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SUMMARY

Interactions between bone and the reproductive
system have until now been thought to be limited to
the regulation of bone remodeling by the gonads.
We now show that, in males, bone acts as a regulator
of fertility. Using coculture assays, we demonstrate
that osteoblasts are able to induce testosterone
production by the testes, though they fail to influence
estrogen production by the ovaries. Analyses of cell-
specific loss- and gain-of-function models reveal
that the osteoblast-derived hormone osteocalcin
performs this endocrine function. By binding to a G
protein-coupled receptor expressed in the Leydig
cells of the testes, osteocalcin regulates in a CREB-
dependent manner the expression of enzymes that
is required for testosterone synthesis, promoting
germ cell survival. This study expands the physiolog-
ical repertoire of osteocalcin and provides the first
evidence that the skeleton is an endocrine regulator
of reproduction.
INTRODUCTION

Bone is a dynamic tissue undergoing modeling during child-

hood and remodeling throughout adulthood (Harada and

Rodan, 2003; Rodan and Martin, 2000). These two processes,

referred to hereafter as bone (re)modeling, are characterized

by the succession of resorption of mineralized bone by osteo-

clasts and de novo formation by osteoblasts. Bone (re)

modeling is regulated locally by cytokines produced by bone

cells and systemically by hormones and neuropeptides (Harada

and Rodan, 2003; Karsenty et al., 2009). One of the most

powerful hormonal regulations of bone (re)modeling is exerted

by the sex steroid hormones that are necessary to maintain

bone integrity (Khosla et al., 2001; Nakamura et al., 2007; Riggs
796 Cell 144, 796–809, March 4, 2011 ª2011 Elsevier Inc.
et al., 1998). The biological importance of this regulation is best

exemplified by the fact that gonadal failure triggers bone

loss and causes osteoporosis in postmenopausal women

(Manolagas et al., 2002; Rodan and Martin, 2000). To date,

the study of the interplay between gonads and bone has

focused on the mechanism whereby sex steroid hormones

affect bone mass accrual (Manolagas et al., 2002; Nakamura

et al., 2007).

Based on physiological and clinical observations, we hypoth-

esized 10 years ago that bone mass, energy metabolism, and

reproduction might be coordinately regulated (Ducy et al.,

2000). Testing this hypothesis revealed that bone is an endocrine

organ favoring whole-body glucose homeostasis and energy

expenditure. These functions of bone are mediated by an osteo-

blast-specific secreted molecule, osteocalcin, that, when uncar-

boxylated, acts as a hormone favoring b cell proliferation, insulin

secretion, and sensitivity and energy expenditure (Lee et al.,

2007). A second gene expressed in osteoblasts, Esp, inhibits

endocrine functions of osteocalcin by favoring, through an indi-

rect mechanism, its carboxylation (Ferron et al., 2010; Fulzele

et al., 2010). Despite these findings, basic facts about how os-

teocalcin performs its endocrine function are unknown. Most

importantly, the receptor for osteocalcin remains to be deter-

mined, as do the signaling pathways triggered by this hormone

in target cells.

We now show that osteocalcin, in addition to its endocrine

role as a regulator of energy homeostasis, favors male fertility.

It does soby promoting synthesis by Leydig cells of testosterone,

a steroid hormone that is required for many aspects of testicular

function (SinhaHikimandSwerdloff, 1999;Walker, 2009) and has

no effect on female fertility. Furthermore, we identify a bona fide

receptor for osteocalcin that is expressed and transduces its

signal in Leydig cells. Using this tool, we identify genes whose

expression is regulated by osteocalcin in these cells and that

account for its regulation of male fertility. Our findings expand

the biological importance of osteocalcin, begin to unravel its

molecular mode of action, and provide the first evidence that

the skeleton is an endocrine regulator of fertility.

https://core.ac.uk/display/81129104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:gk2172@columbia.edu
http://dx.doi.org/10.1016/j.cell.2011.02.004


RESULTS

Osteoblasts Enhance Testosterone Production
by Leydig Cells
In an effort to determine whether osteoblasts or any other cells of

mesenchymal origin may regulate the functions of gonads, we

asked whether supernatants of mesenchymal cell cultures affect

hormoneproduction by testes and/or ovaries (Figure 1A). In a first

set of exploratory experiments, we observed that, of all those

tested, the supernatant of osteoblast cultures increased testos-

terone secretion by testes explants to the largest extent (>3-fold)

but did not affect estradiol and progesterone secretion by testes

or ovaries (Figures 1B–1G). In subsequent experiments, testes

explants were replaced by defined cell populations. Because

testosterone is produced by Leydig cells, we asked whether

osteoblast-derived molecule(s) act(s) directly on Leydig cells

by culturing mouse primary Leydig cells in the presence or

absence of supernatants of osteoblast cultures or of other

mesenchymal cell type cultures. In the conditions of this assay,

supernatants of osteoblast cultures were also the only ones

that were able to significantly increase testosterone production

by Leydig cells (>4-fold) (Figure 1H). These experiments indicate

that osteoblasts are the cells of mesenchymal origin that affect

testosterone biosynthesis to the largest extent and that they

do so through secreted molecule(s) acting on Leydig cells of

the testis. This endocrine function of osteoblasts was restricted

to androgen production.

Osteocalcin Favors Male Fertility by Enhancing
Testosterone Production
Osteocalcin is a major osteoblast-derived hormone. We had

previously noticed thatOsteocalcin-deficientmalemice (Ocn�/�)
breed poorly (P.D. and G.K., unpublished data), so we tested

whether it could be a, or the, osteoblast-derived hormone

enhancing testosterone secretion by Leydig cells.

