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We present a first calculation of the generalized parton distributions of the photon (both polarized and 
unpolarized) using overlaps of light-front wave functions at leading order in α and zeroth order in αs; 
for non-zero transverse momentum transfer and zero skewness. We present the novel parton content of 
the photon in transverse position space.
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1. Introduction

In deep inelastic scattering of a highly virtual photon on a 
real photon, the partonic constituents of the photon play a dom-
inant role when the virtuality Q 2 is very large. In this case the 
pointlike contribution to the photon structure function F γ

2 (x, Q 2)

dominates over the hadronic component. This can be calculated 
perturbatively. These are relevant in the context of e+e− annihi-
lation and photoproduction. Unlike the proton structure function, 
where only the Q 2 dependence is calculated perturbatively and 
the x dependence has to be fitted using experimental data, in 
the photon structure function, both x and Q 2 dependence can be 
calculated. F γ

2 (x, Q 2) shows logarithmic Q 2 dependence already
in parton model, unlike the proton structure function [1]. Lead-
ing order QCD calculation differs from the parton model result 
for F γ

2 (x, Q 2) by calculable finite terms [2]. The photon structure
function is now known fairly accurately and agrees well with ex-
perimental results [3].

In [4] deeply virtual Compton scattering (DVCS) γ ∗γ → γ γ on
a photon target was considered in the kinematic region of large 
center-of-mass energy, large virtuality (Q 2) but small squared mo-
mentum transfer (−t). The result was interpreted at leading log-
arithmic order as a factorized form of the scattering amplitude in 
terms of a hard handbag diagram and the generalized parton dis-
tributions of the photon. The calculation was done at leading order 
in α and zeroth order in αs when the momentum transfer was 
purely in the longitudinal direction. These are called anomalous 
GPDs as they show logarithmic scale dependence already in parton 
model. They are of particular interest as they can be calculated in 
perturbation theory and can act as theoretical tools to understand 
the basic properties of GPDs like polynomiality and positivity. Be-
yond leading logarithmic order one would need to include the
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non-pointlike hadronic contribution. Note that the same process 
in a different kinematic region, namely at low energy and high 
squared momentum transfer −t ≈ Q 2, gives information on the
generalized distribution amplitudes (GDA) of the photon, which 
describes the coupling of a quark–antiquark pair to the two pho-
tons and are connected to the photon GPDs by crossing [5]. DVCS 
process on a proton target has been analyzed in detail theoreti-
cally and are also being accessed in experiments [6]. The proton 
GPDs are richer in content than the ordinary parton distributions 
(pdfs). In the forward limit of zero momentum transfer they re-
duce to pdfs and their x moments give nucleon form factors. An 
interesting physical interpretation of GPDs has been obtained in
[7] by taking their Fourier transform with respect to the transverse 
momentum transfer. When the longitudinal momentum transfer 
is zero, this gives the distribution of partons in the nucleon in 
the transverse plane. They are called impact parameter dependent 
parton distributions (ipdpdfs) q(x,b⊥). In fact they obey certain 
positivity constraints which justify their physical interpretation as 
probability densities. This interpretation holds in the infinite mo-
mentum frame (even the forward pdfs have a probabilistic inter-
pretation only in this frame) and there is no relativistic correction 
to this identification because in light-front formalism, as well as 
in the infinite momentum frame, the transverse boosts act like 
non-relativistic Galilean boosts. When the nucleon is transversely 
polarized, the unpolarized impact parameter dependent pdf is dis-
torted in the transverse plane. A combination of chiral odd GPDs 
in impact parameter space gives information on the correlation be-
tween the spin and orbital angular momentum of the quarks inside 
the target [8]. Fourier transform (FT) with respect to the skewness 
ζ gives rise to a diffraction-like pattern [9]. Thus the GPDs in ef-
fect give a complete (Lorentz invariant) 3D picture of the proton in 
position space. While the proton is known to be a composite par-
ticle, it is interesting to access the partonic structure of the photon 
probed in high energy processes. As the proton GPDs are richer in 
content than the ordinary pdfs, photon GPDs can shed more light 
on the partonic content of the photon.
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In this Letter, we calculate the photon GPDs using overlaps of
light-front wave functions. We take the momentum transfer to be
purely in the transverse direction, unlike [4], where the momen-
tum transfer was taken purely in the light-cone (plus) direction.
We keep leading logarithmic terms and the mass terms com-
ing from the vertex; and up to leading order in electromagnetic
coupling and zeroth order in strong coupling. There are contribu-
tions only from the diagonal (particle number conserving) over-
laps. When there is non-zero momentum transfer in the longi-
tudinal direction, there are off-diagonal particle number changing
overlaps as well, similar to the proton GPDs [10]. The two par-
ticle light-front wave functions of the photon can be calculated
analytically using perturbation theory. Taking a Fourier transform
with respect to the momentum transfered in the transverse direc-
tion, �⊥ , we express the GPDs in the transverse impact parameter
space.

