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Abstract

A new method for crack identification of bridge beam structures under a moving load based on wavelet analysis is
presented. Crack is modeled through rotational springs whose compliance is evaluated using linear elastic fracture
mechanics. Dynamic behavior of the cracked beam subject to moving load is analyzed using mode superposition.
The response obtained at a single measuring point is analyzed using continuous wavelet transform and the location
of the cracks is estimated. The locations of the cracks are determined from the sudden changes in the spatial variation
of the transform responses. To estimate the relative depth of the cracks, a damage factor is established which relates the
size of the cracks to the coefficients of the wavelet transform. The proposed method is validated by both simulation and
experiment. Locations of multiple damages can be located accurately, and the results are not sensitive to measurement
noise, speed and magnitude of moving load, measuring location, etc.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The detection of crack-like defect in mechanical systems and civil engineering structures is a problem
that received considerable attention from researchers in the last two decades (Salawu, 1997; Doebling
et al., 1998). A crack in a structure introduces local flexibility and changes dynamic characteristics of
the structure. There is a large number of nondestructive methods for crack detection that are based on
the changes in the dynamic properties of the structure (frequencies, mode shapes, transfer functions,
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etc.) caused by the damage. The methods based on natural frequency changes have the principal attraction
of using only a reduced set of experimental data that is easily measured and less contaminated by experi-
mental noise. The mode shape inherently is the geometry of the system, and a damage may directly lead to
geometric changes of the system. Farrar and Jauregui (1998) presented a comparative study of damage
identification algorithms applied to a bridge, and found that standard modal properties such as resonant
frequencies and modal shapes are poor damage indicators. Changes in modal properties resulted from
changes in environmental conditions can be as significant as the changes in these properties caused by dam-
age (Abdel Wahab and De Roeck, 1997).

Pandey et al. (1991) showed that the curvature of mode shape is more sensitivity to damage than the
mode shapes itself. By plotting the difference of modal curvature from the intact and the damage states,
a peak at the damaged element indicates the presence of a fault. Hoerst and Ratcliffe (1997) and Ratcliffe
and Bagaria (1998) presented a gapped smoothing method, which essentially aimed at extracting certain
peaks, which are characteristic of local damages, by processing the curvature mode shape from only the
damaged state. However, the curvature changes could be masked by the derivative operations in the pres-
ence of noisy data (Chance et al., 1994). Measurement noise significantly affects the success of the process-
ing technique. In most of the methods, the baseline information from the undamaged structure is needed in
detecting the damage conditions. How to extract damage signals from the measured dynamic response
without using a structural model for reference is a major problem for researchers in dynamics-based dam-
age detection.

In the last decade, wavelet theory has been one of the emerging and fast-evolving mathematical and sig-
nal processing tools for vibration analysis. Staszewski (1998) presented a summary of recent advances and
applications of wavelet analysis for damage detection. Kijewski and Kareem (2003) studied wavelet trans-
forms for system identification in civil engineering. The main advantage of the continuous wavelet trans-
form is its ability to provide information simultaneously in time and scale with adaptive windows. An
application of wavelet theory in the spatial domain crack identification of structures was proposed by Liew
and Wang (1998). The wavelet in the spatial domain is calculated based on finite difference solutions of a
mathematical representation of the structure in question. The crack location is indicated by a peak in the
variations of the wavelets along the length of the beam. Wang and Deng (1999) proposed that the wavelet
transform be directly applied to spatially distributed structural response signals, such as surface profile, dis-
placement, strain or acceleration measurements. The continuous wavelet transform of the fundamental
mode shape and its Lipschitz exponent was used to detect the damage location and extent in a beam by
Hong et al. (2002), Gentile and Messina (2003), Douka et al. (2003) and Chang and Chen (2003). The
key point of this method is to check on the spatially distributed response signals that can pick up damage
information. A classical measurement system as, for example, an impulse hammer technique is only able to
measure mode shapes at a few discrete points of a transversely vibrating beam. Therefore, new sensors or
measuring techniques are needed to pick up the perturbations caused by the presence of a crack. Recently,
Pai and Young (2001) reported the possibility of measuring displacements on denser grids (a few hundred
of points) by using a laser scanning vibrometer.