Several lines of evidence indicated that that is the case. First,

supernatants of wild-type (WT), but not of Ocn�/�, osteoblast
cultures increased testosterone production by Leydig cells (Fig-

ure 2A). Second, treating Leydig cells with an increasing amount

of uncarboxylated osteocalcin, the active form of the hormone,

resulted in a dose-dependent increase in testosterone secretion,

although at high concentration, the stimulatory effect of osteo-

calcin weakened (Figure 2B). Third, injection of osteocalcin in

WTmice increased circulating levels of testosterone (Figure 2C).

Fourth, we analyzed loss- (Ocn�/� mice) and gain-of-function

(Esp�/� mice) mouse models for osteocalcin (Lee et al., 2007).

When Ocn�/� males were crossed with WT female mice, the

size of the litters was nearly 2-fold smaller than when WT males

were crossed with WT females (Figure 2D). Conversely, the

number of pups per litter was increased when Esp�/� males

were bred with WT female mice, although this increase did not

reach statistical significance (Figure 2D). The frequency of litters

for a period of 8 weeks was also decreased in the case of the

loss-of-function model and increased in the gain-of-function

model (Figure 2E). Testes size and weight were significantly

decreased in Ocn�/� and increased in Esp�/� mice at 3 months

of age. In some of the latter mutant mice, this was caused, in

part, by fluid accumulation (Figures 2F and 2G). The weights of
epididymides and seminal vesicles and sperm count were also

significantly decreased in Ocn�/� and increased in Esp�/�

mice (Figures 2H–2J). These abnormalities worsened over time

(Figures 2G and 2J).

Motility of sperm from both WT and Ocn�/� males was as-

sessed by videomicroscopy immediately after dissemination

from the caudal epididymis or after 2 hr of incubation under

conditions known to prepare sperm for fertilization (Suárez and

Osman, 1987). In both cases, the percentage of motile sperm

did not differ betweenOcn�/� andWTmice (Figure S1A available

online). Likewise, the percentage of abnormally shaped or dead

sperm was similar in WT and Ocn�/� mice (Figures S1B and

S1C).

Consistent with the fact that osteocalcin favors testosterone

synthesis in Leydig cells ex vivo, circulating levels of testos-

terone were markedly decreased in Ocn�/� and increased in

Esp�/� mice at all time points tested (Figure 2K). Accordingly,

circulating levels of luteinizing hormone (LH), a pituitary-derived

hormone favoring testosterone synthesis, was increased

2.5-fold in Ocn�/� mice (Figure 2L). Taken together, these cell

biological and genetic experiments identify osteocalcin as

a secreted molecule favoring male fertility by increasing testos-

terone production by Leydig cells.

Circulating progesterone levels were similar inOcn�/� andWT

mice, and although circulating levels of estradiol were higher in

Ocn�/� than in WT mice, they remained within the normal range

(from 9.3 to 28.9 ng/ml for nonbreeder mice and from 14.4 to

71.1 ng/ml for breeder mice) (Figure 2K). Estradiol levels were

not affected in Esp�/� mice. As predicted by the coculture

assays, female fertility, ovary weight, morphology of the uterus,

follicles number, and circulating levels of sex steroid hormones

were normal in Ocn�/� female mice (Figures S1D–S1L).

Osteocalcin Regulates Male Fertility
as an Osteoblast-Derived Hormone
To verify that osteocalcin regulates male fertility as an osteo-

blast-secreted hormone and not as a testis-secreted factor,

we performed gene expression and cell-specific gene deletion

experiments.

When assessing Osteocalcin expression by quantitative

PCR (qPCR), we observed that it was more than 750-fold higher

in bone than in gonads; accordingly, we failed to detect

Osteocalcin transcript or protein in testes by in situ hybridization

or western blot analyses (Figures 3A–3C). To be able to trace

Osteocalcin-expressing cells in vivo, we knocked the mCherry

fluorescent reporter gene into the Ocn locus (Ocn-mCherry

mice) (Figures S2A and S2B). Though we observed the expected

strong signal in osteoblasts, there was no detectable mCherry

fluorescence in testes (Figure 3D). Thus, in multiple assays, we

failed to detect Osteocalcin expression in testes.

Next, we generated cell-specific loss- and gain-of-function

models of osteocalcin by crossing mice harboring floxed alleles

of Ocn (Figures S2C and S2D) or Esp with either the a1(I)

Collagen-Cre transgenic mice or the Cyp17-iCre transgenic

mice to delete genes in osteoblasts or in Leydig cells only,

respectively (Bridges et al., 2008; Dacquin et al., 2002). Testes

size and weight, epididymides and seminal vesicles weights,

sperm count, and circulating testosterone levels were all
Cell 144, 796–809, March 4, 2011 ª2011 Elsevier Inc. 797
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Figure 1. Osteoblasts Enhance Testosterone Biosynthesis by Leydig Cells

(A) Schematic representation of the cell-based assay used to determine the role of various mesenchymal cells in sex steroid hormone production. Various

primary mesenchymal cells from mice were cultured in Leydig cell medium, and supernatants were collected after 24 hr. Then, testis or ovary explants or

primary Leydig cells were cultured for 1 hr with these supernatants, and radioimmunoassays (RIAs) were performed to measure levels of testosterone,

estradiol, or progesterone.

(B–D) Testis explants cultured in the presence of supernatants of different mesenchymal cell cultures: RIA measurement of (B) testosterone, (C) estradiol, and (D)

progesterone levels.
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Figure 2. Osteocalcin Favors Male Fertility by Increasing Testosterone Production by Leydig Cells
(A) Testosterone production by primary Leydig cells cultured in the presence of supernatants of wild-type (WT) or Ocn�/� osteoblast cultures.

(B) Testosterone production by primary Leydig cells following stimulation with increasing doses of osteocalcin.

(C) Circulating testosterone levels in WT mice 1 hr, 4 hr, and 8 hr after vehicle or osteocalcin injection (3 ng/g of body weight).