2. GPDs of the photon

The GPDs for the photon can be expressed as the following
off-forward matrix elements defined for the real photon (target)
state [4]:

F q =
∫

dy−

8π
e

−i P+ y−
2

〈
γ

(
P ′)∣∣ψ̄(0)γ +ψ

(
y−)∣∣γ (P )

〉;
F̃ q =

∫
dy−

8π
e

−i P+ y−
2

〈
γ

(
P ′)∣∣ψ̄(0)γ +γ 5ψ

(
y−)∣∣γ (P )

〉
. (1)

F q contributes when the photon is unpolarized and F̃ q is the con-
tribution from the polarized photon. We have chosen the light-
front gauge A+ = 0. As pointed out in [4], there is also the photon
operator which mixes with the quark operator, it contributes at the
same order in α in the scattering amplitude. However here we cal-
culate the matrix element rather than the amplitude of the process
and the contribution to the matrix element of the photon operator
comes at zeroth order in α. F q and F̃ q can be calculated using the
Fock space expansion of the state, which can be written as [4]

∣∣γ (P )
〉 = √

N

[
a†(P , λ)|0〉

+
∑
σ1,σ2

∫
{dk1}

∫
{dk2}

√
2(2π)3 P+δ3(P − k1 − k2)

× φ2(k1,k2,σ1,σ2)b
†(k1,σ1)d

†(k2,σ2)|0〉
]

(2)

where
√

N is the overall normalization of the state; which in our
calculation we can take as unity as any correction to it contributes
at higher order in α. {dk} = ∫ dk+d2k⊥√

2(2Π)3k+ , φ2 is the two-particle

(qq̄) light-front wave function (LFWF) and σ1 and σ2 are the he-
licities of the quark and antiquark. The wave function can be ex-

pressed in terms of Jacobi momenta xi = k+
i

P+ and q⊥
i = k⊥

i − xi P⊥ .
These obey the relations

∑
i xi = 1,

∑
i q⊥

i = 0. The boost invari-

ant LFWFs are given by ψ2(xi,q⊥
i ) = φ2

√
P+ . ψ2(xi,q⊥

i ) can be
calculated order by order in perturbation theory. The two-particle
LFWFs are given by [12]

ψλ
2s1,s2

(
x,q⊥) = 1

m2 − m2+(q⊥)
2

x(1−x)

eeq√
2(2π)3

χ
†
s1

[
(σ⊥ · q⊥)

x
σ⊥

− σ⊥ (σ⊥ · q⊥) − i
m

σ⊥
]
χ−s2ε

⊥∗
λ (3)
1 − x x(1 − x)
where we have used the two-component formalism [11,12] and m
is the mass of q(q̄). λ is the helicity of the photon and s1, s2 are
the helicities of the q and q̄ respectively. There is no contribution
to the matrix elements that we consider from the single particle
sector of the Fock space expansion. The leading term is the two-
particle contribution, which can be written as,

F q =
∫

d2q⊥ dx1 δ(x − x1)ψ
∗
2

(
x1,q⊥ − (1 − x1)�

⊥)
ψ2

(
x1,q⊥)

−
∫

d2q⊥ dx1 δ(1 + x − x1)ψ
∗
2

(
x1,q⊥ + x1�

⊥)
ψ2

(
x1,q⊥)

.

