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Living organisms sense their physical environment through cellular mechanotransduction, which
converts mechanical forces into electrical and biochemical signals. In turn, signal transduction
serves a wide variety of functions, from basic cellular processes as diverse as proliferation, differ-
entiation, migration, and apoptosis up to some of the most sophisticated senses, including touch
and hearing. Accordingly, defects in mechanosensing potentially lead to diverse diseases and dis-
orders such as hearing loss, cardiomyopathies, muscular dystrophies, chronic pain, and cancer.
Here, we review the status of mechanically activated ion channel discovery and discuss current
challenges to define their properties and physiological functions.
Introduction
In contrast to the detection of photons for vision or chemical

cues for olfaction and taste, relatively little is known about the

molecular machinery of mechanotransduction. In addition to

highly specialized sensory cells involved in the senses of hearing,

touch, and proprioception, every cell seems capable of mechan-

ical stress sensation via changes in conformation of proteins or

macromolecular protein complexes. Through these ‘‘mechano-

signalosomes,’’ cells integrate a variety of mechanical stimuli

such as shear stress, tension, torsion, and compression and

translate them into short-term effects (i.e., changes in ion con-

centrations and voltage) and long-term effects via changes in

gene expression. A wide array of membrane-associated mole-

cules is involved in mechanotransduction, including ion chan-

nels, specialized cytoskeletal proteins, cell junction molecules,

and G-protein-coupled receptors and kinases, among many

others (Matthews et al., 2010; Anishkin and Kung, 2013).

It has long been known that sensing touch and sound waves

require unique ion channels that detect pressure (Corey and

Hudspeth, 1979). Only recently, however, studies directed to-

ward characterizing ion channels as transduction molecules

have identified promising molecular candidates. Although

several important points pertaining to the properties and func-

tions of these channels remain to be clarified, these discoveries

represent a major breakthrough in the field of mechanosensa-

tion. Here, we highlight emerging themes from papers in the

recent literature, from the identification of new force-sensing

ion channels in different species to structural/mechanistic as-

pects that make these channels tailored to transduce mechani-

cal inputs.

Mechano-Gated versus Mechanosensitive Ion Channels
Mechanosensation has been the most elusive sensory modality

with regard to the identification of proteins that mediatemechan-

ical transduction. Prime candidates for force transducers are
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channels whose open probability changes reversibly with mem-

brane tension, i.e., mechanosensitive (MS) channels. MS chan-

nels represent a diverse population of ion channel classes with

different biophysical properties. This is due to the loose definition

of MS channels, as many ion channels are found to be sensitive

to mechanical stimuli. MS channels can be divided into two cat-

egories: those that respond to membrane tension because

evolutionary design provides them with specialized mechano-

sensor motifs/mechanical gates or an overall structure that ren-

ders them susceptible to membrane tension (Sukharev and

Sachs, 2012) and those that are susceptible to stretch because

a gating domain is inherently sensitive to membrane tension (Ba-

griantsev et al., 2011; Hao et al., 2013; Morris, 2011). The former

defines a class of bona fide mechano-gated ion channels,

whereas the latter regroups a variety of mechanosusceptible

ion channels. Both have specific physiological functions.

Yet it has been remarkably difficult to identify mechanotrans-

ducer channels and to show that candidates are force gated

(Christensen and Corey, 2007). Except for the prokaryote

osmotic safety valves—the MsC channels, which are well char-

acterized but do not have homologs in animals (Kung, 2005)—

evidence that a particular MS channel behaves as mechano-

transducer remains rare in eukaryotic cells. Technical difficulties,

along with functional redundancy and heteromeric nature of

channel complexes, could account for difficulties in identifying

a single channel type that is responsible for mechanotransducer

currents. To date, only three classes of ion channels satisfy all of

the criteria for bona fide mechano-gated channels in eucary-

otes—namely DEG/ENaC, TRPN, and Piezo (Figure 1).