(D and E) Comparison between the average litter size (D) and frequency (E) generated by WT, Ocn�/�, or Esp�/� male littermate mice crossed with WT females

(breeding was tested from 8 to 16 weeks of age).

(F–J) Testis size (F), testis weight (G), epididymis weight (H), seminal vesicle weights (I), and sperm counts (J) in Ocn�/� and Esp�/� compared to WT nonbreeder

littermate mice.

(K) Circulating sex steroid levels in Ocn�/� and Esp�/� compared to WT littermate mice. The analyses were performed on breeder and nonbreeder mice.

(L) Circulating LH levels in Ocn�/� compared to WT nonbreeder littermate mice.

Error bars represent SEM. Student’s t test; *p < 0.05; **p < 0.001. See also Figure S1.
reduced in 12-week-old Ocnosb
�/� mice. None of these param-

eters were affected in mice lacking Osteocalcin in Leydig cells

only (Figures 3E–3I). There was a tight correlation between circu-

lating levels of osteocalcin and testosterone in Ocnosb
�/� mice
(E–G) Ovary explants cultured in the presence of supernatants of different mesenc

progesterone levels.

(H) Testosterone production by primary Leydig cells cultured in the presence of

Error bars represent SEM. Student’s t test; *p < 0.05.
(Figure 3J). Conversely, Esposb
�/� mice displayed testicular

abnormalities identical to those of Esp�/� mice. Inactivation of

Esp in Sertoli cells, where this gene is expressed (Dacquin

et al., 2004; Jamin et al., 2003), had no detectable deleterious
hymal cells cultures: RIAmeasurement of (E) testosterone, (F) estradiol, and (G)

supernatants of different mesenchymal cell cultures.
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Figure 3. Osteocalcin Promotes Male Fertility through Its Expression in Osteoblasts

(A) qPCR analysis of Osteocalcin expression in bone, testes, and ovaries of 3-month-old nonbreeder WT mice.

(B) Western blot analysis of osteocalcin in femur, calvaria, and testis.

(C) In situ hybridization analysis of Osteocalcin expression in bone and testis of 3-month-old WT mice. Arrows show the Osteocalcin expression in bone.

(D) Analysis of mCherry fluorescent protein in bone and testis of Osteocalcin-mCherry knockin mice. Arrows show the presence of mCherry fluorescent protein

reflecting Osteocalcin.

(E–H) Fertility in mice lacking Ocn specifically in osteoblasts (Ocnosb
�/�) or Leydig cells (OcnLeydig

�/�) compared to WT nonbreeder littermates: (E) testes weight,

(F) sperm count, (G) epididymis, and (H) seminal vesicle weights.

(I) Ratio of circulating testosterone levels measured in WT and Ocnosb
�/� or in WT and OcnLeydig

�/� nonbreeder littermate mice.

(J) Linear regression representation of circulating testosterone levels versus circulating osteocalcin levels in Ocnosb
�/� (n = 11) nonbreeder mice. Each dot

represents one Ocnosb
�/� mouse. In WT littermate mice, the levels of osteocalcin varied from 106 to 177 ng/ml (on average, 133 ng/ml). For Ocnosb

�/�, the
average osteocalcin level was 68.4 ng/ml.

(K–M) Fertility inmice lacking Esp specifically in osteoblasts (Esposb
�/�) or Leydig cells (EspLeydig

�/�) compared toWT nonbreeder littermates: (K) testis weight, (L)

sperm count, and (M) seminal vesicle weight.

(N) Ratio of circulating testosterone levels measured in WT and Esposb
�/� or in WT and EspLeydig

�/� nonbreeder littermate mice.

Error bars represent SEM. Student’s t test; *p < 0.05; **p < 0.001. See also Figure S2.
consequence on testis biology, demonstrating that it is through

its expression in osteoblasts, not in Sertoli cells, that Esp regu-

lates male fertility (Figures 3K–3N). These experiments therefore

indicate that it is only through its expression in osteoblasts that

osteocalcin promotes male fertility.

Cellular and Molecular Bases of Osteocalcin Regulation
of Male Fertility
To address this aspect of osteocalcin biology, we first studied the

morphology of Leydig cells by immunostaining of 3-b-hydroxyste-
800 Cell 144, 796–809, March 4, 2011 ª2011 Elsevier Inc.
roiddehydrogenase (3b-HSD). The number of Leydig cellswas not

significantly affected by the absence of osteocalcin or Esp, nor

was the expression of genes affecting cell proliferation (Figure 4A

anddatanot shown).However, Leydig cells appearedhypotrophic

inOcn�/� testes, as determined by the significant decrease of the

ratio between the Leydig cells and interstitial areas observed in

Ocn�/� compared to WT testes (Figures 4B and 4C). Conversely,

this ratio was increased in Esp�/� testes (Figures 4B and 4C).

When germ cells were analyzed through a stereological

approach, we observed that the number of spermatocytes and
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Figure 4. Cellular and Molecular Events Triggered by Osteocalcin in Leydig Cells

(A–C) Histological analyses of Leydig cells in Ocn�/� and Esp�/� nonbreeder mice. (A) Absolute number of Leydig cells per testis was quantified by the number

of 3b-HSD-positive cells. (B) Ratio between Leydig cells (immunopositive for 3b-HSD) versus testis interstitial areas inWT,Ocn�/�, and Esp�/� nonbreeder mice.

(C) 3b-HSD immunohistochemistry staining of WT, Ocn�/�, and Esp�/� testes.

(D) Quantification of the different testicular cell types in WT and Ocn�/� nonbreeder mice.

(E) Germ cell apoptosis analysis by TUNEL assay in WT, Ocn�/�, and Esp�/� nonbreeder testes.