(4)

Here we have suppressed the helicity indices and the sum over
them. The momentum transfered square t is given by t = (P −
P ′)2 = −(�⊥)

2
. The first term is the contribution from the quarks

and the second is the contribution from the antiquark in the pho-
ton. As the light-cone momentum fraction x1 has to be always
greater than zero, the first term contributes when 1 > x > 0 and
the second term for −1 < x < 0. Using the LFWFs each component
can be calculated separately. We calculate in the same reference
frame as [9]. Note that the light cone plus momentum of the tar-
get photon is non-zero. Finally we get for the unpolarized photon

F q =
∑

q

αe2
q

4π2

[(
(1 − x)2 + x2)(I1 + I2 + LI3) + 2m2 I3

]

× θ(x)θ(1 − x)

−
∑

q

αe2
q

4π2

[(
(1 + x)2 + x2)(I ′1 + I ′2 + L′ I ′3

) + 2m2 I ′3
]

× θ(−x)θ(1 + x). (5)

Here the sum indicates sum over different quark flavors; L =
−2m2 + 2m2x(1 − x) − (�⊥)

2
(1 − x)2, L′ = −2m2 − 2m2x(1 + x) −

(�⊥)
2
(1 + x)2; the integrals can be written as,

I1 =
∫

d2q⊥

D
= π Log

[
Λ2

μ2 − m2x(1 − x) + m2

]
= I2;

I3 =
∫

d2q⊥

D D ′ =
1∫

0

dα
π

P (x,α, (�⊥)
2
)

(6)

where D = (q⊥)
2 − m2x(1 − x) + m2 and D ′ = (q⊥)

2 + (�⊥)
2
(1 −

x)2 − 2q⊥ · �⊥(1 − x) − m2x(1 − x) + m2, and P (x,α, (�⊥)
2
) =

−m2x(1 − x) + m2 + α(1 − α)(1 − x)2(�⊥)
2

. At zeroth order in αs

the results are scale dependent, this scale dependence in our ap-
proach comes from the upper limit of the transverse momentum
integration Λ = Q . μ is a lower cutoff on the transverse momen-
tum, which can be taken to zero as long as the quark mass is
non-zero. Leading order evolution of the photon GPDs has been
calculated in [4] for non-zero ζ . The mass terms in the vertex give
subdominant contributions which we included.

For the antiquark contributions we have similar integrals

I ′1 =
∫

d2q⊥

H
= π Log

[
Λ2

μ2 + m2x(1 + x) + m2

]
= I ′2;

I ′3 =
∫

d2q⊥

H H ′ =
1∫

0

dα
π

Q (x,α, (�⊥)
2
)

(7)

where H = (q⊥)
2 + m2x(1 + x) + m2 and H ′ = (q⊥)

2 + (�⊥)
2
(1 +

x)2 + 2q⊥ · �⊥(1 + x) + m2x(1 + x) + m2, and Q (x,α, (�⊥)
2
) =

m2x(1 + x) + m2 + α(1 − α)(1 + x)2(�⊥)
2

.
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For polarized photon the GPD F̃ q can be calculated from the
terms of the form ε2

λε
1∗
λ − ε1

λε
2∗
λ [4]. We consider the terms where

the photon helicity is not flipped. This can be written as,

F̃ q =
∑

q

αe2
q

4π2

[(
x2 − (1 − x)2)(I1 + I2 + LI3) + 2m2 I3

]

× θ(x)θ(1 − x)

+
∑

q

αe2
q

4π2

[(
x2 − (1 + x)2)(I ′1 + I ′2 + L′ I ′3

) + 2m2 I ′3
]

× θ(−x)θ(1 + x). (8)

In analogy with the impact parameter dependent parton dis-
tribution of the proton, we introduce the same for the photon.
By taking a Fourier transform with respect to the transverse mo-
mentum transfer �⊥ we get the GPDs in the transverse impact
parameter space.