One of the questions that is attracting significant research attention is related to the use of structural
response from operational dynamic loads in a damage detection procedure. For bridges, the operational
loads are moving vehicular loads, and the operational deflection shapes are the deflections of the bridge
deck subject to moving vehicular loads. Previous studies are mainly on the problem of modal testing
and analysis of structures under operational loads. Mazurek and Dewolf (1990) conducted the laboratory
studies on simple two-span girders under moving loads with structural deterioration by vibration analysis.
Structural damages were artificially introduced by a release of supports and insertion of cracks. Piombo
et al. (2000) modeled the vehicle–bridge interaction system as a three-span orthotropic plate subject to a
seven degrees-of-freedom multi-body system with linear suspensions and tires flexibility, and wavelet tech-
nique is used to extract the modal parameters. Lee et al. (2002) studied the identification of the operational
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modal properties of a bridge structure using vibration data caused by the traffic loadings and the damage
assessment based on the estimated modal parameters using the neural networks technique. Majumder
and Manohar (2003) developed a time domain formulation to detect damages in a beam using data orig-
inating from the linear beam-oscillator dynamic interaction and extended the capabilities of this formula-
tion to include the possibility of the damaged beam structure undergoing nonlinear vibrations. The study
combines finite element modeling for the vehicle–bridge system with a time-domain formulation to detect
changes in structural parameters. The structural properties and motion characteristics of the moving vehicle
are assumed to be available, and the elemental stiffness loss is used to simulate the different damage
scenarios.

In this paper, the operational deflection time history of the bridge subject to a moving vehicular load is
analyzed using the continuous wavelet transform. A new technique is proposed for structural damage
detection based on spatial wavelet analysis of response measurements at one point of the bridge deck.
The mode shape of the beam with local damages is expressed as discrete unit step functions with stiffness
of the local damages. The damage index based on wavelet coefficient is used as an indicator of the damage
extent. In the simulation, the vehicle is modeled as a moving load, and the bridge is simplified as a
continuous Euler–Bernoulli beam simply-supported at both ends. The effect of the parameters of the
vehicle–bridge interaction system and noise in the measurements on the damage detection is studied. An
experimental study is carried out on a reinforced concrete bridge model with a Tee-section subject to vehicle
loadings to verify the method. Simulation and laboratory results show that the method is effective to detect
crack damage in the concrete bridge structure under moving vehicular loads. Locations of multiple dam-
ages can be located accurately, and the results are not sensitive to measurement noise, speed and magnitude
of moving load, measuring location, etc.
2. Dynamic behavior of cracked bridge beam subject to moving load

2.1. Equation of motion

The bridge–vehicle system is modeled as continuous beam subject to a moving load P(t) as shown in
Fig. 1. The load is assumed to be moving at a prescribed velocity v(t), along the axial direction of the beam
from left to right. The beam is assumed to be an Euler–Bernoulli beam. The equation of motion can be
written as
qA
o2wðx; tÞ

ot2
þ C

owðx; tÞ
ot

þ o2

ox2
EIðxÞ o

2wðx; tÞ
ox2

� �
¼ PðtÞdðx� x̂ðtÞÞ ð1Þ
x(t)
∧

P(t)

EI (x), ρA

y

x

L

Fig. 1. A continuous beam subject to moving loads.
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where qA, C are the mass per unit length and the damping of the beam, EI(x) is flexural stiffness of the
Euler–Bernoulli beam. w(x, t) is the displacement function of the beam. x̂ðtÞ is the location of moving load
P(t) at time t and d(t) is the Dirac delta function. Express the transverse displacement w(x, t) in modal
coordinates
wðx; tÞ ¼
X1
i¼1

/iðxÞqiðtÞ ð2Þ
where /i(x) is the mode shape function of the ith mode; qi(t) is the ith modal amplitude. Substituting Eq. (2)
into Eq. (1), and multiplying by /i(x), integrating with respect to x between 0 and L, and applying the
orthogonality conditions, we obtain
d2qiðtÞ
dt2

