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In this study, fracture propagation in large shell elements is modelled with the softening law. This law is
given in a general form, enabling investigations of different softening behaviours to be conducted. The
final fracture is simulated by removing elements. The softening parameters are derived using the
energy-based representative volume element (RVE) approach. Tracing crack propagation through the
RVE defines the physically justified softening parameters for the current model. The softening model is
implemented into ABAQUS using VUMAT subroutines for the shell elements. A large-scale tearing exper-
iment is simulated with the current model and RVE-based softening parameters. In addition, the soften-
ing laws from the literature have been used. The fracture propagation is assessed in terms of plastic
energy dissipation in the RVE and the whole structure, load–displacement, and crack growth. The RVE-
based model is shown to have better performance compared with other models from the literature.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The structural safety of large-scale thin-walled structures has
become more important as a result of the increased societal aware-
ness regarding accidents and structural failure. The failures can
happen because of collisions, explosions, fatigue-induced damage,
and the overloading of the structure by forces of nature, which do
not have a clear upper bound. A fracture in a thin-walled structure
can lead to the leakage of gases and liquids, endangering the envi-
ronment and human lives. Therefore, fracture propagation is of the
utmost importance in large-scale structures, such as ships, bridges,
offshore structures etc. When the structures being analysed be-
come large, detailed modelling of the fracture process becomes
prohibitive, considering current software and hardware capabili-
ties. The present paper is concerned with simulating a ductile frac-
ture with large shell elements where the element length is at least
the thickness of the plate. In general, there are two main ap-
proaches to model fracture in large-scale shell structures: sudden
fracture criteria and Continuum Damage Mechanics (CDM) (Jones,
2013). According to sudden fracture criteria, elements are removed
from the simulation once the critical stress–strain state has been
reached; see Fig. 1. These criteria usually depend on the rupture
strain (Yamada et al., 2005; Simonsen and Törnqvist, 2004), which
is often adjusted on the basis of stress triaxiality (Li et al., 2011;
Törnqvist, 2003; Bao and Wierzbicki, 2004a). However, the effect
on constitutive equations is ignored, meaning that the fracture
model and material model are uncoupled. Consequently, crack
propagation is a discontinuous event, which introduces process
and structural discontinuities due to the sudden deletion of shell
elements. In CDM, an attempt is made to remove this process dis-
continuity by coupling of the constitutive model and fracture mod-
el. There, the fracture is described as a continuous degradation of
material strength with an internal variable called damage (Chab-
oche, 1981; Lemaitre, 1985). Damage represents on a macro scale
the reduction of the effective load-carrying area in the material
caused by microcracks and voids. Recently, several authors have
modified the approach by introducing damage directly to the hard-
ening curve (Xue, 2007; Teng, 2008; Li and Wierzbicki, 2010),
resulting in a softened flow stress compared with the original
undamaged flow stress; see Fig. 1.

In Fig. 1, the area under softened part of the flow curve corre-
sponds to the strain energy needed to propagate crack through
the element. If the element size is small (Le � size of the local
neck), the most of the deformation energy is consumed before
the fracture initiation and standard flow curve without softening
can successfully describe the material behaviour. For example,
according to the relation of Li and Wierzbicki (2010), there is a sud-
den discontinuity at the point of fracture initiation; see Fig. 1.
Hence softening is only necessary to predict slant fracture in plane
strain specimens (Besson, 2010; Li and Wierzbicki, 2010; Gruben
et al., 2012). In this case, material damage begins when fracture
initiates as denoted in Fig. 1. However, in the analyses with large
shell elements, the point of fracture initiation and the processes
leading to that, such as necking, must be described in the average
sense. In the context of large shell elements, the term (fracture)
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initiation is used throughout the paper to describe the setting
where propagating crack reaches an element. In other words, only
fracture propagation is considered. Alsos et al. (2008) argue that
large shell elements cannot capture the onset of necking and
strain-softening taking place before fracture. However, Woelke
and Abboud (2012) showed that this limitation can be removed
by the smooth reduction of flow stress beyond necking. In that
way, averaging the fracture processes over a large area eliminates
the discontinuity at fracture initiation. Their model is calibrated on
the basis of a tensile test. In a different study, tensile tests were
again used to calibrate the bilinear softening relation (Hogström
et al., 2009). Later, they applied this relation to simulate ship colli-
sion damage (Hogström and Ringsberg, 2012). AbuBakar and Dow
(2013) adopted linear softening beyond fracture initiation to sim-
ulate ship grounding damage, but no justification for the linear
relation was given. Thus, softening parameters for large elements
are commonly calibrated from tensile tests where only the point
of fracture initiation is captured, or they are implicitly assumed.
How this influences fracture propagation analyses, and thus the
crashworthiness analyses of structures, is unknown.