New Insights from Touch-Related Systems
Caenorhabditis elegans

A variety of elegant studies have successfully demonstrated that

the TRPN1 channel—also called TRP-4 in Caenorhabditis

elegans (C. elegans) and NompC in Drosophila—is a bona fide
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Figure 1. Topology of Mechano-Gated

Channel Subunits
Schematic of predicted transmembrane topol-
ogies of ceMEC-4, dmTRPN1, dmNanchung
(adapted from Christensen and Corey, 2007),
mmTMC1 (adapted from Labay et al., 2010), and
mmPiezo2. Piezo2 is predicted to harbor 39 TM
domains with phobius prediction program. Protein
structures depict the predicted pore region
(P loop) and the ankyrin repeats.
mechano-gated channel involved in mechanotransduction in

invertebrate species. C. elegans TRPN1 is involved in the basal

slowing response, a phenomenon by which worms reduce their

locomotion speed upon mechanical contact with a food source

(Kang et al., 2010). TRPN1 is expressed in the cephalic neuron

(CEP), a mechanosensory ciliated dopaminergic neuron that is

present at the nose tip of the worm (Figure 2A). TRPN1 is local-

ized to the cilium of CEP, where mechanotransduction most

probably occurs. trpn1mutant worms are defective in mechano-

sensation, such as the basal slowing response, and lack rapidly

adapting mechanoreceptor current in CEP (Kang et al., 2010).

Remarkably, specific expression of TRPN1 in CEP neurons of

trpn1 mutants rescues mechanoreceptor current as well as

basal slowing response. In addition, mutations in the predicted

pore region of TRPN1 abolish the function or alter the ion

selectivity of mechanotransduction channels, establishing that

TRPN1 serves as a pore-lining subunit of a mechanotransduc-

tion channel in C. elegans CEPs.

The situation is sensibly different in theC. elegans ASH neuron

(Figure 2A), a polymodal nociceptor that triggers defensive

avoidance behavior in response to multiple aversive stimuli,

including chemical, osmotic, and mechanical cues (harsh nose

touch). ASH neurons express deg-1 and unc-8, two deg/ENaC

genes, and osm-9 and ocr-2, two trpv channel genes. Patch-

clamp experiments have shown that mechanoreceptor current

in ASH neurons is sensitive to amiloride and is carried primarily

by sodium ions, two trademarks of DEG/ENaC channels. Impor-

tantly, deletion of deg-1 abolishes 80% of the total mechanore-

ceptor current, whereas deletion of either unc-8 or trpv genes

has no effects (Geffeney et al., 2011). With good faithfulness to

the criteria for mechanotransducer channels, mutations in the

pore region of DEG-1 alter ionic selectivity of ASH mechanore-

ceptor current (Geffeney et al., 2011). These results favor the

view that DEG-1 is the pore-forming subunit of the main mecha-

notransduction channel in ASH neurons. However, this study

also revealed a residual mechanoreceptor current carried

nonselectively by cations that persists in unc-8; deg-1 and

osm-9ocr-2; deg-1 mutants. This suggests that another yet un-

identified mechano-gated channel exists in ASH neurons and
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questions the redundancy and functional

interaction between the two.

Other polymodal nociceptive neurons

in C. elegans are the multidendritic PVD

neurons that detect extreme tempera-

tures as well as noxious mechanical stim-

uli (Figure 2A). Cell ablation experiments

have implicated PVD neurons in avoid-
ance of harsh body touch. PVD neurons express a variety of

deg/ENaC- and trp-related genes. Mechanical-stimulation-

evoked calcium responses in multidendritic PVD neurons are

abrogated in mec-10 mutants and in worms in which degt-1,

another deg/ENaC gene, has been knocked down (Chatzigeor-

giou et al., 2010). These worms also exhibit significant defects

in harsh touch escape behavior. Likewise, deletion of mec-10

or degt-1 selectively abolishes harsh touch calcium responses

in ALM neurons, another class of polymodal sensory neurons

that respond to both harsh and gentle touch (Figure 2A). Thus,

MEC-10 and DEGT-1 are essential for harsh touchmechanosen-

sation in PVD as well as ALM neurons. Consistent with MEC-10

and DEGT-1 being part of a mechanotransduction complex, the

two proteins colocalize throughout PVD dendritic branches.

Further electrophysiological characterization of MEC-10/

DEGT-1-dependent currents, combined with genetic manipula-

tion, will help to determine their respective contribution as

pore-forming subunits of the harsh touch mechanosensory

channel complex.

The genetic requirement ofMEC-10 for harsh touch responses

contrasts with its formerly described role in gentle touch sensing.