q
(
x,b⊥) = 1

(2π)2

∫
d2�⊥e−i�⊥·b⊥

F q

= 1

2π

∫
�d� J0(�b)F q; (9)

q̃
(
x,b⊥) = 1

(2π)2

∫
d2�⊥e−i�⊥·b⊥

F̃ q

= 1

2π

∫
�d� J0(�b) F̃ q (10)

where J0(z) is the Bessel function; � = |�⊥| and b = |b⊥|. In
the numerical calculation, we have introduced a maximum limit
�max of the � integration which we restrict to satisfy the kine-
matics −t 	 Q 2 [9,8,13,14]. q(x,b⊥) gives the distribution of par-
tons in this case inside the photon in the transverse plane. Like
the proton, this interpretation holds in the infinite momentum
frame and there is no relativistic correction to this identification
because in light-front formalism, as well as in the infinite momen-
tum frame, the transverse boosts act like non-relativistic Galilean
boosts. q(x,b⊥) gives simultaneous information about the longitu-
dinal momentum fraction x and the transverse distance b of the
parton from the center of the photon and thus gives a new insight
to the internal structure of the photon. The impact parameter dis-
tribution for a polarized photon is given by q̃(x,b⊥).

3. Numerical results

We have plotted the unpolarized GPD F q and the polarized
GPD F̃ q for the photon in Figs. 1(a) and (b) respectively as func-

tions of x and for different values of t = −(�⊥)
2

. In all plots we
took the momentum transfer to be purely in the transverse direc-
tion. We took m = 3.3 MeV; Λ = Q = 20 GeV, μ = 0 MeV and
�max = 3.0 GeV where �max is the upper limit of the �⊥ inte-
gration in the Fourier transform. It is to be noted that the photon
structure function F γ

2 (x, Q 2) has been explored over a wide kine-
matical range, namely 0.001 < x < 0.9 and 1.9 < Q 2 < 780 GeV2

[3]. However, here we restrict ourselves to study the general fea-
tures of the photon GPDs at a fixed scale rather than the scale
evolution. We have divided the GPDs by the normalization con-
stant to compare with [4] in the limit of zero t . Indeed they agree.
As −t increases, F q becomes more and more asymmetric with re-
spect to x = 1/2: this asymmetry is prominent for lower values
of x which is expected as the �⊥ or t dependence is associated
with a (1 − x)2 factor (see the analytic expressions). The slope of

the polarized GPD changes with increasing (�⊥)
2

. Note that in [4]
as well as in the solid line in Figs. 1(a) and 1(b), the subleading
Fig. 1. (Color online.) (a) Plot of unpolarized GPD F q vs x for fixed values of −t in
GeV2 and (b) polarized GPD F̃ q vs x for fixed values of −t in GeV2, Λ = 20 GeV. In
both plots the normalization factor is chosen to compare with [4] when t = 0.

mass terms are not taken into account. It is to be noted that in all
plots we have taken 0 < x < 1 for which the contribution comes
from the active quark in the photon (qq̄). As x → 1, most of the
momentum is carried by the quark in the photon and the GPDs
become independent of t . The Fourier transform (FT) of the unpo-
larized GPD F q is plotted in Fig. 2. Fig. 2(a) shows the plot of the
impact parameter dependent pdf of the photon as a function of x
and for fixed impact parameter b = |b⊥|. Fig. 2(b) shows the same
but as a function of b and for fixed x. The smearing in b⊥ space
reveals the partonic substructure of the photon and its ‘shape’
in transverse space. In the ideal definition the Fourier transform
over � should be from 0 to ∞. In this case the �⊥ independent
terms in F q and F̃ q would give δ2(b⊥) in the impact parameter
space. This means in the case of no transverse momentum trans-
fer, the photon behaves like a point particle in transverse position
space. The distribution in transverse space is a unique feature ac-
cessible only when there is non-zero momentum transfer in the
transverse direction. From the plots it can be seen that for fixed
b, q(x,b) decreases slowly with x till x ≈ 1/2 then increases. The
behavior in impact parameter space is qualitatively different than
a dressed quark target and also from phenomenological models
of proton GPDs. For a dressed quark target the leading contribu-
tion to the GPD comes from the single particle sector of the Fock
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Fig. 2. (Color online.) (a) Plot of impact parameter dependent pdf q(x,b) vs x for
fixed b values and (b) q(x,b) vs b for fixed values of x where we have taken Λ =
20 GeV and �max = 3 GeV where �max is the upper limit in the � integration. b is
in GeV−1 and q(x,b) is in GeV2.