This paper presents a numerical method to predict the softening
parameters for shell elements and studies the influence of soften-
ing on fracture propagation in large structures. First, in Section 2, a
softening model is introduced in which damage-induced softening
is separated into two stages. Formulation is carried out in a way
that mathematical treatment of different softening laws can be
performed (Li and Wierzbicki, 2010; Hogström et al., 2009; AbuBa-
kar and Dow, 2013). Consideration of an averaging unit in the
neighbourhood of the crack tip, where the dissipated energy is cal-
culated using solid elements, defines the characteristics of the frac-
ture process, and thus the softening parameters. The approach is
validated by the plate tearing tests of Simonsen and Törnqvist
(2004) in Section 3. The results are discussed in Section 4 and
the study is concluded in Section 5. Study is limited to Mode I type
of fracture. The fracture initiation is not addressed and focus is on
relatively large amounts of crack extension. For long cracks, Mode I
dominates and stress stated ahead of the tip is fully established
with uniaxial tension as the prevailing mechanism (Tvergaard
and Hutchinson, 1992).
2. Formulation of the softening model

2.1. Model description

Onset of necking is understood as the bifurcation from an uni-
form deformation mode, which in the Considère sense occurs when
the maximum force is reached in a simple tension bar. In the cur-
rent model softening begins with the formation of neck and contin-
ues smoothly until the point of fracture initiation. This captures the
strain softening beyond necking and is denoted as the 1st softening
stage in Fig. 2(a). After initiation, fracture starts to propagate,
which in an average sense must be captured with large shell ele-
ments. Fracture propagation is denoted as the 2nd softening stage
in Fig. 2(a), where stress reduction is significant for the increasing
strain. Treating fracture propagation as a separate stage is in align-
ment with stable ductile crack growth under extensive plastic
deformation. For instance, a single large element mapped to the
crack path in Fig. 2(b) must capture the physical processes de-
scribed in Fig. 2(c).

2.2. Damage evolution

Before the fracture initiation softening is induced by the dam-
age D1 and after the fracture initiation by the damage D2; see
Fig. 2(a). The damage D1 is proportional to the equivalent plastic
strain �ep. It is normalised in such a way that D1 = 1 once the condi-
tion for a diffuse neck according to the Considère conditions is sat-
isfied; for details see Appendix A:

D1 ¼
R

d�ep

n
¼

�ep

n
; ð1Þ

where n is the strain hardening exponent. The damage D2 specifies
the point of fracture initiation at D2 = 1 and describes the fracture
propagation stage:

D2 ¼
Z �ep

0

d�ep

�ep
f ðgavÞ

; ð2Þ

where gav the average stress triaxiality, and �ep
f ðgavÞ a fracture locus

in the space of equivalent plastic strain and stress triaxiality. The
stress triaxiality is: rh=�r, where the equivalent stress is
�r ¼

ffiffiffiffiffiffiffi
3J2

p
; J2 is the second invariant of the deviatoric stress tensor

and rh is the hydrostatic stress.
2.3. Softening

When softening is considered two different flow curves are dis-
tinguished; see Fig. 2(a). The original true stress–strain relation of
the undamaged material determined with a tensile test and the
softened curve. Undamaged material is described with the equiva-
lent stress, i.e. �r ¼ �rð�epÞ. The softened flow stress ~r is introduced
by considering the damage evolution beyond critical damage:

~r ¼ b�r; ð3Þ



Fig. 2. (a) Illustration of two-stage softening model. (b) Tearing of a large plate. Background figure from Simonsen and Törnqvist (2004). (c) Physical behaviour that must be
captured in an average sense by a single large finite element.
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where b is the softening coefficient that is a function of damage.
Softening begins when b = 1 and crack has propagated through
the element when b = 0. The strain evolution does not require any
modification because of the hypothesis of strain equivalence
(Lemaitre, 1985): the strain in the softened material is assumed
to be equal to that in the undamaged material.