þ 2nixi
dqiðtÞ
dt

þ x2
i qiðtÞ ¼

1

Mi
P ðtÞ/iðx̂ðtÞÞ ð3Þ
where xi, ni, Mi are the modal frequency, damping ratio and the modal mass of the ith mode, and
Mi ¼
Z L

0

qA/2
i ðxÞdx ð4Þ
The displacement of the beam at point x and time t can be found from Eqs. (2) and (3) as
wðx; tÞ ¼
X1
i¼1

/iðxÞ
Mi

Z t

0

hiðt � sÞP ðsÞ/iðx̂ðsÞÞds ð5Þ
where
hiðtÞ ¼
1

x0
i
e�nixit sinx0

it; x0
i ¼ xi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2i

q
ð6Þ
2.2. Modal analysis of cracked beam structures

Fig. 2 shows a uniform bridge beam structure with N cracks. The damaged continuous beam is discret-
ized into N + 1 segments of constant unit weight qA, bending stiffness EI (undamaged beam stiffness) and
length li, (i = 1,2, . . ., N + 1).The segments are connected together through rotational springs (damage sec-
tion) whose stiffness are denoted by ki (i = 1,2, . . .,N).
Fig. 2. Beam with rotational springs representing damaged section.
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The eigen-function of an Euler–Bernoulli beam segment can be written as
riðxiÞ ¼ Ai sin bxi þ Bi cos bxi þ Ci sinh bxi þ Di cosh bxi; ði ¼ 1; 2; . . . ;N þ 1Þ ð7Þ

where ri(xi) is the eigen-function for the ith segment, and b is the eigenvalue of the beam. Zhu and Law
(2003) have presented the formulation of eigen-function for a multi-span continuous beam. We have a sim-
ilar problem with N + 1 segments connected by rotational springs here. The boundary conditions for the
damaged beam are listed as follows:
r1ðx1Þjx1¼0 ¼ rNþ1ðxNþ1ÞjxNþ1¼lNþ1
¼ 0

o2r1ðx1Þ
ox21

����
x1¼0

¼ o2rNþ1ðxNþ1Þ
ox2Nþ1

����
xNþ1¼lNþ1

¼ 0

riðxiÞjxi¼li
¼ riþlðxiþ1Þjxiþ1¼0

oriðxiÞ
oxi

����
xi¼li

þ EI
ki

o2riðxiÞ
ox2i

����
xi¼li

¼ oriþ1ðxiþ1Þ
oxiþ1

����
xiþ1¼0

o
2riðxiÞ
ox2i

����
xi¼li

¼ o
2riþ1ðxiþ1Þ
ox2iþ1

����
xiþ1¼0

o3riðxiÞ
ox3i

����
xi¼li

¼ o3riþ1ðxiþ1Þ
ox3iþ1

����
xiþ1¼0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ði ¼ 1; 2; � � � ;NÞ ð8Þ
Substituting Eq. (7) into the boundary conditions (8), the mode shape of the continuous beam with N

damage locations can be written as
/ðxÞ ¼ r1ðxÞð1� Hðx� l1ÞÞ þ
XNþ1

i¼2

riðx�
Xi�1

j¼1

ljÞðHðx�
Xi�1

j¼1

ljÞ � Hðx�
Xi

j¼1

ljÞÞ ð9Þ
where H(x) is the unit step function.
r1ðxÞ ¼ A1 sin bxþ C1 sinh bx; ð0 6 x < l1Þ
riðxÞ ¼ AiðxÞ sin bxþ Bi cos bxþ Ci sinh bxþ Di cosh bx; ð0 6 x < li; i ¼ 2; 3; . . . ;N þ 1Þ

�
ð10Þ
where parameters {A}={b,A1,C1,Ai,Bi,Ci,Di (i = 2,3,. . .,N + 1)} are determined from the following
equation
½S�fAg ¼ 0 ð11Þ

where the elements of matrix S are given by
f11 ¼ sin bl1; f 12 ¼ sinh bl1; f 14 ¼ �1; f 16 ¼ �1

