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Let ‘3 be the class of plane regions (in the complex plane), such as 

triangles, or circles, or convex sets. For a square matrix A, denote by 

%?A the subclass of %? consisting of those regions which contain all char- 

acteristic roots of A. How “small” a region can be chosen in gA ? As a 

natural measure of “smallness,” we shall adopt the ratio o(A)/I[AI/~, 

where a(A) is the minimal area of all regions in VA, and I/ * 1 I denotes 

the euclidean matrix norm. (This ratio might be called the “area1 spread 

of A with respect to %?.“) Our problem, then, is to estimate the supremum 

of o(A)//~A~~2 as A ranges over all nonzero rz x n matrices. Stated in 

these broad terms, the problem seems far from easy. As a possible first 

step towards a comprehensive discussion, we offer here the solution for 

the special case when V is the class of circles. 

LEMMA 1. Let A be a closed circular disk of mirtimal radizts which 

contains the points P,, . . ., P,. Then either two of the fioints P,, . . ., P, 

are the extremities of a diameter of A 07 three of the points lie on the &cum- 

fevence of A and form an acute-angled triangle. 

This result, which is closely related to Jung’s “covering problem,” 

[l] is well known. 

* Dedicated to Professor A. M. Ostrowski on his 75th birthday. 
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LEMMA 2. If G is the centroid of an acute-angled 

circumradius R, then 

AG2 + BG2 + CG2 > 2R2. 

To prove this inequality, we note that 

AG2 + BG2 + CG2 = +(a2 + b2 -1 c2). 

Moreover, in an acute-angled triangle, 

a2 + b2 + c2 > 2(max(a, b, c)}” 3 6R2, 

and the assertion follows. 
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THEOREW Let n 3 2 and let o(A) denote the area of the smallest 

circular disk which contaims all characteristic roots of the complex n x PZ 

matrix A. Then 

s~p{a(A)/l~A/~~} = 4~ 

where the wpremum is taken over all vzoxzero n x n matrices A. 

Let R(A) denote the radius of a minimal circular disk, say A, which 

contains all characteristic roots of A. Then the assertion of the theorem 

is equivalent to the statement that 

su~{R(4/I IA / 1) = l/vz. 

Since R(A)/\iAl/ = l/v%for the 12 x n matrix A = diag(1, - 1, 0,. . ., 0), 

it only remains to show that ijA1\2 > 2R(A)2 for every A. We note that, 

for any complex numbers oi, . . . , w,, 

where 5‘ = (or + - - * + o_J,J/Pz. If wr, . . . , co,, denote the characteristic 

roots of A, then, by Schur’s inequality [2], 

k=l 

It suffices, therefore, to show that 
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ru’ow, by Lemma 1, either two co’s (say w1 and r+) lie at the extremities 

of a diameter of A or else three CO’S (say q, CC)~, wa) lie on the circumference 

of A and form an acute-angled triangle. In the former case, writing 

l2 = (q + q)/2, we have. by Cl), 

In the latter case, writing & = (wl + cu2 + 04/3, we have, by (1) and 

Lemma 2, 

2 101 - C312 + I co2 - &I2 + Iwa - &I2 3 2&4J2. 

Thus (2) is valid in both cases and the proof is complete. 
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