The softening coefficient b is calculated as

b ¼ b1ðD1Þ � b2ðD2Þ; ð4Þ

where b1 is the softening induced by D1 and b2 is the softening in-
duced by D2. Again, the two softening coefficients (b1,2) range from
1 to 0, which for both stages are calculated with the same
expression:

b1;b2 ¼
Dc � D
Dc � D0

� �m

; ð5Þ

where Dc, D0 and m are softening parameters. Without splitting
softening into two stages, i.e. b = b1 (see Li and Wierzbicki, 2010),
the softening coefficient evolves in the way described in Fig. 3(a).
The damage D starts to accumulate at the beginning of the deforma-
tion, but softening begins when D = D0. Softening ends when b = 0
and D = Dc, after which the element is removed. Exponent m con-
trols the non-linearity of the process. The evolution of b in the com-
bined model is illustrated in Fig. 3(b) and the calculation procedure
is described in Table 1. During the 1st stage m1 < 1 describes the
exponential reduction and during the second stage m2 P 1 de-
scribes the logarithmic or linear reduction from the undamaged
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2.4. Identification of softening parameters

The softening relation describing crack initiation and propaga-
tion in large shell elements is identified from the comparison with
a detailed 3D model. Thereby, two FE models are required: a fine
solid one and a coarse shell one. In both models, the strain energy
density describes the local fracture process in the predefined vol-
ume V, referred to as representative volume element (RVE). In
the shell model, an RVE corresponds to a single large element,
while in the solid model it consists of several small elements. In
a global sense, this averaging unit is located in the same position
in both models. The strain energy density U, evaluated as the crack
moves through the RVE, at every time increment t is:
Ut ¼
R

V rt
ijet

ijdVt

R
V dVt ; ð6Þ
where rij and eij are the individual stress and strain components,
respectively. The principle for comparing energies in the RVE is
illustrated in Fig. 4.
0

0.2

0.4

0.6

0.8

1
1

1st stage: β1 
2nd stage: β2×β1

m < 1

m > 1

Dc1

D1 [-]

D1 D2

B
et

a

Dc2

Necking: D01=1

Fracture initiation D02=1

D2 [-]

1

Element
removed

(b)

dered (Figure from Li and Wierzbicki, 2010). (b) In the current model.



Table 1
Algorithm to calculate beta.

Damage parameters D1 and D2 are known from Eqs. (1) and (2). Compute b according to Eq. (4)

if D1 = 1 then calculate critical damage value Dc1 for the 1st stage

Dc1 ¼ D�1
2

end if
if there is necking, but no fracture: D1 P 1 and D2 < 1 then

Calculate b1 according to Eq. (5) using D1, m1 and Dc1 and save as a state variable for the next increment
Define b according to Eq. (4) whereas b2 = 1, thus b = b1

else if fracture criterion is satisfied, D2 P 1 then
Calculate b2 according to Eq. (5) using D2

Define b according to Eq. (4): b ¼ b1 � b2

end if

Table 3
Fracture strains.

Le 10 30 50

Table 2
Material parameters.

Parameter Notation Value

Elastic modulus E 210 GPa
Poisson ratio m 0.3
Yield stress ry 273 MPa
Power law coefficient 1 C 650 MPa
Power law coefficient 2 e0 0.01
Hardening exponent n 0.23
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3. Case study

3.1. Calibration with large-scale tearing experiment

The softening model is implemented into the commercial code
ABAQUS/Explicit v6.11-2 as a user-defined material model (Appen-
dix B). The numerical simulation results are validated with the pre-
viously published Mode I tearing experiments of 5-mm-thick
normal-strength steel (NS) plates conducted by Simonsen and
Törnqvist (2004). As the experiments were carried out under qua-
si-static conditions, the same conditions are assumed in the simu-
lations. Three different element lengths were considered: 10, 30,
and 50 mm. This allows the influence of the discretisation length
on the softening relation to be determined.
�ep
f

0.38 0.24 0.2
3.2. Material description

The uniaxial true stress–strain curve of the material is described
with the power law r ¼ Cðeþ e0Þn, where C, n, and e0 are the coef-
ficients of the power law. They are defined in Table 1, together with
the rest of the material parameters. Material model follows stan-
dard rate-independent von Mises isotropic plasticity with strain
hardening.