f21 ¼ � sin bl1; f 22 ¼ sinh bl1; f 24 ¼ 1; f 26 ¼ �1

f31 ¼ � cos bl1; f 32 ¼ cosh bl1; f 33 ¼ 1; f 35 ¼ �1

f41 ¼ b cos bl1 � b2 EI
k1

sin blI ; f 42 ¼ b cosh bl1 þ b2 EI
k1

sinh bl1; f 43 ¼ �b; f 45 ¼ �b

f4ði�1Þþ1;4ði�1Þ�1 ¼ sin bli; f 4ði�1Þþ1;4ði�1Þ ¼ cos bli

f4ði�1Þþ1;4ði�1Þþ1 ¼ sinh bli; f 4ði�1Þþ1;4ði�1Þþ2 ¼ cosh bli

f4ði�1Þþ1;4ði�1Þþ4 ¼ �1; f 4ði�1Þþ1;4ði�1Þþ6 ¼ �1;
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f4ði�1Þþ2;4ði�1Þ�1 ¼ � sin bli; f 4ði�1Þþ2;4ði�1Þ ¼ � cos bli

f4ði�1Þþ2;4ði�1Þþ1 ¼ sinh bli; f 4ði�1Þþ2;4ði�1Þþ2 ¼ cosh bli

f4ði�1Þþ2;4ði�1Þþ4 ¼ 1; f 4ði�1Þþ2;4ði�1Þþ6 ¼ �1;

f4ði�1Þþ3;4ði�1Þ�1 ¼ � cos bli; f 4ði�1Þþ3;4ði�1Þ ¼ sin bli

f4ði�1Þþ3;4ði�1Þþ1 ¼ cosh bli; f 4ði�1Þþ3;4ði�1Þþ2 ¼ sinh bli

f4ði�1Þþ3;4ði�1Þþ3 ¼ 1; f 4ði�1Þþ3;4ði�1Þþ5 ¼ �1;

f4ði�1Þþ4;4ði�1Þ�1 ¼ b cos bli � b2 EI
ki

sin bli; f 4ði�1Þþ4;4ði�1Þ ¼ �b sin bli � b2 EI
ki

cos bli

f4ði�1Þþ4;4ði�1Þþ1 ¼ b cosh bli þ b2 EI
ki

sinh bli; f 4ði�1Þþ4;4ði�1Þþ2 ¼ b sinh bli þ b2 EI
ki

cosh bli

f4ði�1Þþ4;4ði�1Þþ3 ¼ �b; f 4ði�1Þþ4;4ði�1Þþ5 ¼ �b;

f4Nþ1;4N�1 ¼ sin blNþ1; f 4Nþ1;4N ¼ cos blNþ1; f 4Nþ1;4Nþ1 ¼ sinh blNþ1

f4Nþ1;4Nþ2 ¼ cosh blNþ1; f 4Nþ2;4N�1 ¼ � sin blNþ1; f 4Nþ2;4N ¼ � cos blNþ1

f4Nþ2;4Nþ1 ¼ sinh blNþ1; f 4Nþ2;4Nþ2 ¼ cosh blNþ1; ði ¼ 2; 3; . . . ;NÞ
3. Crack identification using continuous wavelet transform

Eq. (9) shows that there are discontinuities at the damage points, especially the slope discontinuities at
the cracks. The damaged locations can be determined by finding the discontinuous points in the mode
shapes. Mode shape curvature is widely used to find these discontinuous points (Pandey et al., 1991). How-
ever, the first problem for damage detection using curvature directly is to calculate the curvature by deri-
vation. It is very difficult to obtain accurate mode shape in practice and the differentiation of the mode
shape will further amplify the measurement error. Recently, the wavelet transform is widely used to mea-
sure the local regularity of a signal.

3.1. The continuous wavelet transform of measured displacement

The continuous wavelet transform of a square-integrable signal f(x), where x is time or space, is defined
as (Mallat and Hwang, 1992)
Wf ðu; sÞ ¼ f ðxÞ � wsðxÞ ¼
1ffiffi
s

p
Z þ1

�1
f ðxÞw� x� u

s

� �
dx ð12Þ
where � denotes the convolution of two functions. ws(x) is the dilation of w(x) by the scale factor s. u is the
translation indicating the locality. w*(x) is the complex conjugate of w(x) which is a mother wavelet satis-
fying the following admissibility condition:
Z þ1