Earlier works have established that gentle touch in ALM neurons

depends, although to a variable extent, on both MEC-4 and

MEC-10 (O’Hagan et al., 2005; Arnadóttir et al., 2011). Therefore,

the contribution of MEC-10 to both gentle and harsh touch raises

the question as to whether touch modality is a function of the cell

type or of the molecular composition of the mechanotransducer

complex. The above findings are consistent with the possibility

that MEC-4/MEC-10 channels mediate low-threshold mechani-

cal responses in ALM neurons, whereas MEC-10/DEGT-1 chan-

nels instead mediate high-threshold mechanical responses in

the same cells. Although these studies are a step toward identi-

fying the components of mechanotransducer channel complex

in worm PVD and ALM neurons, the exact function of each chan-

nel subunit remains to be defined, together with themechanisms

that orchestrate and regulate their specific assembly.

Drosophila melanogaster

Two types of sensory neurons called class III and class IV den-

dritic arborization neurons cover the body wall of Drosophila
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Figure 2. Mechanoreceptors in Inverte-

brates
(A) The cartoon depicts mechanosensory neurons
in a male nematode, together with sensory mo-
dalities and candidate mechanotransduction
channels. Only the left-side neurons of paired
symmetrical neurons (CEPDs, CEPVs, ASHs,
ALMs, PVDs, and PLMs) are represented for
clarity sake.
(B) Localization of TRPN1 and Nanchung/Inactive
in Drosophila hearing apparatus. Sound wave
vibrations transmitted up to the hook cause me-
chanical stimulation of the cilium of Johnston’s
organ neurons (JONs).
(C) Dual-tether model of the mechanotransduction
channel in Drosophila campaniform mechanore-
ceptors (Liang et al., 2013). TRPN1 ankyrin repeats
form membrane-microtubule connectors (MMC),
tethering the channel to the cytoskeleton. Sheat-
membrane connectors (SMC) link elements in the
membrane to extracellular structures. Mechanical
disturbance stretches the channel between these
two tethering points and opens the channel like a
trap door (arrow). Note that the properties of
TRPN1 are also compatible with a single-tether
model (see Kung, 2005).
larvae. Cellular and behavioral investigations have shown that

class III dendritic arborization neurons contribute to gentle touch

sensation, whereas class IV dendritic arborization neurons are

necessary for sensing noxious mechanical stimuli in addition to

noxious heat (Yan et al., 2013). High levels of TRPN1 are found

in the soma and dendrites of class III neurons. trpn1 null mutant

larvae show severe defects in the behavioral responses to gentle

touch. Class III neurons from trpn1 null mutant larvae fail to

respond to touch stimuli, a function that can be restored by

expression of TRPN1 in deficient neurons (Yan et al., 2013). In

addition, ectopic expression of TRPN1 confers light touch sensi-

tivity to the otherwise gentle-touch-insensitive class IV neurons,

whereas heterologous expression of TRPN1 in Drosophila S2

cells yielded mechanosensitive nonselective cation channels.

Moreover, point mutations introduced in the putative pore region

alter channel unitary conductance and ion selectivity, supporting

the notion that TRPN1 is a pore-forming subunit of themechano-

transduction channel involved in Drosophila larvae gentle touch

(Yan et al., 2013).

Class IV dendritic arborization neurons use a different set of

mechanosensitive channels for sensing noxious mechanical

cues. These neurons express the pickpocket gene, which en-

codes a DEG/ENaC subunit (Zhong et al., 2010), and Dmpiezo,

which encodes a member of a new family of mechanically acti-

vated nonselective cation channels (Coste et al., 2010, 2012).

Earlier work has suggested that pickpocket is required for me-

chanical nociception because larvae mutants for pickpocket

show reduced nociception behaviors in response to harsh me-

chanical stimuli. However, evidence that pickpocket contributes
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to mechanically activated currents in

class IV polymodal nociceptive neurons

is lacking. On the other hand, genetic

ablation of Dmpiezo in class IV neurons

impairs mechanical nociception, but not
gentle touch or noxious temperature detection (Kim et al.,

2012). Importantly, patch-clamp recordings of pickpocket-posi-

tive neurons reveal mechanically activated cation currents that

depend on Dmpiezo (Kim et al., 2012). These data suggest that

Dmpiezo functions in pickpocket-positive neurons to mediate

mechanical nociception. In addition, combining both Dmpiezo

and pickpocket knockdowns results in an additive loss of the

avoidance response to noxious stimuli (Kim et al., 2012), sug-

gesting that Piezo and DEG/ENaC channel activities are not

interdependent and mobilize two parallel signaling pathways to

regulate mechanosensory nociception.

