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The recently proposed TCP-targeted Low-rate Distributed Denial-of-Service (LDDoS)
attacks send fewer packets to attack legitimate flows by exploiting the vulnerability in
TCP’s congestion control mechanism. They are difficult to detect while causing severe dam-
age to TCP-based applications. Existing approaches can only detect the presence of an
LDDoS attack, but fail to identify LDDoS flows. In this paper, we propose a novel metric
– Congestion Participation Rate (CPR) – and a CPR-based approach to detect and filter
LDDoS attacks by their intention to congest the network. The major innovation of the
CPR-base approach is its ability to identify LDDoS flows. A flow with a CPR higher than a
predefined threshold is classified as an LDDoS flow, and consequently all of its packets will
be dropped. We analyze the effectiveness of CPR theoretically by quantifying the average
CPR difference between normal TCP flows and LDDoS flows and showing that CPR can dif-
ferentiate them. We conduct ns-2 simulations, test-bed experiments, and Internet traffic
trace analysis to validate our analytical results and evaluate the performance of the pro-
posed approach. Experimental results demonstrate that the proposed CPR-based approach
is substantially more effective compared to an existing Discrete Fourier Transform (DFT)-
based approach – one of the most efficient approaches in detecting LDDoS attacks. We also
provide experimental guidance to choose the CPR threshold in practice.

� 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

Distributed Denial-of-Service (DDoS) attacks [1] have
been identified as a major threat to today’s Internet ser-
vices. Being a new kind of DDoS attacks, TCP-targeted
Low-rate Distributed Denial-of-Service (LDDoS) [2] attacks
are more efficient in terms of causing damage to legitimate
flows and more difficult to detect when compared to tradi-
tional flooding-based DDoS attacks.

Traditional flooding-based DDoS attacks employ a
‘‘sledge-hammer’’ approach of high-rate transmission of
packets, which obviously distinguishes themselves from
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normal data flows in statistical characteristics. Many of
the proposed approaches for detecting DDoS attacks have
been based on these statistical characteristics [3–7].

LDDoS attacks are quite different from the traditional
flooding-based DDoS attacks as they exploit the vulnerabil-
ities in TCP’s congestion control mechanism. Instead of
sending continuous network traffic, an LDDoS attacker
sends periodically pulsing data flows, which may dramati-
cally reduce the average rate of attack flows. LDDoS attacks
have already been observed in the Internet2 Abilene back-
bone [8], thus presenting a new challenge to the security of
the Internet.

When facing large scale LDDoS attacks, existing defense
approaches can only detect the presence of the LDDoS at-
tack, but cannot determine whether a particular flow is
an attack flow or not. In this paper we propose a novel
metric ‘‘Congestion Participation Rate’’ (CPR) to identify
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Fig. 1. LDoS attack flow.

Fig. 2. An LDDoS attack. There are 3 LDDoS flow groups in this LDDoS
attack. sg1 is the starting gap between LDDoS flow groups 1 and 2. sg2 is
the starting gap between LDDoS flow groups 2 and 3. In modeling LDDoS
attacks, we assume that both sg1 and sg2 are equal to a constant in an
LDDoS attack.
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LDDoS flows. The CPR-based approach exploits the fact
that LDDoS flows actively induce network congestion
whereas normal TCP flows actively avoid network conges-
tion. That is, normal TCP flows will tend to send fewer
packets during network congestion whereas LDDoS flows
would not. The Congestion Participation Rate (CPR) can
accurately capture this fundamental difference, and hence
allow us to identify LDDoS flows. Our contributions are
summarized as follows:

� We propose a novel metric – Congestion Participation
Rate (CPR) to identify LDDoS flows by measuring the
intention of network flows to congest the network. To
the best of our knowledge, it is the first metric that
could recognize LDDoS flows by quantifying each flow’s
intention of congesting the network.
� We propose and implement a CPR-based approach to

detect and filter LDDoS attacks. The CPR-based
approach is an originality innovation that can effec-
tively identify LDDoS in a per-flow basis in large-scale
LDDoS attacks as far as we are concerned.
� We conduct intensive experiments, including both ns-2

simulations and test-bed experiments, to validate our
analytical results and evaluate the performance of the
CPR-based approach. The experimental results demon-
strate that the CPR-based approach is effective for all
of the LDDoS attacks considered while the existing Dis-
crete Fourier Transform (DFT)-based approach is only
effective for a small set of LDDoS attacks.
� We obtain the trade-off between the detection rate and

the false positive rate for the CPR-based approach
through a comprehensive set of experiments. This
trade-off provides experimental guidance for choosing
a CPR threshold in practice.

