The Areal Spread of Matrices*

R. A. SMITH

University of Durham, England

AND

L. MIRSKY

University of Sheffield, England

Let \mathscr{C} be the class of plane regions (in the complex plane), such as triangles, or circles, or convex sets. For a square matrix A, denote by \mathscr{C}_{A} the subclass of \mathscr{C} consisting of those regions which contain all characteristic roots of A. How 'small" a region can be chosen in \mathscr{C}_{A} ? As a natural measure of "smallness," we shall adopt the ratio $\sigma(A) /\|A\|^{2}$, where $\sigma(A)$ is the minimal area of all regions in \mathscr{C}_{A}, and $\|\cdot\|$ denotes the euclidean matrix norm. (This ratio might be called the "areal spread of A with respect to \mathscr{C}.') Our problem, then, is to estimate the supremum of $\sigma(A) /\|A\|^{2}$ as A ranges over all nonzero $n \times n$ matrices. Stated in these broad terms, the problem seems far from easy. As a possible first step towards a comprehensive discussion, we offer here the solution for the special case when \mathscr{C} is the class of circles.

Lemma 1. Let Δ be a closed circular disk of minimal radius which contains the points P_{1}, \ldots, P_{n}. Then either two of the points P_{1}, \ldots, P_{n} are the extremities of a diameter of Δ or three of the points lie on the circumference of Δ and form an acute-angled triangle.

This result, which is closely related to Jung's "covering problem," [1] is well known.

[^0]Lemma 2. If G is the centroid of an acute-angled triangle $A B C$ of circumradius R, then

$$
A G^{2}+B G^{2}+C G^{2} \geqslant 2 R^{2}
$$

To prove this inequality, we note that

$$
A G^{2}+B G^{2}+C G^{2}=\frac{1}{3}\left(a^{2}+b^{2}+c^{2}\right)
$$

Moreover, in an acute-angled triangle,

$$
a^{2}+b^{2}+c^{2} \geqslant 2\{\max (a, b, c)\}^{2} \geqslant 6 R^{2}
$$

and the assertion follows.

Theorem. Let $n \geqslant 2$ and let $\sigma(A)$ denote the area of the smallest circular disk which contains all characteristic roots of the complex $n \times n$ matrix A. Then

$$
\sup \left\{\sigma(A) /\|A\|^{2}\right\}=\frac{1}{2} \pi
$$

where the supremum is taken over all nonzero $n \times n$ matrices A.

Let $R(A)$ denote the radius of a minimal circular disk, say Δ, which contains all characteristic roots of A. Then the assertion of the theorem is equivalent to the statement that

$$
\sup \left\{R(A) /\|A\|_{i}\right\}=1 / \sqrt{2}
$$

Since $R(A) /\|A\|=1 / \sqrt{2}$ for the $n \times n$ matrix $A=\operatorname{diag}(1,-1,0, \ldots, 0)$, it only remains to show that $\|A\|^{2} \geqslant 2 R(A)^{2}$ for every A. We note that, for any complex numbers $\omega_{1}, \ldots, \omega_{n}$,

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\omega_{k}\right|^{2} \geqslant \sum_{k=1}^{n}\left|\omega_{k}-\zeta\right|^{2} \tag{1}
\end{equation*}
$$

where $\zeta=\left(\omega_{1}+\cdots+\omega_{n}\right) / n$. If $\omega_{1}, \ldots, \omega_{n}$ denote the characteristic roots of A, then, by Schur's inequality [2],

$$
\|A\|^{2} \geqslant \sum_{k=1}^{n}\left|\omega_{k}\right|^{2}
$$

It suffices, therefore, to show that

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\omega_{k}\right|^{2} \geqslant 2 R(A)^{2} \tag{2}
\end{equation*}
$$

Linear Algebra and Its Applications 2(1969), 127-129

Now, by Lemma 1, either two ω 's (say ω_{1} and ω_{2}) lie at the extremities of a diameter of Δ or else three ω 's (say $\omega_{1}, \omega_{2}, \omega_{3}$) lie on the circumference of Δ and form an acute-angled triangle. In the former case, writing $\zeta_{2}=\left(\omega_{1}+\omega_{2}\right) / 2$, we have, by (1),

$$
\sum_{k=1}^{n}\left|\omega_{k}\right|^{2} \geqslant\left|\omega_{1}\right|^{2}+\left|\omega_{2}\right|^{2} \geqslant\left|\omega_{1}-\zeta_{2}\right|^{2}+\left|\omega_{2}-\zeta_{2}\right|^{2}=2 R(A)^{2}
$$

In the latter casc, writing $\zeta_{3}=\left(\omega_{1}-\mid \omega_{2}+\omega_{3}\right) / 3$, we have, by (1) and Lemma 2,

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\omega_{k}\right|^{2} & \geqslant\left|\omega_{1}\right|^{2}+\left|\omega_{2}\right|^{2}+\left|\omega_{3}\right|^{2} \\
& \geqslant\left|\omega_{1}-\zeta_{3}\right|^{2}+\left|\omega_{2}-\zeta_{3}\right|^{2}+\left|\omega_{3}-\zeta_{3}\right|^{2} \geqslant 2 R(A)^{2}
\end{aligned}
$$

Thus (2) is valid in both cases and the proof is complete.

REFERENCES

1 H. W. E. Jung, U゙ber den kleinsten Kreis, der eine ebene Figur einschließt, J. Reine Angew. Math. $137(1910)$, 310-313.
2 I. Schur, Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen, Math. Annalen 66(1909), 488-510.

Received March 19, 1968

[^0]: * Dedicated to Professor A. M. Ostrowski on his 75th birthday.