(F–H) qPCR analysis of the expression of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (Cyp11a), cytochrome P-450 17

a (Cyp17), 3-b-hydroxysteroid dehydrogenase (3b-HSD), aromatase enzyme (Cyp19), and 17-b-hydroxysteroid dehydrogenase (HSD-17) in primary Leydig

cells treated with 3 ng/ml of osteocalcin (F), in Ocn�/� compared to WT nonbreeder littermate testes (G), and in Esp�/� compared to WT nonbreeder littermate

testes (H).

(I) qPCR analysis of Grth/Ddx25 expression in WT, Ocn�/�, Esp�/�, and WT nonbreeder mice treated with vehicle or osteocalcin (3 ng/g of body weight).

(J) Western blot analysis of cleaved caspase 3 and tACE in WT and Ocn�/� nonbreeder testes.

Error bars represent SEM. Student’s t test; *p < 0.05; **p < 0.001. See also Figure S3.
round spermatids was significantly decreased in Ocn�/� mice

(Figure 4D). Consistently, the size of the epithelium in testis

tubules was also significantly decreased in these mutant mice,

a feature suggesting that osteocalcin regulates, presumably

through its effect on testosterone biosynthesis, germ cell

number (Figure S3B). Because testosterone inhibits germ cell

apoptosis (Brinkworth et al., 1995; Henriksén et al., 1995; Sinha

Hikim and Swerdloff, 1999), we performed TUNEL assays. Those
showed a 2-fold increase in germ cell apoptosis in Ocn�/�

compared to WT mice and a 2-fold decrease in Esp�/� testes

(Figure 4F). Importantly, there was an increase in the number

of apoptotic cells in stages VI–VIII of the spermatogenic cycle,

the very stages of spermatogenesis in which testosterone

affects germ cell apoptosis more efficiently (Sharpe et al.,

1992) (Figure S3C). There were, on the other hand, no abnormal-

ities of germ cell proliferation in either Ocn�/� or Esp�/� mice
Cell 144, 796–809, March 4, 2011 ª2011 Elsevier Inc. 801



(Figure S3A). Taken together, these data further indicate that the

decrease in fertility demonstrated by Ocn�/� male mice is

caused by a decrease in testosterone levels.

To determine how osteocalcin favors testosterone synthesis

by Leydig cells, we tested whether it affects expression of the

enzymes that are necessary for testosterone biosynthesis such

as StAR, Cyp11a, Cyp17, and 3b-HSD. In cell culture, uncar-

boxylated osteocalcin increased expression of these genes in

Leydig cells (Figure 4F). Accordingly, their expression was signif-

icantly decreased in Ocn�/� and increased in Esp�/� testes

(Figures 4G and 4H), whereas it was unaffected in Ocn�/� and

Esp�/� ovaries or adrenal glands (Figures S3D–S3G). Of note,

there was no change in expression of Cyp19, the gene encoding

the testosterone aromatase, or of HSD-17 inOcn�/� and Esp�/�

testes (Figures 4F–4H).

To further support the notion that osteocalcin influences germ

cell apoptosis through testosterone, we examined expression of

Gonadotropin Regulated Testicular Helicase (Grth) because this

gene has emerged as an essential regulator of spermatogenesis

that inhibits germ cell apoptosis and whose expression in germ

cells and Leydig cells is regulated by testosterone (Dufau and

Tsai-Morris, 2007; Tsai-Morris et al., 2007, 2010). Grth expres-

sion was decreased in Ocn�/� and increased in Esp�/� testes

(Figure 4I). GRTH inhibits activation of caspase 3, a determinant

of apoptosis (Sheng et al., 2006), and favors expression of tACE,

a protein favoring germ cell maturation. Consistent with these

notions, western blot analyses showed an increase of cleaved

caspase 3 accumulation and a decrease of tACE in Ocn�/�

testes (Figure 4J).

Gprc6a, a G Protein-Coupled Receptor, Transduces
Osteocalcin Signal in Leydig Cells
To begin to elucidate the molecular mode of action of osteocal-

cin, we next searched for a receptor expressed in Leydig cells

that could transduce its signal. To that end, we used a two-

step experimental strategy, taking advantage of the fact that

osteocalcin regulates fertility only in male mice.

First, we defined the signal transduction pathway used by

osteocalcin (these experiments were performed in TM3 cells,

and not primary Leydig cells, in order to obtain a sufficient

amount of extract for analysis). With this aim, we treated the cells

with uncarboxylated osteocalcin and assayed for tyrosine phos-

phorylation, ERK activation, intracellular calcium accumulation,

and cAMP production, using in each case an appropriate posi-

tive control. Osteocalcin consistently induced cAMP production

in Leydig cells to a level comparable to that induced by human

chorionic gonadotropin, the positive control, but did not induce

tyrosine phosphorylation, ERK activation, or intracellular calcium

accumulation in these cells (Figures 5A–5D). At higher concen-

trations, osteocalcin stimulation of cAMP production weakened.

These data implied that the osteocalcin receptor may be a G

protein-coupled receptor (GPCR). Hence, in the second step of

this experimental strategy, we took advantage of the dichotomy

of function of osteocalcin betweenmales and females and asked

how many orphan GPCRs were expressed in testes at a level at

least 5-fold higher than in ovary. Twenty-two out of 103 orphan

GPCRs tested were predominantly expressed in testes; of these

22, four were enriched in Leydig cells (Figures 5E and 5F). Among
802 Cell 144, 796–809, March 4, 2011 ª2011 Elsevier Inc.
them, Gprc6a caught our attention because its deletion in all

cells results in a metabolic and fertility phenotype similar to

that of Ocn�/� mice (Pi et al., 2008).