It is worth noting that the CPR-based approach is de-
signed to distinguish between normal TCP flows and
LDDoS flows. Differentiating normal UDP flows and LDDoS
flows will be investigated in future work. The LDDoS at-
tacks in this paper, if not declared otherwise, precisely re-
fer to TCP-targeted LDDoS attacks including Shrew attacks
[2] and Pulsing DoS (PDoS) attacks [9]. The CPR-base ap-
proach is also designed to counter TCP-targeted LDDoS at-
tacks [2,9].

The rest of the paper is organized as follows. Section 2
presents the modeling of LDoS attacks and LDDoS attacks.
Section 3 defines the metric of CPR, describes the CPR-
based approach and analyzes the boundaries of average
CPR for normal and attack flows. Intensive experiments
based on ns-2 simulations and real network configurations
are presented in Sections 4 and 5 respectively. Section 6
discusses several important issues related to the deploy-
ment of the CPR-based approach. Section 7 reviews exist-
ing work that is directly related to the proposed
approach. Finally we conclude the paper in Section 8.
2. Modeling LDDoS attacks

In this section we model the LDDoS attacks. Our target
is to detect and filter LDDoS attack flows. A flow is uniquely
determined by a 5-tuple (Source IP, Source Port, Destination
IP, Destination Port, Protocol). We use four parameters
ðTa; Tb;Rb; sÞ to describe an LDoS attack flow, where Tais
the LDoS attack period, Tb is the LDoS attack burst width
(or pulsing width), Rb is the LDoS attack burst rate (or puls-
ing rate), and sis the starting time of the attack flow (see
Fig. 1).

An LDDoS attack consists of multiple LDoS attack flows,
F1; F2, . . . Fn, that may originate from different machines
distributed on the Internet. Assuming that Ta; Tb, and Rb

are identical for every LDoS flow Fi, we define an LDDoS
flow group as a set of attack flows that have the same start-
ing time s. The starting time of an LDDoS flow group is just
the starting time of each flow in the group. We assume that
the starting gap between consecutive LDDoS flow groups
remains constant in an LDDoS attack. For example, in
Fig. 2, sg1 represents the starting gap between LDDoS flow
groups 1 and 2, and sg2 represents the starting gap be-
tween LDDoS flow groups 2 and 3. Our assumption corre-
sponds to that both sg1 and sg2 are equal to a constant in
an LDDoS attack. This starting gap is denoted as r. We
further assume that each group has an identical number,
m, of flows. Based on the definition and assumption above,
we describe an LDDoS attack using four parameters
ðn; g;m;rÞ, where n is the total number of flows in the at-
tack, g is the number of attack flow groups, and m is the
number of members in an LDDoS flow group. It is clear that
n = mg based on the above assumptions.

It is worth noting that the aforementioned assumption
only eases the classification of LDDoS attacks and is not re-
quired by our detection system.



Fig. 3. LDDoS attack categories (a) Attack Frequency Intensification (AFI), (b) Attack burst Width Intensification, (c) Attack burst Rate Intensification, and
(d) Mixed Intensification. The unit for Rate is Bytes/s and the unit for time is second.

Table 1
Aggregate flow of LDDoS attacks.

LDDoS categories Aggregate flow

Tþa Tþb Rþb

AFI Ta=n Tb Rb

AWI Ta Tb � n Rb

ARI Ta Tb Rb � n
MI ðTa=n; TaÞ ðTb; Tb � nÞ (Rb;Rb � n)
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Based on these assumptions and definitions, we classify
LDDoS attacks into four categories (Fig. 3), according to how
the three characteristics Ta; Tb, and Rb are being distributed
among multiple flows in an LDDoS attack. Although our
classification is by no means complete, it is enough for us
to analyze the characteristics of the LDDoS attacks and to
conduct experiments to evaluate our approach.

1. Attack Frequency Intensification (AFI) LDDoS attack(n >
0, g = n, m = 1, r = Ta/g)
The first category represents the LDDoS attacks whose
aggregate attack period is equally distributed among n
flows. The attack frequency of the aggregate flow is
intensified by n times, compared to the frequency of
each attack flow.

2. Attack burst Width Intensification (AWI) LDDoS
attack(n > 0, g = n, m = 1, r ¼ Tb)
The second category corresponds to the case when the
aggregate burst width of an LDDoS attack is equally dis-
tributed among n flows. An attack burst of a flow is
immediately followed by a burst from another flow. In
this case, the attack burst width of the aggregate attack
flow is intensified by ntimes.

3. Attack burst Rate Intensification (ARI) LDDoS attack(n >
0, g = 1, m = n, r ¼ 0)
The third category describes the LDDoS attacks in which
n flows start at the same time, and the burst rate of the
aggregate attack flow is intensified n times.

4. Mixed Intensification (MI) LDDoS attack
(n > 0, g > 1, m > 1, r P 0)
The last category can be considered as the combination
of the previous three.