�1

WðxÞj j2

jxj dx < þ1 ð13Þ
where W(x) is the Fourier transform of w(x) . The existence of the integral in (13) requires that
Wð0Þ ¼ 0 i.e.;

Z þ1

�1
wðxÞdx ¼ 0 ð14Þ
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From Eq. (5),the displacement at xm can be written as
wðxm; tÞ ¼
X1
i¼1

/iðxmÞ
Mi

Z t

0

hiðt � sÞP ðsÞ/iðx̂ðsÞÞds ð15Þ
The second derivation of the displacement with respect to the position of the moving load can be obtained
as
o
2wðxm; tÞ
o
2x̂lðtÞ

¼
X1
i¼1

/iðxmÞ
Mi

Z t

0

hiðt � sÞP ðsÞ o
2/iðx̂ðsÞÞ
ox̂ðsÞ2

ds ð16Þ
where o2/iðxÞ
ox2 is the second order derivation of the ith mode which is the curvature of the displacement mode

shape. This shows that the second derivative of the displacement with respect to the load position includes
the curvature information of the mode.

3.2. The multiscale differential operator of wavelet (Mallat and Hwang, 1992)

Let us take the Gaussian function h(x) the wavelet of which can be defined as the second derivative of the
function:
wðxÞ ¼ d2hðxÞ
dx2

ð17Þ
The wavelet w(x) in Eq. (17) is continuous differentiable and is usually referred to as the Mexican Hat wave-
let that has the following explicit expression:
wðxÞ ¼ 2ffiffiffiffiffiffi
3r

p p�1=4 x2

r2
� 1

� �
exp

�x2

2r2

� �
ð18Þ
where r is the standard deviation.
The wavelet transform for the displacement w(xm, t) is then expressed by the following relation (Mallat

and Hwang, 1992) when the Mexican Hat wavelet is adopted, as
Wwðx̂ðtÞ; sÞ ¼ wðxm; tÞ � wsðx̂ðtÞÞ ¼ s2
d2

dx̂ðtÞ2
ðwðxm; tÞ � hsÞ x̂ðtÞð Þ ð19Þ
Eq. (19) is the multi-scale differential operator of the second order, and is the relation between the second
differentiability of w(xm, t) and its wavelet transform decay at fine scales. The wavelet transform Wwðx̂ðtÞ; sÞ
is proportional to the second derivative of w(xm, t) smoothed by the Gaussian function hs(x). So the wavelet
transform can be used to replace the direct differentiation of the displacement to get the curvature proper-
ties. The second differential of operating curvature shapes of a beam is not continuously differentiable at the
damage location, while in the present case the measured location is continuously differentiable. The damage
can then be located using the wavelet transform of the operational displacement time history at one point
when the beam structure is subject to the action of the moving load. Similar formulation can be obtained
for accelerations.
4. Numerical studies

Table 1 shows the frequency ratios between the cracked and uncracked states of a simply supported
beam with an open crack at mid-span with different crack depth ratios, d, calculated from Eq. (11) and from



Table 1
Frequency ratio between cracked to uncracked simply supported beam (length/height ratio = 36.22)

Mode Crack depth ratio d

1/4 1/3 2/5 1/2 3/5 2/3

Present [17] Present [17] Present [17] Present [17] Present [17] Present [17]

First 0.986 0.984 0.972 0.970 0.954 0.953 0.909 0.903 0.835 0.824 0.767 0.755
Third 0.986 0.984 0.973 0.972 0.957 0.957 0.922 0.917 0.872 0.866 0.836 0.830
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Narkis (1994). The beam length to beam height ratio is 36.22. The first and third natural frequency ratios
calculated from Eq. (11) are very close to the results by Narkis (1994).

