = aj the right
hand side of Eq. (13) can be found at a = aj as a discrete function of
f. Then, the through-thickness discrete distribution of the damage
parameter at a = aj+1 is approximated by

Dðjþ1Þ ¼ DðjÞ þ @D
@a

� �����
a¼aðjÞ

Da: ð36Þ

Eqs. (19)–(26) are valid at any value of a. Using Eqs. (5), (7), (32),
(35), and (36) the integrals involved in Eq. (26) can be calculated

numerically at a = aj+1 for any value of sðjþ1Þ
2 . Then, Eq. (25) has to

be solved to determine the value of sðjþ1Þ
2 . In order to start the

numerical procedure described, Eqs. (2), (14), (16), (17), and (30)
should be adopted at a = a(1) = 0. The solution can be transformed
into the physical space by means of Eqs. (3) and (4). In particular,
for illustration of the through-thickness distribution of functions it
is convenient to introduce the dimensionless coordinate in the
form

X ¼ r � RCD

H
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f
a
þ s

a2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

a2 �
1
a

r
: ð37Þ

It is obvious that X = 0 at the concave surface CD (Fig. 1). Calcu-
lation has shown that the variation of h is negligible. Therefore,
X � 1 at the convex surface AB. A similar result has been obtained
from analytic solutions for various strain hardening materials with
no damage evolution (Bruhns et al., 2003; Alexandrov and Hwang,
2010). One the other hand, solutions for some material models pre-
dict a significant change in the thickness of the sheet at large
strains (see, for example, Zhu, 2007).

The through-thickness variation of the damage parameter at a
= 0.8, a = 1 and a = 1.2 is depicted in Figs. 3–5, respectively. Curves
1, 2 and 3 in each figure correspond to H/RCD = 0.3, H/RCD = 0.5 and
H/RCD = 0.7, respectively. Curve 4 corresponds to the stage of the
process at which the fracture initiation occurs at the convex sur-
face of the specimen according to the criterion (33). In particular,
the maximum value of H/RCD is H=Rmin

CD ¼ 1:46 for a = 0.8,
H=Rmin

CD ¼ 1:1 for a = 1 and H=Rmin
CD ¼ 0:88 for a = 1.2. The variation

of H=Rmin
CD with a is shown in Fig. 6. The through-thickness distribu-

tion of the radial and circumferential stresses is depicted in Figs. 7–
12. As before, curves 1, 2, 3 and 4 correspond to H/RCD = 0.3,
H/RCD = 0.5, H/RCD = 0.7 and H=RCD ¼ H=Rmin

CD , respectively. Also,
a = 0.8 in Figs. 7 and 10, a = 1 in Figs. 8 and 11, and a = 1.2 in Figs.
9 and 12. Having the distribution of the circumferential stress, the
bending moment can be calculated by means of Eq. (15). The var-
iation of the dimensionless bending moment defined by m = M/M0

where M0 is given by Eq. (18) with H/RCD is shown for several val-
ues of a in Fig. 13. In this figure, curves 1, 2, 3, 4, and 5 correspond
to a = 1.2, a = 1.1, a = 1, a = 0.9, and a = 0.8, respectively. Finally,
the variation of the position of the neutral line, X = Xn, with H/RCD

is depicted in Fig. 14. The dependence of the value of Xn on a in
the range of H/RCD-values in which no fracture occurs is negligible.



Fig. 4. Through-thickness distribution of the damage parameter at a = 1 and several
values of H/RCD.

Fig. 5. Through-thickness distribution of the damage parameter at a = 1.2 and
several values of H/RCD.
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The curve in Fig. 14 is for a = 0.8 since the value of H=Rmin
CD is largest

for this value of a in the interval considered, 0.8 6 a 6 1.2.

5. Conclusions

The general solution proposed describes the process of pure
bending of rigid plastic material obeying an arbitrary law of isotro-
pic hardening and an arbitrary law of damage evolution, assuming
that the material is incompressible. An advantage of the method
used is that numerical treatment has been reduced to solving
two partial differential equations written in characteristic coordi-
nates (Eqs. (10) and (13)).