Mouse Touch

Although mechanically activated cation currents present in ro-

dent sensory neurons are relatively well described in biophysical

terms (Hu and Lewin, 2006; Hao and Delmas, 2010; Rugiero

et al., 2010), the molecular identity of mechanotransducer chan-

nels that contribute to the senses of touch and pain remain

largely unknown (Delmas et al., 2011). The recently discovered

piezo proteins are putative candidates (Figure 1). Piezo1 (known

as FAM38A) and Piezo2 (known as FAM38B) are expressed in

mammalian skin and sensory neurons, respectively (Coste

et al., 2010). Piezo2 is found at significant levels in subsets of

myelinated and unmyelinated sensory neurons and therefore

could play a role in mechanotransduction of both innocuous

and noxious mechanical stimuli. Because Piezo2 constitutive

knockout mice died at birth (Dubin et al., 2012), a definite

demonstration of the role of Piezo2 in touch and nociception

awaits data from conditional knockout mice. Meanwhile, siRNA

knockdown of Piezo2 abolishes rapidly adapting mechanically



activated currents inmouse sensory neurons (Coste et al., 2010).

Piezo2 is enhanced in overexpression systems as well as in a

subclass of nociceptive neurons by potent inflammatory algo-

gens through activation of PKA/PKC, suggesting a contribution

of Piezo2 activity to inflammatory mechanical hyperalgesia (Du-

bin et al., 2012). The Epac-selective cAMP analog 8-pCPT also

sensitizes heterologously expressed Piezo2 as well as mechan-

ically evoked rapidly adapting currents in putative low-threshold

mechanoreceptors (Eijkelkamp et al., 2013). Intrathecal anti-

sense oligonucleotide treatment further demonstrates that

sensitization of Piezo2 contributes to Epac1-dependent allody-

nia as well as mechanical allodynia in different models of chronic

neuropathic pain (Eijkelkamp et al., 2013). Future research will

determine the underlying molecular mechanisms by which

Piezo2 sensitization contributes to mechanical allodynia and

hyperalgesia.

Pointing out a potential mechanosensory role in nonneuronal

cells, recent studies have linked Piezo1 mutations with dehy-

drated hereditary stomatocytosis (DHS), a congenital human

hemolytic anemia associated with red blood cell cation leak

causing dehydration (Albuisson et al., 2013; Andolfo et al.,

2013; Zarychanski et al., 2012). Mutant channels in dehydrated

DHS have delayed channel inactivation (Albuisson et al., 2013;

Bae et al., 2013), which might increase Piezo1 signaling during

repeated cycles of membrane deformation during passage

through the vasculature. Gain-of-function mutations of Piezo2

also affecting inactivation kinetics have been linked with a sub-

type of distal arthrogryposis (Coste et al., 2013), an autosomal

dominant disease characterized by multiple disorders, including

distal contractures and restrictive lung disease. It remains to

be determined whether these subtle alterations in Piezo chan-

nel function are the main basis for these diseases or whether

alteration of other functions (e.g., structural) of Piezo proteins

also contributes to the phenotypic observations. For example,

Piezo1 has been shown to modulate integrin function and

regulates cell migration in lung epithelial cells (McHugh et al.,

2010, 2012).

New Insights from Hearing
Hearing in Flies

Ever since being identified in a screen to fruit flies that show

abnormal responses to deflection of tactile bristles, TRPN1 has

been hypothesized to be a component of the elusive mechano-

transduction apparatus for hearing. The Drosophila auditory or-

gan is termed the Johnston’s organ. This chordotonal organ

houses specialized subsets of mechanosensory neurons that

detect sound transduced through vibration of the antennal

capsule (hearing), as well as position with respect to gravity

(graviception). In the presence of sound stimuli, mechanical

movements of the antennal segments cause the dendrites of

Johnston’s organ neurons (JONs) to be stimulated, initiating an

electrochemical response in the peripheral nervous system

(Figure 2B). TRPN1 locates in the distal cilium of Johnston’s or-

gan neurons (JONs), an appropriate location to play a direct role

in transduction. Accordingly, TRPN1 has been shown to be

required for active amplification (sound-evoked antennal motion)

and normal mechanical compliance of the Drosophila antenna

(Göpfert et al., 2006; Effertz et al., 2012), two processes
that are thought to reflect opening of mechanotransduction

channels.

