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Abstract

For a graph G let w−1(G) be the sum of (dG(u)dG(v))−1 over all edges uv of G. Clark and
Moon (Ars Combin. 54 (2000) 223–235) proved an upper bound on w−1 for trees and posed
the problem to determine a best possible such bound. In the present paper, we do this for trees
of maximum degree 3. Furthermore, we prove an asymptotically best possible upper bound on
w−1 for trees such that all degrees of vertices are either 1, 2 or some .xed �¿ 4.
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1. Introduction

In [11] Randi2c considered the two parameters

w−1(G) =
∑
uv∈E

(dG(u)dG(v))−1 and w−1=2(G) =
∑
uv∈E

(dG(u)dG(v))−1=2

as a measure of the branching of the (hydrogen-suppressed) graph G = (V; E) corre-
sponding to a certain molecule (we consider .nite and simple graphs and use standard
terminology). These parameters—which are nowadays known as Randi%c indices—are
classical examples for the numerous molecular descriptors [6] that have been de.ned
until today.

In recent years these two parameters originating from chemistry received considerable
attention in mathematics cf., e.g. [1,2,8–10].

∗ Tel.: +49-241-80-94995; fax: +49-241-80-92136.
E-mail address: rauten@math2.rwth-aachen.de (D. Rautenbach).

0012-365X/03/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0012-365X(03)00135-3

mailto:rauten@math2.rwth-aachen.de


336 D. Rautenbach /Discrete Mathematics 271 (2003) 335–342

Whereas many of the parameters that have been proposed to measure the branching
assume their maximum (or minimum) value among all trees of order n for the path Pn
(cf., e.g. [3,7] or [12] where this property is established for w−1=2), Clark and Moon
[5] constructed an in.nite sequence (Tr)r¿1 of trees for which

lim
r→∞

w−1(Tr)
n(Tr)

=
15
56
¿

1
4

= lim
r→∞

w−1(Pr)
r

;

where n(T ) denotes the order of T . For all n6 19, Clark et al. [4] determined all trees
of order n with maximum value of w−1 among all trees of order n.

In [5] Clark and Moon proved w−1(T )6 (5n+ 8)=18 for any tree T of order n¿ 2
and pose the problem to improve this upper bound such that it is tight for in.nitely
many values of n (cf. [5, Problem 2]).

In the present paper, we do this for trees of maximum degree 3. In fact, we determine
an upper bound that is tight for all values of n. Furthermore, we prove an asymptotically
best possible upper bound on w−1 for trees such that all degrees of vertices are either
1, 2 or some �¿ 4.

2. Results

Theorem 2.1. Let T be a tree of order n and maximum degree 3. Then

w−1(T )6




0 if n= 1;

1 if n= 2;
1
4n+ 1

4 if 36 n6 9;
7
27n+ 5

27 if n¿ 10 and n ≡ 1 mod 3;
7
27n+ 19

108 if n¿ 11 and n ≡ 2 mod 3;
7
27n+ 1

6 if n¿ 12 and n ≡ 0 mod 3:

The given bounds are best possible.

Proof. Let the tree T be such that it has maximum w−1-value among all trees of order
n and maximum degree 3.

The idea of the proof is to determine the structure of T as far as necessary to
calculate w−1(T ). We will do this using Tables 1 and 2 that contain information
about the contribution to w−1 of the edges in speci.c substructures. Each line of the
two tables compares two such substructures. We adopt the following conventions. All
vertices have exactly the same degree in the given picture of the substructure as in the
tree T with two exceptions. The encircled vertices ( ) are assumed to have degree 3
in T and the vertices denoted by x and y in Lines 1, 3 and 4 of Table 1 may have
an arbitrary degree in {1; 2; 3}.

Line 1 (in Table 1) claims that the contribution to w−1 of the .ve depicted edges
is the same (‘=’) for the left and the right substructure. To verify this line we have
to calculate this contribution which is 1=3dT (x) + 1=3dT (y) + 3

9 .
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Table 1

In the lines of Table 2 we compare pairs of substructures. Line 5 (in Table 2)
claims that the contribution to w−1 of the four depicted edges is smaller (‘¡’) for
the left substructure than for the right substructure. Again, to verify this line we have
to calculate the contributions which is 4

6 for the left substructure and 1
9 + 2

6 + 1
4 for

the right substructure. Note that we do not assume the two substructures forming one
of the considered pairs to be vertex-disjoint. From these two examples it should be
obvious how to read and verify all lines in the two tables and we leave this task to
the reader. We shall now consider the structure of T .