The illustrative example has been presented for the hardening
law in the form of Eq. (32) and the damage evolution law in the
form of Eq. (31). Numerical results coincide with physical expecta-
tions. In particular, the magnitude of the damage parameter is
rather low in the vicinity of the neutral line (Figs. 3–5). This is a
consequence of the fact that the equivalent strain rate vanishes
at the neutral line and the magnitude of the equivalent strain is
low in the center of the specimen. Also, the magnitude of the dam-
age parameter on the concave side of the specimen is less than on
its convex side. This is a consequence of the fact that compressive
hydrostatic stress delays fracture. The through-thickness distribu-
tion of the principal stresses is in general similar to that in harden-
ing materials with no damage parameter. However, the through-
thickness variation of the circumferential stress is not significant
on each side of the neutral line. This can be explained by the com-
petition between strain hardening and softening due to damage.
This conclusion is confirmed by the variation of the bending mo-
ment with H/RCD (Fig. 13). At the initial stage of the process, the
bending moment increases with H/RCD, as in the case of strain
hardening materials. An effect of damage is revealed at a later stage
when the magnitude of the bending moment attains a maximum
and, then, decreases. Therefore, the difference from the rigid per-
fectly plastic bending moment is not significant on average.

An effect of a-value on solution behaviour follows physical
expectations as well. In particular, the larger a-value, the more
pronounced effect of the damage parameter is. A representative
example is the variation of the bending moment (Fig. 13). In this
case, the increase in a-value leads to the decrease in the maximum
value of the bending moment.

It is of interest to compare the stress distributions found with
the corresponding solution with no damage evolution. Formally,
the solution with no damage evolution can be obtained from the
present solution assuming that a = 0 in Eq. (31). However, the ana-
lytic derivation can be advanced in the case of D = 0. In particular,
replacing in Eq. (10) the derivative with respect to f with the deriv-
ative with respect to eeq by means of Eq. (7) gives
Fig. 3. Through-thickness distribution of the damage parameter at a = 0.8 and
several values of H/RCD.

Fig. 6. Variation of the value of H/RCD at which fracture at the convex surface occurs
with a.
@rr

@eeq
¼ r0UðeeqÞ ð38Þ

in regions 1 and 3 (Fig. 2). Substituting Eq. (32) into Eq. (38) and
integrating with the use of the condition (17) result in

rr
r0
¼ 0:222

1:25 1þ eeq

0:222

� 1:25 � 0:222
1:25 f1ðaÞ;

rr
r0
¼ 0:222

1:25 1þ eeq

0:222

� 1:25 � 0:222
1:25 f3ðaÞ

ð39Þ

in regions 1 and 3, respectively. Here f1(a) and f3(a) are arbitrary
functions of a and f1(0) = f3(0) = 1. The equivalent strain in Eq.
(39) should be excluded by means of Eq. (7). Eq. (39) are not partic-
ularly useful for solving Eq. (10) in the entire range of f, �1 6 f 6 0,
but for verifying the numerical code developed. For, once the



Fig. 7. Through-thickness distribution of the radial stress at a = 0.8 and several
values of H/RCD.

Fig. 8. Through-thickness distribution of the radial stress at a = 1 and several values
of H/RCD.

Fig. 9. Through-thickness distribution of the radial stress at a = 1.2 and several
values of H/RCD.

Fig. 10. Through-thickness distribution of the circumferential stress at a = 0.8 and
several values of H/RCD.

Fig. 11. Through-thickness distribution of the circumferential stress at a = 1 and
several values of H/RCD.

Fig. 12. Through-thickness distribution of the circumferential stress at a = 1.2 and
several values of H/RCD.

Fig. 13. Variation of the dimensionless bending moment with H/RCD at several
a-values.

Fig. 14. Position of the neutral line with H/RCD for a = 0.8.
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Fig. 15. Distribution of the radial stress at H/RCD = 0.5.

Fig. 16. Distribution of the circumferential stress at H/RCD = 0.5.
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numerical solution has been found, the values of the equivalent
strain at f = 0 and f = �1 are known, say e1(a) and e3(a). Then,
substituting Eq. (7) into Eq. (39) and taking into account that
rr = 0 at f = 0 and f = �1 give

f1ðaÞ ¼ 1þ e1ðaÞ
0:222

� �1:25

; f 3ðaÞ ¼ 1þ e3ðaÞ
0:222

� �1:25

:

The radial stress distributions in regions 1 and 3 obtained after
substituting these functions and (7) into Eq. (39) can be compared
to the numerical solution.

The distributions of the radial and circumferential stresses at
H/RCD = 0.5 are depicted in Figs. 15 and 16, respectively. The dashed
lines correspond to a = 0 (no damage), and solid lines to a = 1.2.
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