It was shown by Simonsen and Törnqvist (2004) that the stress
triaxiality is almost constant during the deformation. Therefore,
the fracture locus in Eq. (2) reduces to a constant fracture strain
criterion and the equivalent plastic strain becomes a good measure
of fracture ductility. In other words, D2 depends only on the plastic
strain. Furthermore, they found the following relation between the
fracture strain, element length, and plate thickness t:
�ep

f ¼ 0:5ðLe=tÞ�0:4. This relation is used here and the fracture strains
for different element lengths are listed in Table 3.
Fig. 4. Principle for comparing the solid and shell res
3.3. Experimental set-up

The details of the experimental set-up are shown in Fig. 5(a), to-
gether with the main testing variables that were simultaneously
measured during the experiment; the crosshead load from the test-
ing machine, P, and the crosshead displacement, d. In the simula-
tions, we assumed that the plate is ideally fixed to the test
frame, although in the experiments some sliding might have oc-
curred. The boundaries of the plate were forced to rotate about
the pin-holes with a certain rotational velocity x. The crosshead
load P was calculated by knowing the time histories of the angle
of rotation D/i ¼ /i � /i�1 and external energy DEi

ext ¼ Ei
ext � Ei�1

ext

applied to the system:

Pi ¼ DEi
ext

2L sinðD/iÞ
; ð7Þ
ults in the RVE at different levels of deformation.



Fig. 5. (a) Experimental set-up of large-scale tearing experiment and (b) the FE interpretation.
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where L is the length between the pin and the crosshead, and i is the
time step index. The FE interpretation of the boundary conditions is
shown in Fig. 5(b) for a shell element model with a 30-mm mesh
size.
3.4. FE modelling

Detailed stress strain histories in the crack tip were obtained
from the fine solid element model. Only half of the plate thickness
was modelled by exploiting the symmetry of the plate geometry
(out-of-plane translation and in-plane rotations fixed). In the
thickness direction the element length is 0.83 mm. The in-plane
dimensions along the expected crack path are 1 � 1 mm2; outside
Fig. 6. (a) Solid and (b) shell FE models
this region a coarser mesh is used, with an approximate element
length of 10 mm; see Fig. 6(a). The chosen mesh density might
be too coarse to capture the whole crack tip mechanism. Neverthe-
less, in the context of the current analysis where strain energy den-
sity is averaged over the RVE, the detailed modelling of the crack
tip behaviour is not necessary. The solid element is eight nodes
with reduced integration (C3D8R). A constant fracture strain crite-
rion (�ef ¼ 0:6) was used in the simulations. The fracture strain was
iterated until an excellent correspondence between the experi-
mental and simulated surface crack extension and load–displace-
ment curves was obtained.

All the shell element models were discretised with a four-node
shell element with reduced integration (S4R) and 5 integration
showing the locations of the RVE.
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points through its thickness. The discretised models and the loca-
tions of RVE are shown in Fig. 6. The simulations were carried
out with a sudden fracture criterion and the softening model for-
mulated in this work. The fracture was simulated by removing
the elements.

The relative displacement approach of ABAQUS (2011) used by
Hogström et al. (2009) and AbuBakar and Dow (2013) was also
employed to test the behaviour with a varying element length.
This approach requires the strain at the beginning of softening
�ep

0 and the critical displacement at fracture initiation:
uf ¼ �ep

f � Le. This critical displacement is defined with the fracture
strain in Table 2. Softening in Hogström et al. (2009) model be-
gins at necking �ep