At this point, the information supports the candidacy of

TRPN1 as a core component of the mechanosensitive appa-

ratus. As discussed above, it has all of the attributes of a

mechano-gated channel and is well positioned to act as a

transducer of mechanical forces. However, a number of obser-

vations deviate from this model. First, loss of TRPN1 in JONs

only half-reduces sound-evoked electrical activity in the

antennal nerve (Göpfert et al., 2006), lending speculation that

another channel might play a redundant function. Remnant

sound-evoked antennal nerve potentials in trpn1 nulls have

been attributed to TRPN1-independent gravity sensory neurons

that coexist with auditory sensory neurons in the Johnston’s or-

gan (Effertz et al., 2011). Second, TRPN1 coexists with Nan-

chung and Inactive, two TRPV family members that likely

form heteromeric channels in the fly’s JONs. Nanchung and

Inactive mutant flies lack sound-evoked field potentials in the

antennal nerve and, accordingly, are deaf. However, Nanchung

and Inactive are not viewed as forming the fly’s transducer

channel for hearing because they localize to the proximal cilium

of JONs and are absent from the ciliary tips that are in contact

with the dendritic caps. The prevailing view, therefore, is that

TRPVs act downstream of the primary mechanotransducer,

thereby amplifying subthreshold transducer depolarizations

down to JON cell bodies (Göpfert et al., 2006; Kamikouchi

et al., 2009).

The idea that the TRPN1 channel is the Drosophila transducer

for hearing has been recently challenged by Lehnert and co-

workers (2013). To circumvent technical difficulties inherent to

recordings from individual JONs, the authors developed a nonin-

vasive method for monitoring sound-evoked transducer signals.

They recorded from giant fiber neurons that have the particularity

to be coupled to JON axons through gap junctions. Using this

recording method, in conjunction with genetic manipulations,

they dissected the relative roles of TRPN1 and Nanchung/Inac-

tive channels in subthreshold responses to sound. Against the

odds, they found that mechanical transduction currents are

abolished by deleting either Nanchung or Inactive but persist in

the absence of TRPN1. Although it remains to be determined

whether Nanchung and Inactive function as force-gated chan-

nels, these results argue that TRPVs, but not TRPN1, are compo-

nents of the transduction complex. What then may be the func-

tion of TRPN1? Lehnert et al. (2013) found that generator

currents in JONs are more sensitive to movement when

TRPN1 is present, suggesting that TRPN1 amplifies mechanical

stimulus and exerts resting forces on the transduction complex.

A model emerging from this work is that TRPN1 might function

upstream to Nanchung and Inactive channels, regulating me-

chanical sensitivity of the mechanotransducer complex. The

mechanism by which TRPN1 provides this essential sensory

function ‘‘at distance’’ is not yet clear but might involve TRPN1

connection to microtubules that run longitudinally through the

dendrite. What makes this model intriguing, therefore, is the

implication of two putative mechanosensitive channels at

different locations in the dendrite of JONs, indicating that

TRPN1 is likely to do a lot more than just behave as an ion

channel.
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Hearing in Mammals

Themechanotransduction channels in hair cells have been local-

ized to the distal tips of the stereocilia (Beurg et al., 2009). Here,

fine extracellular strands, termed tip links, connect each stereo-

cilium with its taller neighbor. It has been proposed that the tip

links pull on and gate the channels in response to mechanical

stimulation of stereocilia. Although analyses ofmutations associ-

ated with deafness in humans and mice have enabled identifica-

tion of some of the molecular constituents of the transduction

apparatus, including the tip link components cadherin 23 and

protocadherin 15 (Kazmierczak and Müller, 2012), the identity

of the hair cell’s transduction channel remains controversial.