Immunofluorescence experiments verified that Gprc6a is

expressed in Leydig cells in testes, but not in follicular cells of

the ovary. Importantly, the same is true in human gonads

(Figures 5G and 5H and Figure S4B). Postnatally, Gprc6a

expression peaked within the first week of life, when circulating

testosterone levels are elevated. Gprc6a expression then

decreased before increasing again at 6 weeks of age, when

circulating levels of testosterone also rebound (Figure 5I). We

also performed binding assays on mouse testes using biotiny-

lated osteocalcin as a ligand. In the conditions of this assay, os-

teocalcin bound to Leydig cells and the specificity of this binding

was confirmed by several criteria. First, there was no signal when

using avidin-biotin alone; second, there was no signal either in

other cellular compartments of the testicular tubules; third, we

could not detect any binding when using Gprc6a-deficient

testes; fourth, osteocalcin binding could be competed away by

an excess (100-fold) of unlabeled osteocalcin, but not by the

same excess of hCG or of other molecules proposed as ligands

of Gprc6a (Wellendorph et al., 2005) (Figure 5J). These data iden-

tify Gprc6a as an osteocalcin receptor in Leydig cells.

To define Gprc6a function in Leydig cells in vivo, we generated

Gprc6aLeydig
�/� mice. Prior to analyzing these Gprc6aLeydig

�/�

mice, we verified that we had deleted Gprc6a, albeit partially

(75% of deletion), in Leydig cells, but not in other organs (Figures

S5C and S5D). In Gprc6aLeydig
�/� male mice, testes size and

weight, epididymis and seminal vesicle weights, sperm counts

and circulating testosterone levels, and Leydig cell area were

all reduced, as was the expression of Grth and the three genes

controlling testosterone biosynthesis that are regulated by

osteocalcin (Figures 6A–6I and Figure S5E). Accordingly, the

number of apoptotic germ cells was increased compared to

WT testes (Figure 6J). To establish genetically that Gprc6a is

a signaling receptor for osteocalcin in Leydig cells, we analyzed

compound mutant mice lacking one allele of Ocn and one allele

of Gprc6a in Leydig cells only (Ocn+/�;Gprc6aLeydig
+/� mice).

Whether we looked at testes, epididymis and seminal vesicle

weights, or sperm count, Ocn+/�;Gprc6aLeydig
+/� mice had

a phenotype identical to that observed in Gprc6aLeydig
�/� and

Ocnosb
�/� mice (Figures 6A–6I).

CREB Is a Transcriptional Effector of Osteocalcin
Signaling in Leydig Cells
Observations that osteocalcin treatment of Leydig cells

increased cAMP production and that the osteocalcin receptor

is a GPCR suggested that CREB could mediate osteocalcin

functions in these cells. In support of this hypothesis, osteocalcin

treatment of Leydig cells favors CREB phosphorylation (Fig-

ure 7A). To investigate this further, we generated mice that

lack CREB expression specifically in Leydig cells (CrebLeydig
�/�

mice).

Twelve-week-old CrebLeydig
�/� male mice displayed a reduc-

tion in testis size and weight, in epididymides and seminal vesi-

cles weights, in sperm count, and in circulating testosterone

levels similar to those seen in Ocn�/� and Gprc6aLeydig
�/� mice

(Figures 7B–7G and Figure S6). CrebLeydig
�/� mice also



*

*

*

*

*

*

*

*

*

*
*

8.0

0

4.0

6.0

2.0

10.0

12.0

c
A

M
P

 P
r
o

d
u

c
t
io

n

(
p

m
o

l/
1
0

7
c
e
ll
s
)

D

**

**

2.0

0

1.0

3.0

F
lu

o
r
e
s
c
e
n

c
e
 c

h
a
n

g
e

(
f
o

ld
 o

v
e
r
 b

a
s
e
li
n

e
)

C

4.0

10 20 30 40 50 60 70

Control

Ionophore
10% FBS

3ng/ml Osteocalcin
6ng/ml Osteocalcin

600ng/ml Osteocalcin
1μg/ml Osteocalcin

30ng/mlOsteocalcin

A B

J

b-OsteocalcinControl

b-Osteocalcin

+Osteocalcin

b-Osteocalcin

+hCG

b-Osteocalcin

WT WT

WTWT

Gprc6a-/-

WT

5 15 30 60

+Vehicle +Osteocalcin

ERK
42

**

1
n
g

3
 n

g

h
C

G

1
0
 n

g

0
 n

g

I

8.0

0

4.0

6.0

2.0

10.0

G
p
r
c
6
a

G
p

c
r
s

E
x
p

r
e
s
s
io

n
 i
n

 L
e
y
d

ig

 C
e
ll
s
 R

e
la

t
iv

e
 t

o
 T

e
s
t
is

  
(
F

o
ld

)

G
p
r
4
5

G
p
r
1
1
2

G
p
r
1
3
9

Testis

Leydig cells

44

44pERK

5 15 30 60

4.0

0

2.0

1
 W

e
e
k

G
p

r
c
6
a

E
x
p

r
e
s
s
io

n
 i
n

 T
e
s
t
is

(
R

e
la

t
iv

e
 t

o
 4

 W
e
e
k
-
o

ld
)

4
 W

e
e
k
s

6
 W

e
e
k
s

1
2
 W

e
e
k
s

6.0

8.0

10.0

*

*

F

150

250

75

100

37

50

V
e
h

ic
le

1
 n

g

3
 n

g

1
0
 n

g

F
B

S

In
s
u

li
n

Anti-Gprc6a

Anti-IgG

H

50

**

Orphans GPCR (n=103)

Testis enriched orphan 

GPCR (n=22)

Leydig cells enriched 

orphan GPCR (n=4)

E

β-actin

pTyrosine

b-Osteocalcin

+Lysine

5 15 30 60

+Vehicle +Osteocalcin

5 15 30 60

FBS

FBS

G
p

r
c
6
a
 R

e
la

t
iv

e
 

E
x
p

r
e
s
s
io

n
 i
n

 h
u

m
a
n

 (
%

) Testis

Ovary

80

0

40

60

20

100

Anti-Gprc6a

Anti-IgG

Mouse Human

G

Figure 5. G Protein-Coupled Receptor Gprc6a Is a Receptor for Osteocalcin

(A) Anti-phosphotyrosine antibody western blot analysis of TM3 Leydig cells treated with increasing concentrations of osteocalcin, or 10% FBS or insulin as

positive controls, for 1 min (top). Proteins phosphorylated on tyrosine residues appear in positive controls (asterisks), but not in osteocalcin-treated cells. Equal

loading was assessed using an anti-actin antibody (bottom).

