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a b s t r a c t

Let k be a nonnegative integer, and letmk = 4(k+1)(k+3)
k2+6k+6

. We prove that every simple graph
with maximum average degree less thanmk decomposes into a forest and a subgraph with
maximum degree at most k (furthermore, when k ≤ 3 both subgraphs can be required to
be forests). It follows that every simple graph with maximum average degree less thanmk
has game coloring number at most 4+ k.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The game coloring number of a graph G is defined using a two-person game to produce an ordering of the vertices of G.
In the ordering game on G, Alice and Bob take turns choosing vertices from the set of unchosen vertices of G. This places the
vertices in a linear order L, with x < y if x is chosen before y. The back degree of a vertex x with respect to L, written bL(x),
is the number of neighbors of x that precede x in L. The back degree of L, written b(L), is maxx∈V (G) bL(x). Alice’s goal is to
minimize b(L), and Bob’s goal is to maximize it.
The game coloring number colg(G) of G is defined to be 1 + k, where k is the least integer such that Alice can guarantee

b(L) ≤ k. Equivalently, k is the greatest integer such that Bob can guarantee b(L) ≥ k. The game coloring number was first
formally defined in [9] as a tool for proving upper bounds on the game chromatic number [2]. It is the game version of the
coloring number, which is defined to be 1 + minL b(L) and received its somewhat unfortunate name because it is an upper
bound on the chromatic number. A more accurate and less confusable term might be ‘‘(game) coloring bound’’, but we will
use the traditional term and notation. The definition of back degree makes multi-edges and loops irrelevant in the game, so
we use the model of ‘‘graph’’ that forbids these.
Recently, Zhu [10] proved that colg(G) ≤ 17 when G is planar. Borodin et al. [3], He et al. [6], and Kleitman [7] improved

this for planar graphs with large girth by proving structural properties of planar graphs with large girth. A decomposition of
a graph G is a set of edge-disjoint subgraphs whose union is G.

Theorem 1. Let G be a planar graph with girth at least g.
1. [3] If g ≥ 9, then G decomposes into a forest and a matching.
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2. [7] If g ≥ 6, then G decomposes into a forest and a graph with maximum degree 2.
3. [6] If g ≥ 5, then G decomposes into a forest and a graph with maximum degree 4.

Nash-Williams [8] proved that every planar graph decomposes into three forests. Balogh et al. [1] conjectured that one
of the three forests can be required to have maximum degree at most 4, which is sharp infinitely often. They proved several
results in this direction, and Gonçalves [5] proved the full conjecture. In addition, he showed that planar graphs with girth
at least 6 (at least 7) decompose into two forests with one having maximum degree at most 4 (at most 2).
Two lemmas show the importance, for game coloring number, of decomposing a graph into a forest and a graph with

small maximum degree.

Lemma 1 (Zhu [9]). If a graph G decomposes into subgraphs G1 and G2, then colg(G) ≤ colg(G1)+∆(G2).

Lemma 2 (Faigle et al. [4]). If T is a forest, then colg(T ) ≤ 4.

Combining these two lemmas with Theorem 1 yields:

Corollary 1 ([3,6,7]). If G is a planar graph with girth at least 5, then colg(G) ≤ 8. The upper bound decreases to 6 for girth at
least 6 and to 5 for girth at least 9.

In this note, we bound the game coloring number of sparse graphs using this decomposition approach. We measure
sparseness by avoidance of dense subgraphs. Themaximumaverage degreeof a graphG, writtenMad(G), is the largest average
degree among the subgraphs of G. That is,

Mad(G) = max
{
2|E(H)|
|V (H)|

:H ⊆ G
}
.

We can now state our main result.

Theorem 2. Every graph G satisfying Mad(G) < 4(k+1)(k+3)
k2+6k+6

decomposes into a forest and a subgraph with maximum degree at
most k. When k ≤ 3, both subgraphs can be required to be forests.

Theorem 2 combines with Lemmas 1 and 2 to yield:

Corollary 2. If a graph G satisfiesMad(G) < 4(k+1)(k+3)
k2+6k+6

, then colg(G) ≤ 4+ k.

Let mk = 4(k+1)(k+3)
k2+6k+6

. The value mk is the largest bound our approach can prove. However, we do not know whether the
result is sharp. Let f (k) be the infimum of Mad(H) over graphs H that do not decompose into a forest and a graph with
maximum degree at most k. For an upper bound, the complete bipartite graph K2,2k+2 has average degree 4k+4k+2 but has no
such decomposition. The graph obtained from any (2k + 2)-regular multigraph by subdividing each edge is another such
example, with the same average degree. Thus

4−
8k+ 12
k2 + 6k+ 6

≤ f (k) ≤ 4−
4
k+ 2

.

Although Theorem 2 holds for both planar and nonplanar graphs, it does not imply Theorem 1 by using the usual
inequality Mad(G) ≤ 2g/(g − 2) that holds for every planar graph G having girth at least g . Those results would follow
from f (k) = 4k+4

k+2 , and to imply the result for girth 5 no smaller f (k) suffices. For girth at least 7, the weaker threshold
f (2) ≥ 14/5 would imply the result of Gonçalves [5].
Answering the following question would solve the problem completely.