Electrophysiological recordings have shown that the transduc-

tion channel is a nonselective cation channel of large conduc-

tance with preference for calcium ions (Peng et al., 2011). Recent

work has indicated that two isoforms of the transmembrane

channel-like family, TMC1 and TMC2, are required for hair cell

mechanotransduction (Kawashima et al., 2011) (Figure 2). These

subunits encode six-span integral membrane proteins but lack

sequence similarity with known ion channels (Labay et al.,

2010). The Tmc1 gene is linked to deafness in humans, and

semidominant or recessive alleles of Tmc1 cause hearing loss

inmice.Micewith a targeted deletion of Tmc1 and Tmc2 showed

deafness and lackedmechanotransduction currents in hair cells.

These results suggest that TMC1 and TMC2 may be compo-

nents of the mechanotransduction complex. In line with this,

Kim and Fettiplace (2013) have recently demonstrated that

TMC1 and TMC2 regulate the tonotopic gradient in the calcium

selectivity of hair cell mechanotransduction channels, suggest-

ing that TMC proteins contribute to the pore region or act as

chaperones that specify channel composition. The strongest ev-

idence that TMCs are pore-forming subunits of the mechano-

transduction channel(s) is derived from the tmc1Bth mutant

mouse, which has reduced single-channel current levels and cal-

cium permeability (Pan et al., 2013). The tmc1Bthmouse carries a

point mutation that causes a methionine-to-lysine substitution at

residue 412, which is part of the short extracellular loop between

the third and fourth transmembrane domains. Whether this res-

idue is part of the pore vestibule that contributes to permeation

properties remains to be determined. Definitive evidence that

TMC1 and TMC2 constitute mechanosensitive channels re-

quires in vitro data that can attribute ion channel properties to

TMC proteins reminiscent to those of the native hair cell mecha-

notransduction channel. Of relevance, the C. elegans TMC1 is

expressed in ASHpolymodal nociceptors and encodes a sodium

sensor that functions in salt taste chemosensation (Chatzigeor-

giou et al., 2013). Tmc1mutant worms show no apparent defects

in nose touch avoidance, suggesting that TMC1 does not

contribute to mechanosensation in ASH neurons. Another

recently characterized protein that regulates transduction chan-

nels in mouse hair cells is the tetraspanmembrane protein of hair

cell stereocilia (TMHS). Mechanotransduction is impaired in

TMHS-deficient hair cells (Xiong et al., 2012). TMHS binds to

the tip link component protocadherin 15 and regulates trans-

ducer channel conductance and adaptation. These results indi-

cate that TMHS may be an accessory subunit of the hair’s cell

mechanotransduction apparatus that couples transduction

channels to tip links.
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Gating Mechanisms of Mechanotransducer Channels
The mechanisms of force-dependent activation of transducer

channels have not yet been established. Initially, the expectation

was that mechano-gating motifs common to mechanotrans-

ducer channels would be uncovered. However, the structures

of mechano-gated ion channels (DEG/ENaC, TRPN, and Piezo)

and current contenders (Nanchung/Inactive and TMC) show no

such domains (Figure 1).

Two primary models have been proposed for mechano-

gating: the lipid bilayer stretch model evidenced by microbial

MS channels and themore sophisticated tether model of eukary-

otes by which tethers pull open the transduction channel. The

latter model is exemplified by the MEC complex in which

MEC-4 and MEC-10 line the channel pore while MEC-2 and

MEC-6 serve as links to the cytoskeleton and extracellular

matrix, respectively. Another domain that attracted much atten-

tion recently is the ankyrin repeat domain that is present in many

TRP channels but is particularly prominent in TRPN1. TRPN1

harbors 29 ankyrin repeats in its N-terminal tail, which may

mediate the protein-protein interaction of a tetheredmechanism.

Consistently, ankyrin repeats are required for TRPN1 association

to microtubules and proper targeting of TRPN1 to the distal part

of chordotonal ciliary tips in Drosophila (Cheng et al., 2010).

Thus, TRPN1 may be anchored to both the cytoskeleton and

the extracellular matrix of the dendritic caps at the ciliary tip.

This tethering arrangement may also hold for C. elegans CEP

neurons (Kang et al., 2010) and could potentially promote gating

movements of TRPN1 channels upon mechanical stimulation.