(B) Western blot analysis of TM3 Leydig cells showing the absence of ERK1/2 phosphorylation upon stimulation with vehicle or osteocalcin.

(C) Calcium fluxes in primary Leydig cells upon stimulation with increasing doses of osteocalcin. 10% FBS and ionophore (A23187) were used as positive

controls.

(D) cAMP production upon osteocalcin stimulation is increased in TM3 Leydig cells.

(E) Schematic representation of the results obtained by the differential expression search for osteocalcin receptors. Among the 103 orphan GPCRs expressed in

testis and ovary, 22 were predominantly expressed in testis, and only four were enriched in primary Leydig cells compared to the expression in whole testis.

(F) Relative expression of Gprc6a, Gpr45, Gpr112, and Gpr139 in Leydig cells compared to whole testis.

(G) qPCR analysis of Gprc6a expression in human testis and ovary.

(H) Immunofluorescence analysis of Gprc6a expression in mice and human testis coronal sections. Anti-IgG was used as negative control.

(I) qPCR analysis of Gprc6a expression in 1-, 4-, 6-, and 12-week-old WT testes.

(J) Cross-sections of testes from WT and Gprc6a-deficient mice stained with biotinylated osteocalcin (b-osteocalcin). (Upper-left) WT testis stained with avidin-

biotin complex only. (Upper-middle) WT testis stained with 10 nM of b-osteocalcin. (Upper-right) Testis from Gprc6a-deficient mice stained with 10 nM of

b-osteocalcin. (Lower-left) WT testis stained with 10 nM of b-osteocalcin in the presence of 1000 nM hCG. (Lower-middle) WT testis stained with 10 nM of

b-osteocalcin in the presence of 1000 nM lysine. (Lower-right) WT testis stained with 10 nM of b-osteocalcin in the presence of 1000 nM of unlabeled osteocalcin.

Error bars represent SEM. Student’s t test; *p < 0.05, **p < 0.001. See also Figure S4.
demonstrated a strong decrease in the expression ofGrth and of

the four genes involved in testosterone biosynthesis whose

expression is regulated by osteocalcin (Figures 7H and 7I). In

agreement with these data, CREB could bind to the promoter
regions of Cyp11a, 3b-HSD, and StAR (Zhang et al., 2005) (Fig-

ure 7J). To establish whether CREB acts downstream of Gprc6a

in Leydig cells to regulate male fertility, we generated compound

heterozygous mice lacking one copy of Creb and one copy of
Cell 144, 796–809, March 4, 2011 ª2011 Elsevier Inc. 803
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Figure 6. Specific Deletion of Gprc6a in Leydig Cells Decreases Male Fertility

(A–E) Fertility in mice lacking Gprc6a in Leydig cells only (Gprc6aLeydig
�/�) or lacking one allele of Ocn or one allele of Gprc6a in Leydig cells only (Ocn+/� or

Gprc6aLeydig
+/�) or in compound heterozygous mice (Ocn+/�; Gprc6aLeydig

+/�) compared to control littermates. (A) Testis size, (B) testis weight, (C) sperm count,

and (D and E) epididymis and seminal vesicle weights.

(F) qPCR analysis of Grth expression in mice of indicated genotypes.

(G) Ratio between Leydig cells (stained by immunohistochemistry of 3b-HSD) versus testis interstitial areas.

(H) Ratio of circulating testosterone levels measured in WT and Gprc6aLeydig
�/� mice.

(I) qPCR analysis of StAR, Cyp11a, and 3b-HSD in Gprc6aLeydig
�/� and Ocn+/�; Gprc6aLeydig

+/� compared to WT littermate testes.

(J) Germ cell apoptosis analysis by TUNEL assay.

All of the analyses were performed in nonbreeder mice. Error bars represent SEM. Student’s t test; *p < 0.05; **p < 0.001. See also Figure S5.
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Gprc6a in Leydig cells. The decrease in fertility demonstrated by

CrebLeydig
+/�;Gprc6aLeydig

+/� male mice was similar to that

observed in CrebLeydig
�/� or Gprc6aLeydig

�/� male mice (Figures

7B–7F and 7H) and was not observed in single-heterozygous

mutant mice (data not shown). These results identify CREB as

a transcriptional mediator of osteocalcin regulation of testos-

terone biosynthesis in Leydig cells.

DISCUSSION

This study reveals that bone is a positive regulator of male

fertility. This interaction is mediated through the osteoblast-

derived hormone osteocalcin, which binds to a specific receptor

that is present on Leydig cells of the testes and favors testos-

terone biosynthesis (Figure 7K). Our results, along with those

previously published, support the hypothesis that regulation of

bone remodeling, energy metabolism, and reproduction are

linked (Ducy et al., 2000; Lee et al., 2007). They also demonstrate

that bone is a more important regulator of whole-organism phys-

iology than was anticipated.