Question 1. For every k, what are the graphs with smallest maximum average degree that do not decompose into a forest and a
subgraph with maximum degree at most k?

The proof of Theorem 2 uses reducible configurations (discussed in Section 2) and a discharging procedure (discussed in
Section 3). The key structures in the proof are ‘‘banks’’ and ‘‘cores’’ that allow the transfer of charge over unlimited distances.

2. Reducible configurations and special subgraphs

Let d(x) denote the degree of a vertex x in a graph G. A k-vertex is a vertex of degree k. A ≥k-vertex or ≤k-vertex is a vertex
of degree at least k or at most k, respectively. An (a, b)-alternating cycle is an even cycle that alternates between a-vertices
and b-vertices.
We prove Theorem 2 by considering a counterexample such that |V (G)| + |E(G)| is smallest. Since Mad(H) ≤ Mad(G)

when H is a subgraph of G, every proper subgraph of G decomposes into a forest and a graph with maximum degree at most
k, but G has no such decomposition. We use this to exclude various configurations from G. Since m0 = 2, and Mad(G) < 2
implies that G is a forest, we may assume that k ≥ 1.
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Lemma 3. A minimal counterexample G to Theorem 2 has (a) no 1-vertex, (b) no edge uv with d(v) ≤ k+ 1 and d(u) = 2 (or
d(u) = 3 when k > 3), and (c) no (k+ 2, 2)-alternating cycle.

Proof. WhenG contains any such configuration,wedecompose an appropriate subgraphofG into a forest F and a subgraphD
withmaximumdegree atmost k (when k ≤ 3, alsoD is a forest) and use it to obtain such a decomposition of G, contradicting
that G is a counterexample.

(a) When d(u) = 1, the decomposition of G− u extends by adding the extra edge to F .
(b) If k > 3, then D need not be a forest; we prove the stronger statement that G has no adjacent ≤(k+ 1)-vertices. If u and

v are such, then consider the decomposition of G − uv. If u or v has k neighbors in D, then add uv to F ; otherwise, add
uv to D.
If k ≤ 3, then D in the decomposition of G− uv is a forest, and we consider only d(u) = 2. If v has k neighbors in D, then
add uv to F ; otherwise, add uv to whichever of D and F does not contain the edge incident to u in G− uv.

(c) Let C be a (k+ 2, 2)-alternating cycle in G. In the decomposition of G− E(C) into F and D, we enforce that each (k+ 2)-
vertex on C has an incident edge in F , by moving an incident edge from D to F if not. Now adding one perfect matching
in C to D and the other to F extends the decomposition to Gwithout creating cycles in either subgraph. �

We use discharging to show that every graph satisfying (a), (b), and (c) of Lemma 3 has average degree at least mk, and
hence there is no counterexample to Theorem 2. To apply the dischargingmethod, we first give each vertex a ‘‘charge’’ equal
to its degree.We then redistribute the charge (without changing the total charge) to obtain charge at leastmk on each vertex.
To facilitate the discharging argument, we also move some charge to special subgraphs. They start with charge 0 and will
end with nonnegative charge, so the initial average degree is at leastmk.
Given such a graph G, let X be the set of all (k + 2)-vertices in G that are adjacent to at least k + 1 vertices of degree 2,

and let Y be the set of all 2-vertices adjacent to at least one vertex of X . Define the bank of G to be the maximal bipartite
subgraph of Gwith partite sets X and Y . When k ≥ 4, wemodify this slightly by restricting X to use only the (k+2)-vertices
whose neighbors all have degree 2.
A cycle in the bank would be a (k + 2, 2)-alternating cycle in G, which is forbidden. Hence the bank is a forest. We call

each component of the bank a core. By construction, each vertex of X has at least k + 1 neighbors in the bank (k + 2 when
k ≥ 4); hence each leaf in the bank belongs to Y .

3. The discharging argument

The initial charge at each vertex of G is its degree, and also each core has initial charge 0. We use three discharging
rules (plus a special rule when k ≥ 4) to redistribute charges. In most discharging arguments, movement of charge is local.
Assigning charge to cores permits charge to move long distances.
For the computations, recall thatmk = 4(k+1)(k+3)

k2+6k+6
. Each discharging rule Rimoves a constant amount ri of charge. These

constants r1, r2, r3, r4 are defined in terms ofmk by

r1 =
mk − 2
2

, r2 = 1− r1 −
mk
k+ 3

, r3 = mk − (k+ 2)(1− r1), r4 =
mk − 3
3

.

The discharging rules are as follows, with R4 used only when k ≥ 4. We add R4 because mk > 3 if and only if k ≥ 4, so
when k ≥ 4 the 3-vertices need to gain charge. A vertex belonging to no core is adjacent to a core C if it is adjacent in G to a
leaf of C .