Elegant work by Liang et al. (2013) demonstrates that the an-

kyrin repeat domain of TRPN1 in fly campaniform receptors

probably functions as a gating spring. Using electron micro-

scopy, the authors showed that TRPN1 ankyrin repeats

contribute structurally to fine filaments, termed ‘‘membrane inte-

grated connectors’’ (MMCs), which attach the membrane intra-

cellularly to microtubules (Figure 2C). These MMCs are nearly

absent in TRPN1 mutant flies. Further ultrastructural and

modeling studies suggest that MMCs provide most of the

compliance in the distal tip, suggesting that these filamentous

structures, and thus TRPN1 ankyrin repeats, might function as

gating springs (Figure 2C).

Mammals lack TRPN1 and accordingly must use other chan-

nel proteins for mechanotransduction. Great emphasis has

been placed in the ankyrin-rich TRPA1, but it has not yet lived

up to the expectations. Piezo proteins are an evolutionarily

conserved ion channel family that lack sequence similarity to

all known ion channels (Coste et al., 2010). They are large pro-

teins with 30–40 putative transmembrane domains that multi-

merize likely as homotetramers (Coste et al., 2012). Biochemical

purification and reconstitution of mouse Piezo1 into artificial lipid

bilayers produce ion channels displaying constitutive activity.

Unlike bacterial MsC channels, their ability to be gated by me-

chanical forces is not conserved in these minimal systems,

raising the question of the conditions that allow mechano-gating

of Piezos. Intriguingly, no associated proteins have been de-

tected by mass spectrometry in purified mouse Piezo1 com-

plexes, suggesting that Piezo proteins are not anchored to the

extracellular matrix or cytoskeleton through protein-protein

interaction. As seen with bacterial MsC (Arnadóttir and Chalfie,



2010), Piezos may be gated by changes in the channel-lipid

membrane interaction without the need for other proteins. In

addition, specific lipids in the membrane may be required to

confer mechanotransduction properties to Piezo channels. The

unique structure of Piezo channels, which are predicted to

encompass 120–160 transmembrane domains per functional

tetramer, could potentially promote such interaction with lipids.

Future studies are needed to reveal the relationships between

the domains that transmit force from the lipid bilayer to the chan-

nel gate.

Conclusions
A variety of mechano-gated ion channels have been identified in

the past few years. The rich diversity of their structural designs

suggests that adaptive evolution of mechanosensors has

occurred independently multiple times. Current studies are

directed toward characterizing these candidates and deter-

mining how they are mechanically gated. Despite considerable

progress, major questions remain. What is the identity of the

transduction channel(s) in vertebrate sensory neurons and hair

cells? Is force conveyed through the lipid bilayer or by extracel-

lular and intracellular tethers? Do mechanosensitive channels

locate within functionally specialized subcellular compartments,

e.g., mechano-signalosomes? What domains define the pore

structure and the mechanosensor of Piezo and TMC proteins?

What is the functional consequence of changes in subunit

composition of transducer channels? Given that a single sensory

cell may express multiple mechanosensitive channels, how do

cells integrate the specific information regarding the relevant

stimulus? As always, insights into mechanotransduction mecha-

nisms will come from studies of biological problems spanning

different functions and species.
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Arnadóttir, J., O’Hagan, R., Chen, Y., Goodman, M.B., and Chalfie, M. (2011).

The DEG/ENaC protein MEC-10 regulates the transduction channel complex

in Caenorhabditis elegans touch receptor neurons. J. Neurosci. 31, 12695–

12704.
Bae, C., Gnanasambandam, R., Nicolai, C., Sachs, F., and Gottlieb, P.A.

(2013). Xerocytosis is caused bymutations that alter the kinetics of the mecha-

nosensitive channel PIEZO1. Proc. Natl. Acad. Sci. USA 110, E1162–E1168.

Bagriantsev, S.N., Peyronnet, R., Clark, K.A., Honoré, E., and Minor, D.L., Jr.
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and Ito, K. (2009). The neural basis of Drosophila gravity-sensing and hearing.

Nature 458, 165–171.

Kang, L., Gao, J., Schafer, W.R., Xie, Z., and Xu, X.Z. (2010). C. elegans TRP

family protein TRP-4 is a pore-forming subunit of a native mechanotransduc-

tion channel. Neuron 67, 381–391.
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