space expansion, which in impact parameter space gives a delta
function peak. This contributes at x = 1. For large values of x the
peak in impact parameter space becomes sharper and narrower,
that means there is a higher probability of finding the active quark
near the transverse center of momentum [13]. In the phenomeno-
logical parametrization of proton GPDs where a spectator model
with Regge-type modification was used, the GPDs have a different
behavior in impact parameter space, the u quark GPDs increase
with increasing x for fixed b, reaches a maximum, then decrease.
The peak decreases with increasing b [14]. In the case of a pho-
ton there is no single particle contribution, and the distribution
in b space purely reveals the internal qq̄ structure of the photon.
Here near x ≈ 1/2 the peak in b space is very broad which means
that the parton distribution is more dispersed when the q and q̄
share almost equal momenta. The parton distribution is sharper
both for smaller x and larger x. In Figs. 3(a) and (b) we have plot-
ted the polarized distribution in impact parameter space. Fig. 3(a)
shows it as a function of x for fixed b values and Fig. 3(b) shows
it as a function of b for fixed x values. The slope decreases for
higher b. The sign of the GPD changes at x = 1/2, at which point
the GPD and the pdf in impact parameter space becomes zero. The
distributions are approximately symmetric about x = 1/2 in impact
Fig. 3. (Color online.) (a) Plot of impact parameter dependent pdfs q̃(x,b) vs x for
fixed b values and (b) q̃(x,b) vs b for fixed values of x where we have taken Λ =
20 GeV and �max = 3 GeV where �max is the upper limit in the � integration. b is
in GeV−1 and q̃(x,b) is in GeV2.

parameter space; as x → 1 the distribution increases sharply as the
GPDs become independent of t; this is similar to q(x,b). For fixed
x, q̃(x,b) as a function of b becomes broader as x increases until
x = 1/2. For larger values of x, it changes sign. In the plots we have
taken the upper limit of the Fourier transform to be much smaller
than Λ. The dependence of q(x,b) and q̃(x,b) on �max is shown
in Figs. 4(a) and (b) respectively. As �max increases, the distribu-
tion becomes sharper in impact parameter space. This shows that
larger momentum transfer probes the partons near the transverse
center of the photon.

4. Conclusion

We presented a first calculation of the generalized parton dis-
tributions of the photon, both polarized and unpolarized, when
the momentum transfer in the transverse direction is non-zero;
at zeroth order in αs and leading order in α; we calculated at
leading logarithmic order and also kept the mass terms at the ver-
tex. We took the skewness to be zero. We express the GPDs in
terms of overlaps of the photon light-front wave functions. We
considered the matrix elements when the photon helicity is not
flipped. When the momentum transfer in the transverse direction
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Fig. 4. (Color online.) Plots of impact parameter dependent pdfs (a) q(x,b) and
(b) q̃(x,b) vs b for a fixed x; where we have taken Λ = 20 GeV for different values
of �max in GeV. b is in GeV−1 and q(x,b) as well as q̃(x,b) are in GeV2.

is non-zero, one also has helicity flip contributions, which will be
treated in a later work. In our case only the diagonal parton num-
ber conserving overlaps contribute. We considered both the quark
and the antiquark contributions. The GPDs thus probe the two par-
ticle qq̄ structure of the photon. Taking a Fourier transform (FT)
with respect to �⊥ we obtain impact parameter dependent parton
distribution of the photon. We plot them for both polarized and
unpolarized photon. The parton distributions in impact parame-
ter space show distinctive features compared to the proton and
also compared to a dressed quark, which can be taken as an ex-
ample of a spin 1/2 composite relativistic system consisting of a
quark and a gluon. It is to be noted that a complete understand-
ing of the photon GPDs beyond leading logs would require also the
non-pointlike hadronic contributions which will be model depen-
dent [4]. However, the GPDs of the photon calculated here may act
as interesting tools to understand the partonic substructure of the
photon. Accessing them in experiment is a challenge. On the theo-
retical side, the next step would be to investigate the photon GPDs
when there is non-zero momentum transfer both in the transverse
and in the longitudinal direction as well as a perturbative study
of the general properties of GPDs like positivity and polynomiality
conditions and sum rules.
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