4.1. Example 1: A simply supported beam with a single crack

A simply supported beam of 50 m length, 1.0 m high and 0.5 m width (Mahmoud, 2001) is used. The
Young�s modulus and density of the beam are E = 2.1 · 1011 Pa and q = 7860 kg/m3, and the moving load
is F0=10 kN. The first six natural frequencies are 0.94, 3.75, 8.44, 15.00, 23.44, 33.75 Hz. According to
Tada et al. (2000), the crack compliance CC of a rectangular beam with the crack depth ratio d is as follow:
CC ¼ 1

k
¼ 2h

EI
d

1� d

� �2

½5:93� 16:69dþ 37:14d2 � 35:84d3 þ 13:12d4� ð20Þ
Fig. 3 shows the normalized deflection versus the position of the moving load at mid-span for the
undamaged beam and for a cracked beam (crack at mid-span with the crack depth ratio d = 0.5) for
different load speeds. The normalized deflection is relative to the value F0L

3/(48EI), which is the static
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Fig. 3. Normalized deflection at mid-span by Mahmoud (2001) and the present method.
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deflection due to the load at mid-span. The sampling rate is 100 Hz. The results by the present algorithm are
close to those in the reference (Mahmoud, 2001). It shows that the algorithm in the paper has similar accu-
racy as the existing method.

4.2. Damage location identification

The above simply-supported beam is used in the simulation and the damping ratio for all modes is taken
equal to 0.02. The crack is at 1/3L with a depth ratio of 0.5. White noise is added to the calculated responses
of the beam to simulate the polluted measurements, and 1%, 3% and 5% noise levels are studied separately.
w ¼ wcalculated þ EpN oiserðwcalculatedÞ ð21Þ

where w is the polluted displacement. Ep is the noise level and Noise is a standard normal distribution vector
with zero mean value and unit standard deviation. wcalculated is the calculated displacement, and r(wcalculated)
is their standard deviations. Continuous wavelet transform on the displacement time history at mid-span is
calculated with dilation s equals 1 to 512 in unit increment.

Fig. 4 shows the wavelet coefficients of the displacement at mid-span with scale 64 when the moving load
is on top of the beam. Fig. 5 shows the location of the peak from using different scales. Fig. 6 shows the
logarithm value of the minimum wavelet coefficients obtained from using different scales. The following
observations are made.

(1) Fig. 4 shows that there is a dip in the curve of wavelet coefficients at 1/3L which is the location of the
damage. In other words, the damage location can be determined as the location of the dip in the wave-
let coefficient curve.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3

-2

-1

0

1

2
x10

-4

W
av

el
et

 C
oe

ffi
ci

en
t

x(t) / L

No noise

1% noise

3% noise

5% noise

∧

Fig. 4. Wavelet coefficients of the displacement at mid-span when a moving load is moving on the beam at 1 m/s.
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(2) In Fig. 5, the position of the dip in the wavelet coefficient curve is close to 1/3L when the scale is not
less than 42 and they are close to the two ends when the scale is less than 42. The latter is associated
with the discontinuity of the measured responses on the entry and exit of the moving load. When the
scale is larger than 42, the position of the dip indicates the position of the damage.
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(3) The dip value of wavelet coefficient is plotted versus the scale in a log-log plot in Fig. 6 when different
noise level is included in the response. The results are close to each other when the scale is larger than
28. This means the identified location of damage is least affected by measurement noise when the scale
is larger than 28.
4.3. Damage extend estimation

The parameters are the same as for the above studies. Based on observations in the last study, scale 64 is
adopted in this study. Fig. 7 shows the wavelet coefficients of the response at mid-span with different crack
depths when the moving load is moving on the beam. The dip value in the curves becomes smaller when the
crack depth increases, but the position of the dip does not change. A damage index is defined to express the
damage extent as follow
a ¼ log2jWf ðud; sÞj
log2jWf oðud; sÞj

ð22Þ
where ud is the damage location and Wfo(ud, s) is the wavelet coefficient of the response without damage at
location ud.

Table 2 shows the damage indices defined by Eq. (22) for cracks at different location from different mea-
surement of noisy data. The damage index reduces when the crack depth increases, and the measuring noise
has little effect on the value of the damage index. The corresponding relationship between the damage index
and the crack depth can be determined for a beam as a database for assessment of a particular crack
damage in future measurements.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-8

-7

-6

-5

-4

-3

-2

-1

0

1

2
x10

-4

W
av

el
et

 C
oe

ffi
ci

en
t

Undamaged

a/h=0.2

a/h=0.4

a/h=0.6

x(t) / Lˆ

Fig. 7. Wavelet coefficients with various crack depth and 3% noise in the response.