In the last 10 years, the view of bone as a mere assembly of

inert calcified tubes has evolved because two independent lines

of investigation painted a much more dynamic picture of this

tissue. First, the dialog between bone physiology and energy

metabolism and the paramount influence of the brain in the

control of bone mass accrual became apparent (Karsenty,

2006). Second, it has been realized that bone is an endocrine

organ regulating at least two functions, phosphate metabolism

and energy homeostasis, through two distinct osteoblast-

derived hormones, FGF23 and osteocalcin (Fukumoto and Ya-

mashita, 2007; Lee et al., 2007). These two endocrine functions

of bone begged the following question: are these the only func-

tions affected by bone in its endocrine capacity?

The well-known regulation of bone remodeling by gonads

provides an ideal setting to address this question and raises

the possibility that bone, in its endocrine capacity, could influ-

ence through a feedback mechanism reproductive functions in

either gender. We show here that osteoblasts, the bone-forming

cells, favor through osteocalcin fertility in male, but not female,

mice. Our observation that Ocn�/� mice have low circulating

testosterone levels despite an increase in circulating LH levels

may have several explanations. For instance, it could be that

deletion of osteocalcin causes, for unknown reasons, a loss of

negative feedback. Alternatively, it may also suggest that LH

cannot favor testosterone production in the absence of osteo-

calcin. Further experiments will be required to address this point.

All of our experiments conducted ex vivo and in vivo in loss-

and gain-of-function models indicate that the main mechanism

whereby osteocalcin favors male fertility is by increasing testos-

terone synthesis in Leydig cells. Testosterone, in turn, supports

maturation and prevents apoptosis of germ cells (Henriksén

et al., 1995; Sinha Hikim and Swerdloff, 1999; Walker, 2009).

Because there is no expression of Gprc6a in Sertoli cells or

germ cells, it is likely that osteocalcin regulates male fertility by

binding to its receptor on Leydig cells. This was confirmed by

the analysis of the Leydig cell-specific deletion of Gprc6a and

Creb. Testosterone affects germ cell survival by involving other

cell types such as Sertoli cells because germ cells do not
express androgen receptor (Bremner et al., 1994; De Gendt

et al., 2004; Wang et al., 2003). Unexpectedly, Ocn�/� male

mice have a higher level of circulating estrogen than WT litter-

mates, even though osteocalcin does not promote estradiol

synthesis. The most likely explanation for this mild increase in

circulating estradiol levels in theOcn�/�mice is that the increase

in the number of adipocytes caused by Osteocalcin inactivation

may result in an increase in the aromatization of testosterone into

estrogen in fat (Nelson and Bulun, 2001; Simpson et al., 2000;

Simpson, 2003). Importantly, this was also observed in mice

lacking Gprc6a (Pi et al., 2008).

The existence of such a profound influence exerted by

a hormone other than LH on sex steroid hormone synthesis rai-

ses the question of whether it is amale-specific phenomenon. To

date, we have no evidence that, at least in the mouse, the skel-

eton favors estrogen production in females. This, however, does

not rule out the possibility that other peripheral organs may

secrete hormones favoring estrogen synthesis.

The growing number of functions identified for osteocalcin

makes the identification of its receptor all the more important.

An unbiased approach based on the ability of osteocalcin to

increase cAMP production in Leydig cells and on its dichotomy

of function between male and female gonads led to the identifi-

cation of Gprc6a as the osteocalcin receptor. This orphan

receptor, which belongs to the C family of GPCRs (Wellendorph

and Bräuner-Osborne, 2004), has been proposed to be

a receptor for amino acids, for calcium in the presence of osteo-

calcin as a cofactor, and for androgen (Pi et al., 2005, 2008,

2010). Yet, the possibility that Gprc6a could be a specific

receptor for osteocalcin has never been tested through

biochemical or genetic means. Here, we provide biochemical

and genetic evidence establishing its identity as a specific

receptor for osteocalcin in Leydig cells, though we failed to

detect an interaction between amino acids and Gprc6a. That

Gprc6a is expressed in human and mice Leydig cells in the

testes, but not in follicular cells of ovaries, provides a molecular

basis for the fact that osteocalcin affects male fertility only. The

expression of this receptor is extremely dynamic and peaks at

adulthood when testosterone biosynthesis is at its maximum

(Feldman et al., 2002; Gray et al., 1991; Quigley, 2002). This

observation suggests that the regulation of osteocalcin functions

occurs, at least in part, by regulating the expression of its

receptor. The identification of an osteocalcin receptor opens

the door to a thorough molecular dissection of the mode of

action of osteocalcin in various cell types where it is expressed.

This may eventually lead to the identification of additional func-

tions for osteocalcin.

An obvious question raised by this study is whether the skel-

eton also regulates male fertility in humans. In the absence of

inactivating mutations in the Osteocalcin or Gprc6a genes in

humans and of studies correlating circulating levels of uncar-

boxylated osteocalcin and fertility in the aging male population,

this question can only be addressed through indirect means

for now. Although we cannot rule out the possibility that the

endocrinology of reproduction may be different in this particular

aspect between rodents and humans, indirect evidence

suggests that the function of osteocalcin described here may

be conserved in humans. First, and most importantly, this work
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was, in part, initiated because of a clinical observation made in

humans: loss of sex steroid hormones triggers a decrease in

bone mass. This led us to test whether feedback regulation of

fertility by bone may also occur. Second, Gprc6a is expressed,

in human and in mice, in Leydig cells of the testes, but not in

ovaries. Hence, the entire signaling cascade from the hormone

to the receptor exists in the equivalent organs in humans. Third,

the growing number of reports indicating that osteocalcin is a reli-

able indicator of glucose intolerance, just as it is in mice, strongly

suggests that this molecule also acts as a hormone in humans

(Kanazawa et al., 2010; Saleem et al., 2010; Yeap et al., 2010).

Along these lines, there is no example yet of a molecule being

a hormone in themouse that has abruptly lost this attribute in hu-

mans. This is, nevertheless, an aspect of osteocalcin that will

need further investigation in the future.

