LINEAR ALGEBRA AND ITS APPLICATIONS

127

The Areal Spread of Matrices*

R. A. SMITH University of Durham, England

AND

L. MIRSKY University of Sheffield, England

Let \mathscr{C} be the class of plane regions (in the complex plane), such as triangles, or circles, or convex sets. For a square matrix A, denote by \mathscr{C}_A the subclass of \mathscr{C} consisting of those regions which contain all characteristic roots of A. How "small" a region can be chosen in \mathscr{C}_A ? As a natural measure of "smallness," we shall adopt the ratio $\sigma(A)/||A||^2$, where $\sigma(A)$ is the minimal area of all regions in \mathscr{C}_A , and $|| \cdot ||$ denotes the euclidean matrix norm. (This ratio might be called the "areal spread of A with respect to \mathscr{C} .") Our problem, then, is to estimate the supremum of $\sigma(A)/||A||^2$ as A ranges over all nonzero $n \times n$ matrices. Stated in these broad terms, the problem seems far from easy. As a possible first step towards a comprehensive discussion, we offer here the solution for the special case when \mathscr{C} is the class of circles.

LEMMA 1. Let Δ be a closed circular disk of minimal radius which contains the points P_1, \ldots, P_n . Then either two of the points P_1, \ldots, P_n are the extremities of a diameter of Δ or three of the points lie on the circumference of Δ and form an acute-angled triangle.

This result, which is closely related to Jung's "covering problem," [1] is well known.

* Dedicated to Professor A. M. Ostrowski on his 75th birthday.

Linear Algebra and Its Applications 2(1969), 127-129 Copyright © 1969 by American Elsevier Publishing Company, Inc. LEMMA 2. If G is the centroid of an acute-angled triangle ABC of circumradius R, then

$$AG^2 + BG^2 + CG^2 \geqslant 2R^2.$$

To prove this inequality, we note that

$$AG^{2} + BG^{2} + CG^{2} = \frac{1}{3}(a^{2} + b^{2} + c^{2}).$$

Moreover, in an acute-angled triangle,

$$a^{2} + b^{2} + c^{2} \ge 2\{\max(a, b, c)\}^{2} \ge 6R^{2},$$

and the assertion follows.

THEOREM. Let $n \ge 2$ and let $\sigma(A)$ denote the area of the smallest circular disk which contains all characteristic roots of the complex $n \times n$ matrix A. Then

$$\sup\{\sigma(A)/||A||^2\} = \frac{1}{2}\pi,$$

where the supremum is taken over all nonzero $n \times n$ matrices A.

Let R(A) denote the radius of a minimal circular disk, say Δ , which contains all characteristic roots of A. Then the assertion of the theorem is equivalent to the statement that

$$\sup\{R(A)/||A||\} = 1/\sqrt{2}.$$

Since $R(A)/||A|| = 1/\sqrt{2}$ for the $n \times n$ matrix A = diag(1, -1, 0, ..., 0), it only remains to show that $||A||^2 \ge 2R(A)^2$ for every A. We note that, for any complex numbers $\omega_1, \ldots, \omega_n$,

$$\sum_{k=1}^{n} |\omega_k|^2 \geqslant \sum_{k=1}^{n} |\omega_k - \zeta|^2, \tag{1}$$

where $\zeta = (\omega_1 + \cdots + \omega_n)/n$. If $\omega_1, \ldots, \omega_n$ denote the characteristic roots of A, then, by Schur's inequality [2],

$$||A||^2 \geqslant \sum_{k=1}^n |\omega_k|^2.$$

It suffices, therefore, to show that

$$\sum_{k=1}^{n} |\omega_k|^2 \ge 2R(A)^2.$$
 (2)

Linear Algebra and Its Applications 2(1969), 127-129

Now, by Lemma 1, either two ω 's (say ω_1 and ω_2) lie at the extremities of a diameter of Δ or else three ω 's (say ω_1 , ω_2 , ω_3) lie on the circumference of Δ and form an acute-angled triangle. In the former case, writing $\zeta_2 = (\omega_1 + \omega_2)/2$, we have, by (1),

$$\sum_{k=1}^{n} |\omega_{k}|^{2} \geqslant |\omega_{1}|^{2} + |\omega_{2}|^{2} \geqslant |\omega_{1} - \zeta_{2}|^{2} + |\omega_{2} - \zeta_{2}|^{2} = 2R(A)^{2}.$$

In the latter case, writing $\zeta_3=(\omega_1+\omega_2+\omega_3)/3$, we have, by (1) and Lemma 2,

$$\begin{split} \sum_{k=1}^{n} |\omega_{k}|^{2} &\geqslant |\omega_{1}|^{2} + |\omega_{2}|^{2} + |\omega_{3}|^{2} \\ &\geqslant |\omega_{1} - \zeta_{3}|^{2} + |\omega_{2} - \zeta_{3}|^{2} + |\omega_{3} - \zeta_{3}|^{2} \geqslant 2R(A)^{2}. \end{split}$$

Thus (2) is valid in both cases and the proof is complete.

REFERENCES

- 1 H. W. E. Jung, Über den kleinsten Kreis, der eine ebene Figur einschließt, J. Reine Angew. Math. 137(1910), 310-313.
- 2 I. Schur, Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen, Math. Annalen 66(1909), 488-510.

Received March 19, 1968