Table 2
Damage indices of the cracked beam

Measuring Location d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1/3L No noise 0.992 0.971 0.935 0.884 0.822 0.743 0.646 0.561 0.410
1% 0.992 0.700 0.933 0.881 0.819 0.740 0.643 0.559 0.408
3% 0.991 0.967 0.928 0.874 0.811 0.732 0.636 0.553 0.404
5% 0.990 0.964 0.923 0.867 0.803 0.724 0.629 0.546 0.400

1/2L No noise 0.992 0.969 0.932 0.880 0.810 0.732 0.632 0.538 0.378
1% 0.992 0.970 0.933 0.882 0.815 0.734 0.634 0.539 0.379
3% 0.993 0.971 0.936 0.886 0.819 0.737 0.638 0.542 0.380
5% 0.993 0.972 0.938 0.888 0.822 0.741 0.641 0.545 0.382

2/3L No noise 0.992 0.971 0.937 0.888 0.825 0.749 0.656 0.543 0.505
1% 0.991 0.968 0.930 0.879 0.815 0.738 0.647 0.535 0.499
3% 0.988 0.956 0.911 0.854 0.788 0.711 0.621 0.516 0.483
5% 0.977 0.927 0.869 0.806 0.738 0.664 0.579 0.479 0.454
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4.4. Parametric study

Fig. 8 shows the wavelet coefficients of the response at mid-span with 3% noise when the load is moving
on the beam at different speeds. The crack location is at 1/3L and the crack depth ratio is 0.5. Other param-
eters are the same as for the last study. Fig. 9 shows the wavelet coefficients of the responses at 1/4L, 1/2L
and 3/4L, respectively. Fig. 10 shows the results when loads of different magnitude are moving on the beam.
From these results, the following observations are made.
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Fig. 8. Wavelet coefficients with the load moving at different speeds (3% noise).
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Fig. 9. Wavelet coefficients of the response at different measuring locations.
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Fig. 10. Wavelet coefficients of the response at mid-span when different moving loads are moving on the beam.
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1) Fig. 8 shows that the moving speed of the load has a significant effect on the value of the wavelet coef-
ficient, but the position of the dip does not change with the moving speed.

2) The position of the dip remains close to the damage location when the responses obtained from dif-
ferent measuring locations are used in the calculation. The value of the dip in the wavelet coefficient
curves is different for different measuring locations as shown in Fig. 9. The absolute value from using
response at 1/4L or 1/2L is larger than that at 3/4L. This is because the former group of measuring
location is closer to the damage location at 1/3L than the latter.

3) As shown in Fig. 10, the position of the dip in the wavelet coefficient curve remains close to the dam-
age location when different loads are moving on the beam, and the value of the dip decreases with an
increase in the moving load.

4.5. Example 2: A simply supported beam with multiple cracks

A simply supported beam with multiple cracks subject to a moving load is studied in this section. The
parameters of the beam and the moving load are the same as for the above studies except for the multiple
damages in the beam. The crack depth ratios of all cracks is 0.5, and 3% noise is included in the simulation.
Fig. 11 shows the wavelet coefficients of the responses at 1/4L,1/2L and 3/4L with four cracks located
at 1/5L, 2/5L, 3/5L and 4/5L. Fig. 12 gives the results for the beams with two cracks at different spacing.
The crack depth ratios are also 0.5. The following observations are noted.

1) There are four dips in the wavelet coefficient curves in Fig. 11. The dip positions are close to the dam-
age locations at 1/5L, 2/5L, 3/5L and 4/5L, and the dip value varies with the measuring location. The
multiple damage locations can be determined accurately from the wavelet coefficient of the response
obtained from a single measuring point.
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Fig. 11. Wavelet coefficients of the responses with four damages (3% noise).
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Fig. 12. Wavelet coefficients of the response at mid-span with various spacing between two cracks.
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Fig. 13. (a) Cross-section layout of the reinforced concrete beam. (b) Experimental setup.
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2) Fig. 12 shows that there are two dips in the curve of wavelet coefficient when the distance between two
cracks is not smaller than 1/24L, and there is only one dip when the distance is 1/48L. This shows that
the damages can be separated identified clearly when the spacing is not smaller than 1/24L.
5. Experimental investigation