R1 Every ≥(k+ 2)-vertex gives r1 to each neighbor that is a 2-vertex.
R2 If C is a core, v is a ≥(k+ 2)-vertex belonging to no core, and v is adjacent to l leaves of C , then v gives lr2 to C .
R3 Every core gives r3 to each of its (k+ 2)-vertices whose neighbors all have degree 2.
R4 (For k ≥ 4 only.) Every ≥(k+ 2)-vertex gives r4 to each neighboring 3-vertex.

The proof of Theorem 2 is now completed by proving the following lemma.

Lemma 4. If a graph G satisfies (a), (b), and (c) of Lemma 3, thenMad(G) ≥ mk.

Proof. As described above, we give initial charge d(v) to each vertex v and initial charge 0 to each core C . After applying
the discharging rules, let ω(v) and ω(C) denote the final charges. We prove that ω(v) ≥ mk for each vertex v and ω(C) ≥ 0
for each core C .
By (b), the neighbors of 2-vertices are ≥(k + 2)-vertices. Using R1, the final charge of each 2-vertex is 2 + 2r1, which

equalsmk, as desired.
If 3 ≤ d(v) ≤ k+ 1, then v does not give or receive charge, unless d(v) = 3 < k. Thus ω(v) = d(v) > mk except in that

case. If d(v) = 3 < k, then by (b) its neighbors are all≥(k+2)-vertices. Via R4 it receives 3r4, and henceω(v) = 3+3r4 = mk.
Now suppose that d(v) ≥ k + 2. Vertex v may lose charge to each neighbor, and v may lose additional charge when v

is not in a core and its neighbors are. Since always r1 > r4, we may assume that each neighbor getting charge from v is a
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2-vertex. Hence themaximum charge lost from v, via {R1, R2, R4}, is d(v)(r1+ r2). Henceω(v) ≥ d(v)(1− r1− r2) =
d(v)mk
k+3 .

If d(v) ≥ k+ 3, then ω(v) ≥ mk.
The case d(v) = k+2 ismore delicate. If v is not in a core, then the definition of the bank limits the number of 2-neighbors

of v (to k if k ≤ 3, to k + 1 if k ≥ 4). If k ≤ 3, then ω(v) ≥ 2 + k(1 − r1 − r2) = mk + 2 −
3mk
k+3 . The formula for mk yields

2 − 3mk
k+3 =

2k2

k2+6k+6
> 0, and hence ω(v) > mk. If k ≥ 4, then v may have one 3-neighbor in addition to the maximum

number of 2-neighbors. Hence ω(v) ≥ 1 + (k + 1)(1 − r1 − r2) − r4 = mk + 2 −
2mk
k+3 −

mk
3 . The formula for mk converts

the last expression tomk + 2k(k−2)
3(k2+6k+6)

, and hence ω(v) > mk.
Suppose now that d(v) = k+2 and v is in a core. If every neighbor of v has degree 2, then v loses r1 exactly k+2 times, but

it loses nothing by R2 and gains r3 by R3. Henceω(v) = (k+2)(1− r1)+ r3 = mk. If v has a neighbor with degreemore than
2, then k ≤ 3. Now v loses r1 exactly k+ 1 times by R1 and is unaffected by {R2, R3, R4}. Hence ω(v) = (k+ 2)− (k+ 1)r1.
Using r1 = mk/2− 1 and the formula formk, we compute (k+ 2)− (k+ 1)r1 −mk = k2

k2+6k+6
> 0, and hence ω(v) > mk.

Finally, we check thatω(C) ≥ 0when C is a core.We have observed (using (c)) that C is a treewhose leaves are 2-vertices
in G. The non-leaves in X have degree k+ 1 or k+ 2 in C , while the non-leaves in Y have degree 2 in C . Let there be n1 non-
leaves of the first type, n2 of the second, and n′ of the third, and let n0 be the number of leaves. Since C is a tree, its vertex
degrees must sum to 2(n0 + n1 + n2 + n′)− 2, so we obtain n0 = (k− 1)n1 + kn2 + 2. By (b), the neighbor outside C of a
leaf of C is a ≥(k+ 2)-vertex. Also, those vertices are not in cores, so C receives n0r2 via R2. Via R3, C distributes n2r3. Since
n0 > kn2, it suffices to have kr2 ≥ r3. Using the definitions of r3, r2, and then r1 in terms ofmk, we compute

kr2 − r3 = (2k+ 2)(1− r1)−
2k+ 3
k+ 3

mk = 4(k+ 1)−
k2 + 6k+ 6
k+ 3

mk = 0.

We have shown that all vertices and cores have sufficient final charge. �

Note that r1 is defined in terms ofmk so that 2-vertices have final chargemk, and then r2 is defined in terms ofmk and r1
to give (k+3)-vertices final chargemk. Next r3 is defined in terms of these so that (k+2)-vertices in cores whose neighbors
all have degree 2 have final charge mk, and r4 is defined so that 3-vertices have final charge mk when k ≥ 4. Given all this,
and the fact that n1 may equal 0 in a core, mk has been chosen as the largest value allowing us to guarantee nonnegative
final charge for cores. In this sense the theorem cannot be improved using the present argument.
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