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ABSTRACT

Objective: To evaluate the protective effect of peanut sprout extract (PSE) against
paraquat (PQ) induced SK-N-SH cells.
Methods: Three groups of cells were used in the experiment, together with a fourth,
control group. One group was treated with PQ, the second group was treated with PSE,
and the third group was pre-treated with PSE. The control group was untreated. Cell
viability and toxicity were detected by MTT assay, cellular reactive oxygen species
(ROS) was detected by Muse Cell Analyzer, quantitative RT-PCR was applied to
investigate the expression of SIRT1 and a-synuclein genes, and Ab42 was detected by
western blot.
Results: The 50% effective concentration of PQ was 0.75 mmol/L. PSE had no sig-
nificant cytotoxicity at a concentration of 1.5 mg/mL. In the group of cells pre-treated
with PSE, cell death was significantly inhibited. In the PQ treated group, PQ was
increased in the intracellular ROS in the cells. Intracellular ROS was significantly
decreased in the cells treated with PSE and also those pre-treated with PSE. PSE
significantly downregulated the expression of SIRT1 and a-syn genes, and it was found
that PQ significantly increased b-amyloid 42 levels whereas this action was inhibited
by PSE.
Conclusions: PSE has neuroprotective activities against oxidative stress in SK-N-SH
cells induced by PQ, suggesting that PSE is a highly promising agent in the preven-
tion of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
1. Introduction

Neurodegeneration is the progressive loss of structure or
function of neurons, including the death of neurons. Many
neurodegenerative diseases including Alzheimer's disease (AD)
and Parkinson's disease (PD) occur as a result of neurodegenera-
tive processes [1]. AD has been defined by the presence of
extracellular amyloid-b (Ab) containing plaques and cytoplasmic
neurofibrillary tangles (NFT) consisting of abnormal microtubule
associated protein tau. These proteinaceous aggregates are
accompanied by synapse loss and neuronal cell death, which
are thought to subserve the clinical syndrome of progres-
sivecognitive impairment in AD [2,3]. PD is associated with
progressive loss of dopaminergic neurons in the substantia nigra,
as well as with more widespread neuronal changes that cause
complex and variable motor and non-motor symptoms [4]. It is
found that a-synuclein is a major component of Lewy bodies
and Lewy neurites, the pathological hallmarks of PD, indicating
its role in PD pathogenesis [5]. Environmental factors are
important contributory factors in neurodegenerative disease [6].

Paraquat (PQ) (1,1-dimethyl-4,40-bipyridinium dichloride) is a
widely used herbicide. It has been suggested that PQ might be an
environmental factor contributing to neurodegenerative disorder
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[7–9]. Studies using animal models have also indicated the
neurotoxicity of PQ in nigrostriatal dopaminergic cells [10]. PQ
reproduces the cardinal PD pathologies such as loss of
dopaminergic neurons [11] and protein aggregation in
dopaminergic neurons [12] as well as other pathologies that
include oxidative stress [13], proteasome dysfunction [14], and
mitochondrial dysfunction [15]. In addition, PQ in the presence
of oxygen generates the superoxide radical [16,17], hydroxyl
radical, and hydrogen peroxide (H2O2) leading to deleterious
effects on cell function [8,18,19]. H2O2 induces SIRT1
overexpression [20]. SIRT1 has a dual effect on FOXO3 function
by increasing FOXO3’s ability to induce cell cycle arrest and to
resist oxidative stress [21].

In recent years, nature has been a continuous source of
pharmacologically active molecules and medicinal herbs [22].
Peanut sprouts have been noted for their antioxidant properties
and the germinated peanut kernels have been used in the diet
as a health food for several centuries. It has been reported that
peanut sprouts are rich in flavonoids and phenolic compounds
which may contribute to disease prevention and have health
promoting properties [23,24]. They exhibit many biological
functions such as anti-inflammatory activity attributed to inhi-
bition of cyclooxygenase, estrogenic activity, and antiplatelet
activity [25–27]. Moreover, it has been reported that flavonoids
and phenolic compounds have a beneficial effect in the
treatment of ischemia [28] and neurodegenerative disease [29].
Therefore, the purpose of the present study was to investigate
the protective and antioxidative effects of peanut sprout extract
(PSE) on PQ-induced SK-N-SH.
2. Materials and methods