0 ¼ n, and in AbuBakar and Dow (2013) model
at �ep

0 ¼ 0:5�ep
f . The evolution of the softening coefficient in these

models is shown in Fig. 7.
Note that the fracture strain in the 50-mm elements is lower

and in the 30-mm elements it is close to the hardening exponent,
n = 0.23 (0.2 and 0.24, respectively). Thus, the 1st softening stage
was started at a slightly lower equivalent strain value (�ep ¼ 0:15)
than dictated by the diffuse necking condition. Otherwise, the
influence of the 1st softening stage on the simulation results can-
not be determined. In Hogström et al. (2009) model the necking
strain was changed in a similar way. The physical justification for
using a lower necking strain is provided by the imperfections in
the material, which are discarded in the analytical value (Li and
Karr, 2009).
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Fig. 8. Calibration of softening parameters. (a) Strain energy d
3.5. Softening relations

The softening parameters were first determined for the 30-mm
elements. The basis for selection was the best fit between the solid
and shell strain energy density distribution in the RVE; see
Fig. 8(a). Table 4 contains the two sets of parameters chosen for
the current model. In the first case, both softening stages were ac-
tive, while in the second case, the 1st stage was shut off to see
whether the necking portion of the softening curve is necessary
at all. The resulting stress–strain histories in the RVE, i.e. the soft-
ening relations, are plotted in Fig. 8(b).

In Fig. 8(a), the peak in the strain energy density curve is under-
stood as the point of fracture initiation in the RVE. As the crack
propagates through the RVE in the solid model, the strain energy
density U decreases correspondingly. The propagation stage cannot
be predicted if large shell elements are removed suddenly. Never-
theless, the point of element removal corresponds almost perfectly
with the displacement at complete failure of the RVE in the solid
model. Correspondence is attained as the utilised fracture strains
were calibrated on the basis of the crack extensions observed in
the experiment (Simonsen and Törnqvist, 2004).

With softening, the crack propagation can be captured on the fi-
nite element level. The exception is AbuBakar and Dow (2013)
model, which underestimates the energy density in RVE as soften-
ing begins too early. Because of that, their results are not discussed
further in this section. Hogström et al. (2009) model yields the best
correlation with the solid model during the propagation stage, but
the peak value of the curve is slightly underestimated. The curves
obtained with the current model are also very similar to the solid
model results. This indicates that the 1st softening stage, describ-
ing necking, is not needed, as the crack propagation is the domi-
nant mechanism governing the shape of the softening relation.
This justifies the analysis employing only the 2nd stage, although
in this case softening must begin before fracture strain is attained,
i.e. D02 = 0.8; see Fig. 8(b).
ensity U in the RVE. (b) Stress–strain history in the RVE.

Table 4
Softening parameters for 30-mm elements.

Description D01 m1 D02 m2 Dc2

Current model: stages 1 and 2 1 0.1 0.99 1.5 1.6
Current model: only 2nd stage – 0 0.8 1.5 1.6
Hogström et al. (2009) �ep

0 ¼ 0:15; �ep
f ¼ 0:24

AbuBakar and Dow (2013) �ep
0 ¼ 0:12; �ep

f ¼ 0:24
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3.6. Simulation results

In Fig. 9(a), the experimentally measured load–displacement
curve (Simonsen and Törnqvist, 2004) is compared with the FE
simulation results. The solid simulation shows the best correspon-
dence with the experiments. The distinct fluctuations in the 2D
solution are associated with the sudden element removal and dis-
continuous growth pattern: stress is released when an element is
removed, resulting in a drop in the load level. These fluctuations
increase in amplitude during the final stages of the simulations
since stress fields become more complex as a result of the reflec-
tion of stress waves from the plate boundary (Ren and Li, 2012).
The oscillations are considerably reduced when the element stiff-
ness decreases gradually. Fig. 9(b) shows that all the models, ex-
cept that of AbuBakar and Dow (2013), can qualitatively predict
the experimental crack length increase.

In the failure analyses of structures, crashworthiness is deter-
mined by the energy absorbed by the structure through plastic dis-
sipation (Jones and Wierzbicki, 1983). Therefore, in Fig. 10 the
normalised plastic dissipation energy in the whole structure, as
well as in the RVE, is compared between different simulations.
The best results locally in the RVE are obtained with the current
softening model. This agreement also guarantees very good results
in terms of the whole structure. With sudden element removal, the
energy in the RVE is underestimated by about 15%, but at the struc-
tural level, the results agree almost perfectly with the solid simu-
lation results. As expected, AbuBakar and Dow (2013) model again
yields the most conservative estimate. At both levels, structural
and RVE, Hogström et al. (2009) model underestimates the energy
by about 10%.