EXPERIMENTAL PROCEDURES

Mice Generation

All experiments were performed on the 129-Sv (Taconic) genetic background.

Control littermates were used in all experiments. Mice genotypes were deter-

mined by PCR; primer sequences are available upon request. Osteocalcin-

mCherry knockin, Ocn conditional, and Gprc6a conditional allele generation

strategies are described in Figure S2 and Figure S5.

Primary Leydig Cells and Testes Explant Preparation

Adult mouse Leydig cells were isolated by mechanical dissociation of the

testes followed by purification on a 0%–90% Percoll gradient (Hunter et al.,

1982; Schumacher et al., 1978). Primary Leydig cells were cultured in Minimal

Essential Medium (MEM + GlutaMAX, Invitrogen) supplemented with 13 Pen-

Strep, 25 mM HEPES (pH 7.4), and 0.07% BSA at 33�C in 5% CO2. After 3 hr

of attaching and starvation, cells were washed once with culture medium

and then used for experiments. The testes explant preparation protocol was

adapted from (Powlin et al., 1998). Explants were washed three times with

PBS and placed in serum-free RPMI medium for 2 hr before being used for

experiments.

Osteocalcin Stimulation of Leydig Cells or Testes Explants

Primary Leydig cells and testes explants were washed three times with PBS

and stimulated with different doses of recombinant osteocalcin prepared as

previously described (Ferron et al., 2008) or with hCG as a positive control.

After 1 hr, an aliquot of medium was collected for measurements of testos-

terone. Cells were then maintained for 3 additional hr and lysed in 1 ml TRIZOL

(Invitrogen) for RNA isolation.

Sperm Counts and Hormone Measurements

Caudal epididymides were minced in 1 ml PBS, and the number of cells

released was counted after 1 hr. The total sperm count was assessed in the

final suspension by using a hemocytometer (Dakhova et al., 2009). Circulating

levels of testosterone, estradiol (E2), and progesterone were measured by
Figure 7. CREB Is a Transcription Factor-Mediating Osteocalcin-Evok

(A) Western blot analysis of CREB activation upon stimulation with osteocalcin.

(B–F) Fertility in mice lacking Creb in Leydig cells (CrebLeydig
�/�) or of compo

littermates. (B) Testis size, (C) testis weight, (D) sperm count, and (E and F) epid

(G) Quantification of circulating testosterone levels represented as fold change c

(H) qPCR analysis of Grth expression in mice of indicated genotypes.

(I) qPCR analysis of StAR, Cyp11a, Cyp17, 3b-HSD, Cyp19, and HSD-17 in Creb

(J) Chromatin immunoprecipitation (ChIP) using anti-CREB antibody and unspec

(K) Model representing current knowledge about the regulation of male fertility b

All of the analyses were performed in nonbreeder mice.

Error bars represent SEM. Student’s t test; *p < 0.05. See also Figure S6.
radioimmunoassay (RIA) from Diagnostic Systems Laboratories (Testosterone

RIA DSL-4000, Estradiol RIA DSL-43100, and Progesterone RIA-3900).

Histology

One testis or ovary from each mouse was randomly selected for molecular

analysis, and the other one was used for histology. Specimens were collected,

weighed, and fixed in Bouin’s fixative for histological analyses before being

dehydrated through graded ethanol, processed for paraffin embedding, and

serially sectioned at 5 mm. For histological analysis, testes and ovaries

sections were stained with periodic acid-Schiff and counterstained with hema-

toxylin. TUNEL labeling was performed using the ApopTag Peroxydase In Situ

Apoptosis detection kit (Millipore-S7100). Apoptotic indices were determined

by counting the total number of TUNEL-positive cells or the number of TUNEL-

positive germ cells at different stages (Russell et al., 1990). Approximately 500

tubules were counted on at least four cross-sections located at midtestis for

each animal.

Gene Expression Studies

RNA was purified from tissues, primary Leydig cells, or cultured cells using

TRIZOL (Invitrogen). RNA isolation, cDNA preparation, and qPCR analysis

was carried out following standard protocols. qPCR analyses were performed

using specific quantitative PCR primers from SABiosciences (http://www.

sabiosciences.com/RT2PCR.php).

cAMP Quantification

For cAMP measurements, TM3 Leydig cells were plated in 6 cm dishes (107

cells per dish) 1 day before the experiment. Cells were serum starved for

16 hr (in the presence of 0.1% BSA) and then preincubated in the presence

of 0.5 mM IBMX for 30 min and stimulated with indicated concentration of os-

teocalcin also in the presence of 0.5 mM IBMX for 30min. cAMP concentration

was measured with the Parameter cAMP kit (R&D Systems, KGE002).

Receptor Binding Assays

For binding studies, testes from 8-week-old mice were snap-frozen in liquid

nitrogen, and 20 mm thick sections were prepared and desiccated overnight

at 4�C under vacuum. On the following day, sections were rehydrated in ice-

cold binding buffer (50 mM TrisHCl [pH 7.4], 10 mM MgCl2, 0.1 mM EDTA,

and 0.1%BSA) for 15min and incubated for 1 hr in the presence of biotinylated

osteocalcin. For competition assays, a 100-fold molar excess of unlabeled

osteocalcin, glycine, lysine, or hCG was added. After three washes in cold

PBS, sections were incubated for 1 hr in the detection system containing

0.1% BSA (ABC Elite, Vector Laboratories), washed again, and incubated

with DAB peroxidase substrate kit (Vector Laboratories) according to the

manufacturer’s protocol. After a final wash, sections were mounted in water-

based mounting medium. As negative controls, we used sections incubated

with the detection system only (ABC Elite and DAB) or Gprc6a�/� testis

sections (Basura et al., 2008).
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