2.1. Materials

Minimum essential medium, fetal bovine serum, 0.25%
trypsin–ethylenediaminetetraacetic acid solution and 1% peni-
cillin–streptomycin solution were purchased from Gibco (Invi-
trogen, Grand Island, NY, USA). Dimethyl sulfoxide and methyl
viologen dichloride hydrate were obtained from Sigma–Aldrich
Co. (St. Louis, MO, USA). MTT was purchased from Bio Basic
Inc. (Markham, Canada). Muse® Oxidative Stress Kit was pur-
chased from Merck Millipore Corporation (Germany). RiboZol
RNA extraction reagent was purchased from Amresco (USA).
DNase I and 50 mmol/L ethylenediaminetetraacetic acid were
purchased from Fermentas (Thermo Fisher Scientific, USA).
Tetro reverse transcriptase and SensiFAST™ SYBR® Kits were
purchased from Bioline (Meridian Life Science, USA). Anti-
body for western blot was purchased from Merck Millipore
Corporation (Germany) and 3,30-diaminobenzidine reagent was
purchased from Bio Basic Canada Inc.

2.2. Germination of peanut kernels and PSE

Mature peanut kernels (Arachis hypogaea cv. Tainan 9) were
soaked in normal saline for 3 h, and then washed with sterile
water three times and then soaked in normal saline for 30 min.
The kernels were placed on a plastic net tray and germinated in a
growth chamber for 3 days in the dark. After 1 day of incubation,
the ungerminated kernels were discarded. After 3 days, the
peanut sprouts were weighed and dried for 72 h at 60 �C.

The sprouted peanuts were ground and 100 g of the ground
peanut powder was mixed with 100 mL of hexane and incubated
overnight on a hot plate stirrer. The mixture was then passed
through filter paper and 100 mL of 80% ethanol was added and
the mixture was incubated overnight on a hot plate stirrer. The
mixture was filtered with filter paper prior to rotary evaporation
at 50 �C and 50 mmHg. The PSE was dried at 50 �C prior to use.

2.3. Cell culture

Human neuroblastoma cells (SK-N-SH) were obtained from
the American Type Culture Collection (Manassas, VA, USA).
These cells were cultured in 10% (v/v) fetal bovine serum and
1% penicillin–streptomycin solution and maintained at 37 �C in
humidified incubator with 5% CO2.

2.4. Cell viability/cytotoxicity assay

An MTT reduction assay was used to assess the viability of
the cells. The cells were seeded in 96-well plate at a density of
3 × 104 cells per well and incubated overnight at 37 �C in 5%
CO2. The cells were then treated with PQ (0–1 mmol/L) and
PSE (0.25–1.5 mg/mL) for 48 h. In one group, referred to as the
prevention group, the cells were pre-treated with PSE for 4 h and
then further treated with PQ (0.75 mmol/L) for 48 h. A solution
of 1 mg/mL MTT was added to each well and the cells were
further incubated for 4 h at 37 �C, 5% CO2. The liquid in the
wells was then removed. The reaction with the MTT had pro-
duced purple MTT formazan crystals which were then dissolved
in dimethyl sulfoxide. The product was measured by a micro-
plate reader at 540 nm. The percentage of cell viability was
normalized to the control group.

2.5. Intracellular reactive oxygen species (ROS)
determination

The cells undergoing oxidative stress defined by the presence
of ROS, namely, superoxide, were determined by Muse®

Oxidative Stress Kit. Briefly, after culturing and treatment, the
cells were re-suspended at a concentration of 1 × 106 cells per mL
in 1× assay buffer (Muse® Oxidative Stress Kit). After that, the
samples were incubated for 30 min at 37 �C and then the ROS
positive cells were examined using the Muse® Cell Analyzer.

2.6. RNA analysis

Total RNA was extracted from the cells produced in the cell
culturing activity, with RiboZol RNA extraction reagent. To
discard genomic DNA, the total RNA (500 ng) was treated with
DNase I. First-strand cDNAswere synthesized from the total RNA
(250 ng) by Tetro reverse transcriptase and oligo primer were
incubated at 45 �C for 30 min. This reaction was terminated by
incubating the treated total RNA at 85 �C for 5 min. The synthe-
sized cDNAs were further utilized for quantitative PCR analysis.