The final fracture configurations are compared in Fig. 11. In a
shell model without softening the stress contours in the crack tip
are more similar to the solid model results. However, as indicated
Fig. 11. Effective stress contours shown for three cases. (a) Solid model with 1-mm mesh.
(c) without softening.
by the strain energy density distributions in Fig. 8(a), on average
the behaviour obtained with the softening model corresponds
more closely to that observed in the solid model. Around the crack
surface the stress contours predicted by the softening model are
also more consistent with the solid model results. The phenome-
non that takes place is similar to crack tip behaviour: after stress
reduction in the element, deformation does not only move verti-
cally along the crack tip into a neighbouring element, but also hor-
izontally to the sides. In simulations without softening this does
not happen.
3.7. Effect of mesh size

The softening parameters for the 10- and 50-mm elements were
derived in the same way as for the 30-mm elements. They are pre-
sented in Table 4. The test simulations again showed that employ-
Shell models with 30-mm mesh: (b) with softening (current model, only 2nd stage);
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Fig. 12. Effect of mesh size. (a) Strain energy density U in RVE. (b) Stress–strain history in the RVE (–). (c) Plastic dissipation energy. (d) Load–displacement curves. (e) Surface
crack extension curves.
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ing the 1st softening stage is unnecessary, and thus only the results
obtained with the 2nd stage are presented. The strain energy den-
sity distributions in Fig. 12(a) indicate the reason why the soften-
ing parameters had to be modified in the current model in
comparison with the 30-mm case. In the models of Hogström
et al. (2009) and AbuBakar and Dow (2013) the modification of
the parameters is implicitly included: element size sensitivity is ta-
ken care of by the uf-parameter, which is adjusted on the basis of
the fracture strain. However, the curves do not match the 3D re-
sponse. (See Table 5)



Table 5
Softening parameters for 10- and 50-mm elements.

Description Le D01 m1 D02 m2 Dc2

Current model: only 2nd stage 10 – 0 0.9 2 1.5
Current model: only 2nd stage 50 – 0 0.7 1.5 1.7

Le = 10 Le = 50
Hogström et al. (2009) �ep

0 ¼ 0:24; �ep
f ¼ 0:38 �ep

0 ¼ 0:15; �ep
f ¼ 0:2

AbuBakar and Dow (2013) �ep
0 ¼ 0:5�ep

f ; �ep
f ¼ 0:38 �ep

0 ¼ 0:5�ep
f ; �ep

f ¼ 0:2
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3.7.1. Plastic dissipation energy in Fig. 12(c)
With the current model the total plastic dissipation energy in

the whole structure is accurately predicted with an error that is
not larger than 5%. In the RVE, the results are the most accurate
compared with the others. The sudden criterion yields similar re-
sults to the 30-mm element analysis: there is a relatively large er-
ror in RVE, but in the whole structure, the energy is accurately
predicted. Hogström et al. (2009) model underestimates the total
energy in the structure by 15% in the 10-mm elements and overes-
timates it by 23% in the 50-mm ones. The error given by AbuBakar
and Dow (2013) model in the 10-mm elements is even larger,
while in the 50-mm elements it is in the same range, but on the
conservative side.

3.7.2. Load–displacement and crack extension
The crack extensions in Fig. 12(e) obtained with the current

model and sudden criterion practically overlap. On average, they
are also the same in the load–displacement curve in Fig. 12(d),
but the oscillations are again considerably reduced; this is well
exemplified by the 50-mm element results. The inability of the
models of Hogström et al. (2009), and AbuBakar and Dow (2013)
to correctly predict the total plastic dissipation energy is clearly
present in the load–displacement and crack extension curves in
Fig. 12(d) and (e).