By repeatedly applying the transformation corresponding to Line 1, we can assume
w.l.o.g. that no vertex of degree 3 in T has three neighbours of degree 3. This implies
that the vertices of degree 3 in T induce a collection of paths.

If u0u1u2 : : : ul is a path in T for l¿ 0 such that dT (u0) = dT (ul) = 3 and dT (u1) =
· · ·= dT (ul−1) = 2, then Line 2 implies that l∈{0; 1; 2; 3}. Such a path will be called
a path of type 1 and length l.

If u0u1u2 : : : ul is a path in T for l¿ 1 such that dT (u0)=3, dT (u1)=· · ·=dT (ul−1)=2
and dT (ul) = 1, then the Lines 3 and 4 imply that l∈{2; 3; 4}. Such a path will be
called a path of type 2 and length l.

Lines 5–14 of Table 2 imply that we can assume w.l.o.g. that T does not contain
two of the following four substructures: A path of type 1 and length 2 or 3 or a path
of type 2 and length 3 or 4. At this point we can start to calculate w−1(T ).
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Table 2

Let n3 denote the number of vertices of degree 3 in T . If n3 = 0, then T is a
path and w−1(T ) = 0, if n = 1, w−1(T ) = 1, if n = 2 and w−1(T ) = (n + 1)=4, if
n¿ 3. Now let n3¿ 1. If T does not contain either a path of type 1 and length 2
or 3 or a path of type 2 and length 3 or 4, then the vertices of degree 3 induce
a path, n = 3n3 + 4¿ 7 and w−1(T ) = 7

9n3 + 11
9 = 7

27n + 5
27 . If T contains a path

of type 1 and length 2 (and hence no path of type 1 and length 3 and no path of
type 2 and length 3 or 4), then the vertices of degree 3 induce two disjoint paths,
n= 3n3 + 5¿ 11 and w−1(T ) = 7

9n3 + 13
9 = 7

27n+ 4
27 . The remaining cases are veri.ed

analogously, by straightforward calculation. The results obtained are summarized in
Table 3.
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Table 3

Structure Order n nmod 3 Weight w−1

— 1 1 0
— 2 2 1
T is a path, i.e. n3 = 0 ¿ 3 − 1

4n+ 1
4

T contains no path of type 1 and length 2 or 3 ¿ 7 1 7
27n+ 5

27
and no a path of type 2 and length 3 or 4
T contains a path of type 1 and length 2 ¿ 11 2 7

27n+ 4
27

T contains a path of type 1 and length 3 ¿ 12 0 7
27n+ 5

36

T contains a path of type 2 and length 3 ¿ 8 2 7
27n+ 19

108

T contains a path of type 2 and length 4 ¿ 9 0 7
27n+ 1

6

Fig. 1.

Fig. 2.

Comparing the entries of Table 3 for the diKerent parities of n yields the desired
result. Since we actually calculated w−1 for speci.c trees, the given bounds are best
possible.

Remark 2.2. The extremal trees for Theorem 2.1 are not unique. Actually, it follows
easily from the above proof that all extremal trees arise from the trees that we consid-
ered to determine the entries of Table 3 by a sequence of local changes corresponding
to Line 1 of Table 1 and Line 12 of Table 2.

The smallest order n for which the extremal trees are not unique is n = 9. In this
case there are exactly the two extremal trees shown in Fig. 1 which arise from each
other by a local change corresponding to Line 12 of Table 2.

The two trees in Fig. 2 are both extremal for n= 16 and arise from each other by
a local change corresponding to Line 1 of Table 1.
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Remark 2.3. It is quite obvious that there is only little hope to extend the method of
the proof of Theorem 2.1 to larger maximum degrees.

The next result extends Theorem 2.1 in an asymptotically best possible way.

Theorem 2.4. Let T be a tree of order n such that dT (u)∈{1; 2; �} for all vertices
u of T and some �¿ 4. Then

w−1(T )6
(�− 1)(�2 − 2)

2�2(2�− 3)
n+ O(�):

Proof. We may assume n¿ 3. For i; j∈{1; 2; �} let ni denote the number of vertices
of T of degree i and mi;j denote the number of edges uv of T such that {dT (u); dT (v)}=
{i; j}. We may assume w.l.o.g. that the tree T is chosen among all trees of order n
with dT (u)∈{1; 2; �} for all vertices u of T such that

(i) it has maximum w−1-value and
(ii) subject to condition (i), m2;2 is minimal.