The gene expression levels were determined by quantitative
PCR using LightCycler® 96 (Roche Diagnostics) and
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Figure 2. Neuroprotective activity of PSE in SK-N-SH cells.
**: P < 0.005 as compared with the control; #: P < 0.005 as compared with
0.75 mmo/L PQ.
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SensiFAST™ SYBR® Kits. The sequences of the primers used in
this study were as follows: SIRT1 (forward: 50-TCAGTGGCTG-
GAACAGTGAG-30/reverse: 50-AGCGCCATGGAAAATGT-
AAC-30), a-synuclein (forward: 50-GTGCTCAGTTCCA
ATGTGCC-30/reverse: 50-TGGGGGCAGGTACAGATACT-30)
and b-actin (forward: 5-CC ACCATGTACCCTGGCATT-30/
reverse: 5-CCAACTCGTCATACTCCTGC-30). The data were
expressed as the mean ± SEM from three independent experi-
ments. Transcription levels of all genes were normalized to the
level of the b-actin gene used as the internal control.

2.7. Western blotting

After culture and treatment, the cells were washed with
phosphate buffered saline and then suspended in 100 mL of
radioimmunoprecipitation assay lysis buffer. The protein con-
centration was determined using a bicinchoninic acid protein
assay. Proteins were separated using 15% sodium dodecyl sulfate–
polyacrylamide gel electrophoresis and electrically transferred to a
polyvinylidene fluoride transfer membrane. After the membrane
was blocked with 5% skim milk, target proteins were immune-
detected using specific antibodies. Primary antibodies were
composed of anti-b-actin and anti-beta-amyloid 1–42. Horseradish
peroxidase-conjugated anti-rabbit immunoglobulin G was applied
as the secondary antibody, and bands were detected using chro-
mogenic detection of horseradish peroxidase activity based on the
action of 3,30-diaminobenzidine in western blot methods.

2.8. Statistical analysis

All results were expressed as the mean ± SEM. The data were
analyzed by One-way ANOVA using SPSS, version 17.0. Dif-
ferences were considered to be significant (P < 0.05).

3. Results

3.1. PQ induced cytotoxicity in SK-N-SH cells

SK-N-SH cells were treated with PQ at various concentrations
(0, 0.25, 0.5, 0.75 and 1 mmol/L) for 48 h. Cell viability was
decreased in a concentration-dependent manner by treatment with
PQ. The presence of 0.5–1 mmol/L PQ significantly reduced cell
viability (P< 0.05) as comparedwith 0mmol/L PQ (Figure 1). This
result indicated that PQ enhanced the death of the SK-N-SH cells.
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Figure 1. Effect of PQ on the cell viability of SK-N-SH cells.
*: P < 0.05 as compared with 0 mmol/L.
3.2. PSE induced cytotoxicity in SK-N-SH cells

PSE promoted cell viability at concentrations of 0.25, 0.5, 1,
and 1.5 mg/mL up to about 100.89% ± 2.00%, 104.57% ± 1.67%,
116.29% ± 7.98%, and 126.29% ± 5.35% respectively. The
1.5 mg/mL PSE significantly enhanced cell viability up to about
26% as compared with the control.

3.3. Effect of PSE on SK-N-SH cells induced by PQ

In order to determine the protective effect of PSE on SK-N-
SH cells induced by PQ, the results showed that PSE signifi-
cantly promoted cell viability at concentrations of 1 and 1.5 mg/
mL up to about 16.5% and 23.6% as compared to PQ, respec-
tively (Figure 2). This result indicated that PSE had a protective
effect on PQ-induced SK-N-SH.
3.4. Effect of PSE on intracellular ROS in SK-N-SH cells

A significant increase in intracellular ROS was found in the
SK-N-SH cells after they were treated with 0.75 mmol/L when
compared to the control (Figure 3). However, the groups treated
with PSE and the group pre-treated with PSE showed significant
decreases in intracellular ROS when compared to 0.75 mmol/L
PQ (Figure 3).

3.5. Effect of PSE on SIRT1 and a-synuclein expression

After the cells had been treated with 1 mg/mL for 4 h, they
were further treated with 0.75 mmol/L PQ for 48 h. The data
showed that SIRT1 and a-synuclein mRNA level in the PQ-
treated cells significantly increased when compared with con-
trol group. Treatment with PSE only and PSE pre-treatment
significantly decreased level of SIRT1 and a-synuclein mRNA
expression by 1.30, 2.12 and 0.50, 1.07, respectively (Figures 4
and 5).