4. Discussion

Analyses show that the successful prediction of fracture with
large shell elements requires the careful calibration of the soften-
ing parameters. If the softening parameters are derived from the
RVE by comparing strain energy density functions, both the frac-
ture initiation and propagation can be characterised with large
shell elements. Consequently, the dissipated plastic energy in the
structure, the load–displacement curve, and the crack extension
are captured with good accuracy. On the other hand, if the calibra-
tion is done on the basis of a tensile test (Woelke and Abboud,
2012; Hogström et al., 2009), the softening relation can correctly
describe the material behaviour from necking only until fracture
initiation. However, the 30-mm element simulations showed that
fracture propagation in large shell elements is the dominant mech-
anism that determines the softening relation; see Fig. 8. Neverthe-
less, the point in the flow curve where the stress reduces to zero
(fracture propagated through the element) predicted by the mod-
els of Hogström et al. (2009) and AbuBakar and Dow (2013) in
all simulations is close to the one given by the current model;
see Figs. 8(b) and 12(b). This is because of the relative displace-
ment approach of ABAQUS, where the strain at element removal
scales with element size. However, the reason why the results
are not in alignment with the current model is that the point of
fracture initiation, i.e. the beginning of softening, is not accurately
predicted. In Hogström et al. (2009) model softening begins at
necking, which gives a good estimate in 30-mm elements
(Fig. 8(a)), but not in 10- and 50-mm elements (Fig. 12(a)). The
assumption by AbuBakar and Dow (2013) of using half of the frac-
ture strain measured from the tensile test is clearly too conserva-
tive. In the current model, the beginning of softening changes
according to the element size: earlier in large elements D02 = 0.7
and later in small elements D02 = 0.9. The latter result is consistent
with the analysis of Li and Wierzbicki (2010) with much smaller
elements, where softening began at D02 = 1 (using the current
notation). Simulations with the sudden criterion (Yamada et al.,
2005; Simonsen and Törnqvist, 2004; Bao and Wierzbicki, 2004a;
Törnqvist, 2003) showed an interesting tendency to underestimate
the plastic energy dissipation in the RVE, while in the whole struc-
ture it was correctly captured. Moreover, the sudden criterion pre-
dicted the structural energy dissipation more accurately in all
cases than the models of AbuBakar and Dow (2013) and Hogström
et al. (2009). The accuracy of the current model in predicting the
plastic dissipation energy in the whole structure is similar to that
of the sudden criterion. Whether this remains valid under more
complicated loading paths must be determined in a separate study.

5. Conclusion

In this paper, a numerical method for predicting softening
parameters for large shell elements is presented. The basis for
the method is the comparison of energy densities between the fine
solid and coarse shell FE models as the crack propagates through
the RVE. The simulation results clearly show that the softening
model requires careful calibration and the separation of two dis-
tinct phenomena: fracture initiation and propagation. Without
proper calibration, the results with the sudden fracture criterion
provided a more accurate estimate in terms of the plastic energy
dissipation in the structure. This fact should be considered when
using softening in the analysis of large structures. Furthermore,
the comparison of results with sudden fracture criterion suggests
that the shape of the flow curve in the softening regime is not as
critical as the total plastic work. This conclusion is similar to the
one reached in Cohesive Zone Model studies. That is, the effect of
traction-separation law on the fracture behaviour is limited, as
long as total energy is correctly captured (Tvergaard and Hutchin-
son, 1992). This also explains why the 1st softening stage, describ-
ing necking, is not necessarily needed. On the other hand, the role
of 1st stage might become more pronounced if the crack initiation
under multi-axial stress state is considered. However, investigation
of this is left for future.

With sudden criterion the plastic energy dissipated in the crack
tip is always underestimated. In addition, the softening models re-
move discontinuity from the fracture propagation process. Still, the
calibration of the softening parameters remains a challenging task.
We realise that calibration by curve fitting the simulated and
experimental results of a large tearing test is nearly impossible
to conduct in general, and thus future work should outline a cali-
bration procedure based on simpler approaches, e.g. CT specimens
with full-field strain measurements.