The experimental setup shown in Fig. 13 includes three Tee-section concrete beams, i.e. the leading
beam, the main beam and the tailing beam. The length of the leading and tailing beams are 4.5 m each,
and the main beam is 5.0 m long. The gaps between the beams are 10 mm. A vehicle was pull along the
beam by an electric motor at an approximate speed of 0.5 m/s. The axle spacing of the vehicle was
0.8 m, and the wheel spacing was 0.39 m. The vehicle weighed 10.60 kN, with the front axle load weighed
5.58 kN and the rear axle load weighed 5.02 kN. As the total mass of the concrete beam was 1050 kg, the
weight ratio between the vehicle and bridge was 1.01.

Seven displacement transducers (sensors 1# to 7#) were evenly distributed at the bottom and along the
beam to measure the responses as marked in Fig. 13. Thirteen photo-electric sensors were installed on the
leading beam and the main beam at 0.56 m spacing to monitor the speed of the vehicle. The third and thir-
teenth photo-electric sensors were located at the entry and exit points of the main beam separately.
INV300E data acquisition system was used to collect the data from all the eight channels. The sampling
frequency was 2024.292 Hz, and the sampling period was 30 s for each test.
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Fig. 14. Damage loading and the crack zone. (a) First step and (b) second step.
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Damage in the beam was created using a three-point load system applied at 1/3L from the right support
of the beam as shown in Fig. 14 (a). The load was gradually increased at 2 kN increment. When 36 kN was
reached, several tensile cracks were clearly seen on the beam rib. When the load increased to 50 kN, the
crack width of the largest crack at the bottom of the beam was measured as 0.10 mm. The location of this
crack was close to the loading position but on the inside of the span with a visual crack depth of 213 mm
and a crack zone of 760 mm wide. After the load was kept on the beam for 30 min, the beam was unloaded
and the crack closed partly with the crack width at the bottom of the beam reduced to 0.025 mm. These
observations are referred to as the small damage case.

For the large damage case, the beam was first loaded at 2/3L of the beam from the right support up to
50 kN using the three-point load system. This created a crack pattern similar in magnitude and extent to the
existing crack zone at 1/3L. Further loading was made using a four-point load system as shown in
Fig. 14(b). The final total load was 105 kN without yielding of the main reinforcement. The largest crack
was close to the middle of the beam with 281 mm depth. The width of this crack at the bottom of the beam
was 0.1 mm at 105 kN load, and it become 0.038 mm when the beam was unloaded after keeping the
105 kN static load on top for 30 min. The crack zone was measured 2371 mm long.

Fig. 15 shows the wavelet coefficients of the displacement at 3/8L (3# transducer) when the model car
was moving on the concrete beam. There are mainly six peaks for the small damage case. The first and sec-
ond peaks are associated with impacts on the entry of the front and rear axles. The fifth and sixth peaks are
associated with impacts on the exit of the front and rear axles. The third and fourth peaks are related to the
locations of the damage in Fig. 15(a). The results show that the damage location can be determined using
the peaks in the wavelet coefficient of the response from a single measuring point. For the large damage
case, there are many cracks created in the reinforced concrete beam. There are also many peaks in the curve
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of the wavelet coefficient besides those associated with the entry and exit of vehicle, and the damage zone
can be clearly estimated, but the crack location can not be determined separately. This can be explained by
the fact that the large static load of 105 kN has caused bond slippage between the steel bar and concrete,
and the damage can not be simply modelled as an open crack.
6. Conclusions

A new technique for structural damage detection based on spatial wavelet analysis of the operational
deflection time history obtained from a single measuring point of the bridge deck is proposed. Numerical
simulation and experimental results show that the method is effective and the damage location can be deter-
mined accurately. The method can determine the damage location accurately even though there are multi-
ple damages in the bridge beam. The location is determined as the position of the dip in the wavelet
coefficient curve and there is no baseline requirement in determining the damage location. The damage ex-
tent can be determined using a reference database of the damage index based on the wavelet coefficient. The
identified position associated with local damage in the beam does not vary with the measurement noise, the
speed of the moving load, measuring location and the amplitude of the moving load. The method is robust
in determining the damage location.
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