We will bound m2;2 and m1;� from above. Furthermore, we will bound from above the
number of vertices of degree 2 that are adjacent to two vertices of degree �.

Claim 1. m2;26 2�− 3.

Proof. We assume that there are 2� − 2 edges u1v1; u2v2; : : : ; u2�−2v2�−2 of T such
that dT (ui)=dT (vi)=2 for 16 i6 2�−2. Let x be a vertex of T such that dT (x)=1
and let y be the unique neighbour of x. Clearly, dT (y)∈{2; �}.

The tree T ′ arises from T and �− 1 disjoint copies of the path P2 on two vertices
by contracting all edges uivi for 16 i6 2� − 2 and joining x to one vertex in each
of the �− 1 paths. We have

w−1(T ′) − w−1(T ) =
1

dT (y)�
+
�− 1
2�

+
�− 1

2
− 2�− 2

4
− 1
dT (y)

¿ 0;

where we leave the simple task to verify the last inequality to the reader. We obtain
a contradiction either to condition (i) or to condition (ii) and the proof of the claim
is complete.

Claim 2. m1;�6�− 2.

Proof. We assume that m1;�¿�− 1.
First, we assume that there are two vertices x and y of T of degree � such that y

has a neighbour z of degree 1 and x has a neighbour u of degree diKerent from 1 that
does not lie on the path in T from x to y. The tree T ′ arises from T by deleting the
edges yz and xu and adding the new edges xz and yu. We have w−1(T ′) = w−1(T ).
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Possibly iterating this construction we can assume w.l.o.g. that T contains a vertex
x of degree � that has exactly �− 1 neighbours y1; y2; : : : ; y�−1 of degree 1 and one
neighbour z of degree 2 or �. The tree T ′′ arises from T and a path P�−1 on � − 1
vertices by deleting the vertices y1; y2; : : : ; y�−1 and joining x to a vertex of degree 1
in the path P�−1. We have

w−1(T ′) − w−1(T ) =
1

2dT (z)
+
�− 2

4
+

1
2
− 1
dT (z)�

− �− 1
�

¿ 0

where we leave the simple task to verify the last inequality to the reader. We obtain
a contradiction to condition (i) and the proof of the claim is complete.

Claim 3. There are at most 2� − 3 vertices of degree 2 that are adjacent to two
vertices of degree �.

Proof. We assume that there are 2�−2 such vertices x1; x2; : : : ; x2�−2. Let y be a vertex
of T of degree 1 and let z be the unique neighbour of y. Clearly, dT (z)∈{2; �}.

The tree T ′ arises from T and �− 1 disjoint copies of the path P2 on two vertices
by deleting the vertices x1; x2; : : : ; x2�−2, joining the two neighbours of xi by a new
edge for 16 i6 2�− 2 and joining y to one vertex in each of the �− 1 paths. We
have

w−1(T ′) − w−1(T ) =
2�− 2
�2 +

1
dT (z)�

+
�− 1
2�

+
�− 1

2

−2(2�− 2)
2�

− 1
dT (z)

¿ 0;

where we leave the simple task to verify the last inequality to the reader. We obtain
a contradiction to condition (i) and the proof of the claim is complete.

The above claims easily imply the following relations:

m2;2 = O(�);

m1;� = O(�);

m1;2 = n1 + O(�);

m2;� = n1 + O(�);

2m�;� = Ln� − n1 + O(�);

n1 = (�− 2)n� + O(�);

n2 = (�− 2)n� + O(�);

n= (2�− 3)n� + O(�):
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From these we deduce

w−1(T ) =
m1;2

2
+
m1;�

�
+
m2;2

4
+
m2;�

2�
+
m�;�
�2

6
n1

2
+
n1

2�
+

Ln� − n1

2�2 + O(�)

=
(�− 1)(�2 − 2)

2�2(2�− 3)
n+ O(�)

and the proof is complete.

Remark 2.5. In order to see that Theorem 2.4 is asymptotically best possible, consider
trees that arise from a path Pl and Ll − 2(l − 1) paths P2 by joining each vertex in
Pl with exactly one vertex in an appropriate number of the paths P2.
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