Obviously, the results are valid for the current Mode I type of
tearing case, which allowed assuming constant stress triaxiality
during fracture propagation. In real structures such idealistic con-
ditions rarely occur due to the changing load conditions and incon-
sistencies in structural arrangements in the form of stiffeners,
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welds, notches etc. Under the various stress states and strain paths
material ductility can change significantly as shown recently by
Bao and Wierzbicki (2004b), Barsoum and Faleskog (2007), Haltom
et al. (2013), Lou et al. (2012) and Korkolis and Kyriakides (2009).
However, whether the fracture behaviour obtained with detailed
analysis can be directly applied to large shell elements or should
these results be appropriately scaled is out of the scope of this pa-
per. This issue has been addressed by Walters and Schipperen
(2012) and Choung et al. (2012). The virtue of limiting the study
to a single stress state lies in the simplicity of interpreting the re-
sults with respect to modelling softening with large shell elements.
Under more complicated conditions (stress states), contributions
from different phenomena would be hard to separate. In that case,
calibration should be based on carefully planned experiments in
which the stress state under study is preserved at least in the range
of RVE. Furthermore, the experiments should be supported by the
detailed FE calculations. For instance, employing micro-mechanics
based GTN model (Needleman and Tvergaard, 1984) including
appropriate modifications for different stress states (Xue, 2008;
Nahshon and Hutchinson, 2008).
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Appendix A

The condition for diffuse necking according to the Considère
construction is stated as follows (Rees, 2006):

1
�r

d�r
d�e
¼ 1: ðA:1Þ

Under the assumption of power law hardening, �r ¼ C�en (where
C is the strength coefficient and n is the strain hardening expo-
nent), the diffuse necking condition (A.1) can be expressed in terms
of strain:

1
�r

d�r
d�e
¼ C � n � �en�1

C�en
¼ n

�e
¼ 1: ðA:2Þ
Appendix B

Constitutive. equations

The material model with softening is implemented into the
commercial code ABAQUS/Explicit using VUMAT subroutines as a
user-defined material model. The constitutive equations based on
small deformation, rate-independent von Mises isotropic plasticity
with strain hardening are coupled with the softening coefficient b;
see also (Andrade Pires et al., 2004; Xue, 2007). Elastic predictor,
plastic corrector (return mapping) scheme, is used to numerically
integrate elastoplastic constitutive equations, see (De Souza Neto
et al., 2008; Hallquist, 2006).

In this formulation the total strain tensor is decomposed into
elastic and plastic parts:

eij ¼ ee
ij þ ep

ij: ðB:1Þ

On the basis of the hypothesis of strain equivalence, the elastic
softened (trial) stress tensor is:
~rij ¼ ~kdijee
kk þ 2~lee

ij; ðB:2Þ

or in Jaumann corotational rate form:

~rJ
ij ¼ ~kdij _ee

kk þ 2~l _ee
ij; ðB:3Þ

where dij is the Kronecker delta and ~k and ~l are Lame’s constants
resulting from the softened elastic modulus ~E:

~E ¼ bE0 ðB:4Þ

where E0 is the initial undamaged elastic modulus and b is the soft-
ening coefficient calculated with Eq. (4). Therefore, the elastic mod-
ulus decreases at the same rate. The Poisson’s ratio is assumed to
remain constant throughout the damaging process. Material yields
according to von Mises yield function:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2

~sij~sij

r
� b½ry0 þ Rð�epÞ� ¼ 0

6 0 for elastic or neutral loading
> 0 for plastic hardening;

�

ðB:5Þ

where ~sij is the deviatoric part of the stress tensor calculated with
Eq. (B.2), ry0 is the initial yield strength of the undamaged material,
and R is the isotropic hardening function depending on accumu-
lated plastic strain. Note that in Eq. (B.5) effect of softening upon
the plastic behaviour is accounted for by using damaged deviatoric
stress tensor, instead of undamaged tensor sij. If the elastic trial
stress given with Eq. (B.3) satisfies the yield function nothing else
is done and the stress update is purely elastic. Otherwise, if the
material starts to yield, the rate of equivalent plastic strain is
calculated

_�ep
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_ep
ij
_ep

ij

r
; ðB:6Þ

where _ep
ij is the plastic strain increment. From the associative von

Mises flow rule

_ep
ij ¼ _�ep

ij

ffiffiffi
3
2

r
sij

ksijk
: ðB:7Þ
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