3.6. Effect of PSE on Ab42 protein expression

The protein level in the PQ-treated cells increased signifi-
cantly as compared to the control group. Treatment with PSE
only showed result similar to control group. PSE pre-treatment
significantly decreased the level of Ab42 about 0.27 as
compared with 0.75 mmol/L PQ (Figure 6).
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4. Discussion

In this study, we observed a protective effect of PSE against
PQ-induced oxidative stress in SK-N-SH. It has been reported
that PSE protects against ultraviolet B-induced oxidative stress
by the activation of Nrf2 and the upregulation of Nrf2-relating
antioxidants. PSE plays an important role in enhanced resvera-
trol biosynthesis [30,31]. PSE contains more polyphenols, espe-
cially resveratrol than peanut extract [23]. Antioxidants from
nutritional sources can protect against the death of neuronal
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cells in AD and also modulate Ab-induced oxidative stress [32].
Thus, it has been postulated that PSE has antioxidant properties
that can act to protect against oxidative stress-induced cell death.

We found that PQ induced the generation of ROS in SK-N-
SH cells. This finding is consistent with PQ-induced oxidative
stress in brain mitochondria, via increased ROS such as H2O2

and superoxide anion [15,33]. However, Day et al. found that PQ
generated superoxide through redox cycling with intracellular
diaphorases and molecular oxygen [34].

SIRT1 has been implicated in the activation of anti-
apoptotic, anti-inflammatory, anti-stress responses, and aggre-
gation of proteins involved in neurodegenerative disorders [35].
SIRT1 is regulated through p53, nuclear factor-kB, MyoD,
PGC-1, and FOXO3 [36]. Our study showed that PQ-treated
SK-N-SH cells overexpressed SIRT1 mRNA, which is in
agreement with Castello et al. [15] where it was reported that
PQ induced ROS generation. Our results are also consistent
with a previous report that ROS affected the high expression
of SIRT1 [20]. PQ may trigger mechanisms of antioxidative
defenses through SIRT1 overexpression to rescue PQ-treated
SK-N-SH cells. PSE, which possesses antioxidant properties,
can inhibit PQ-induced ROS production leading to decreased
expression of SIRT1.

PQ has been found to cause neurodegenerative diseases and
induce lipid peroxidation and consequential cell death of dopa-
minergic neurons that are observed in the onset of the parkinsonian
syndrome [8]. Further, a-synuclein is the major protein component
of Lewy bodies, a cardinal pathological feature of the degenerating
parkinsonian brain. PQ induces the conformational change in the
a-synuclein structure and significantly accelerates the formation
rate of a-synuclein fibrils in vitro [37,38], and a-synuclein has
been found to induce mitochondrial dysfunction and oxidative
stress [39]. These actions of PQ have been implicated in the
formation of aggregated a-synuclein [40]. In our study, we found
that PQ not only possesses a potent toxic effect in SK-N-SH
cells but also induces overexpression of a-synuclein genes. Inter-
estingly, PSE can downregulate the a-synuclein gene, which has
been demonstrated by Caruana et al., who found that the inhibition
and disaggregation of a-synuclein oligomers are a result of natural
polyphenolic compounds [41]. Our study demonstrated that PSE
can downregulate a-synuclein and protect against cell death.

The neuropathology of AD is characterized by the presence of
extracellular neuritic plaques (amyloid plaques), intracellular NFT
and loss of cholinergic neurons in basal forebrain [42,43].
Oxidative stress leads to the formation of amyloid plaques and
NFT [44]. In our study, PQ was shown to increase Ab42 protein
levels in SK-N-SH cells. Chauhan and Chauhan reported that
PQ induced production of ROS which could induce b- and g-
secretases leading to an increase in Ab production from amyloid
precursor protein (APP) [45]. Our results showed that Ab42
protein was in oligomer, protofibril, and eventually amyloid
fibril aggregates. Oligomer and protofibril are putative toxic
species that drive neuronal dysfunction [46,47]. Resveratrol in
PSE expressed antioxidant properties and also downregulated
the Ab42 protein [23,31]. Resveratrol has also been shown to be
able to prevent and alleviate the numerous neurodegenerative
disorders and age-related neurological decline [48]. Therefore, it
can be postulated that PSE downregulates Ab42 protein and
decreases cell death.

The overall conclusion of this study, exposure to PQ leads to
oxidative stress in SK-N-SH cells. PSE, which possesses anti-
oxidant properties, can protect against cell death and inhibits
PQ-induced ROS production leading to decrease in progressive
neurodegeneration. SIRT1 may function through FOXO3 to
affect the antioxidant system. ROS may be relevant in the
activation of b- and g-secretases to increase Ab production from
APP. Ab and APP may also directly induce the production of
ROS. In addition, ROS activates a-synuclein aggregation,
associating with induction of ROS production in neurodegen-
erative diseases.
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