Let Ta; Tb, and Rb be the parameters for a single attack
flow, and Tþa ; Tþb , and Rþb be the parameters for the aggre-
gate flow of an LDDoS attack. Table 1 demonstrates the
relationship between Tþa ; Tþb ; Rþb , and Ta; Tb; Rb.
3. The CPR-based approach

In this section, we first propose the metric of CPR and
then describe our CPR-based approach to detect and filter
LDDoS attack flows.
3.1. Congestion participation rate

A major difference between normal TCP flows and
LDDoS flows is that normal TCP flows actively avoid
network congestion due to TCP’s congestion control
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Fig. 4. Calculation Congestion Participation Rate (CPR) on a router.
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mechanism, whereas LDDoS flows actively induce network
congestion to degrade network performance.

Motivated by this difference, we propose Congestion
Participation Rate (CPR) to distinguish between an LDDoS
flow and a normal TCP flow. Consider a router through
which different flows (normal TCP flows and LDDoS attack
flows) pass (see Fig. 4), at time t, we sample the incoming
link of the router for a duration d and count the number of
packets from every flow Fi, denoted as Si;t . At the same
time, we monitor the packet queue in the router. If there
is at least a packet dropped at the packet queue (because
the queue is full) during d, we consider that the outgoing
link of the router is congested at time t. After a series of
sampling T, we define the CPR of flow Fi as

hi ¼
X
t2T�

Si;t

,X
t2T

Si;t ð1Þ

where T� is the set of sampling epochs when the outgoing
link is congested. In other words, the hi is the ratio of the
incoming packets in congestion to the total incoming pack-
ets from flow Fi. It is worth noting that the packets are
sampled at the incoming link before they enter the packet
queue or be dropped when the packet queue is full (due to
the congestion of the outgoing link). Thus the packet num-
ber measured here is for the packets sent by a flow to the
router. It is normally larger than the number of the packets
from the flow that are forwarded by the router, as some of
the packets may be dropped due to congestion.

Since LDDoS flows actively induce network congestion
while normal TCP flows actively avoid network congestion,
the CPR of an LDDoS flow is expected to be considerably
bigger than that of a normal TCP flow.
3.2. The detecting and filtering approach

Fig. 5 shows the block diagram of our CPR-based ap-
proach for detecting and filtering LDDoS. This approach is
expected to be deployed on a router where we want to de-
tect and filter LDDoS attack flows. In the diagram, the flow
size estimation module is a functional module that is al-
ready included in most Internet routers (for example Cisco
NetFlow [10]). The CPR metric mainly works in the LDDoS
Attack Detection module.

The router keeps CPR for every flow. A flow is consid-
ered as an LDDoS attack flow if its CPR is higher than a
threshold s. We investigate this threshold analytically in
Section 3.3 and use experiments to demonstrate how to
determine the threshold in practice in Section 4.4.

When an LDDoS flow is detected, we drop all packets
from the detected flow until its CPR becomes smaller than
the threshold s. A normal TCP flow may be mistakenly
interpreted as an attack flow if it is initiated and starts to
send data while the network is congested. To mitigate it,
after a flow is regarded as an LDDoS flow, we keep on mea-
suring its CPR. If its CPR becomes smaller than the thresh-
old, the flow will once again be considered as a normal
flow and its packets will pass the router successfully. A
normal TCP flow that was misclassified as an attack flow
will reduce its CPR by sending data when the network is
not congested.

In the extreme scenario, the LDDoS attack can throttle
all normal TCP flows and the aggregate rate of the LDDoS
flows is also very close to the bottleneck bandwidth of net-
work. There is almost no packet will be dropped in the
scenario and consequently no network congestion can be
observed. When no network congestion can be observed
from a scenario, the CPRs of both LDDoS flows and normal
TCP flows all tend to be 0 according to the definition in (1).
This is problematic for the CPR-based approach to distin-
guish LDDoS flows. To solve this problem, we turn on
the Random Early Detection (RED) [11] queue manage-
ment mechanism on the router where we install the
CPR-based module. In the extreme scenario mentioned
above, the RED mechanism actively drops packets from
the pulsing LDDoS flows. Normally, RED drops packets in
order to send congestion signals back to the sources. As
will be covered in Section 4, the CPR-based approach with
RED effectively detects LDDoS attacks in this scenario. We
configure the RED mechanism to be based on packet count
as opposed to packet bytes because the packet-count RED
is more sensitive to the small packets sent in an LDDoS at-
tack flow.

3.3. Bounds of the congestion participation rates

In this subsection, we theoretically analyze the average
CPR difference between normal TCP flows and LDDoS
flows, which is critical for our approach to identify attack
flows. More precisely, we conduct a worst-case analysis
by computing the minimum average CPR difference be-
tween normal TCP flows and LDDoS flows. It is worth not-
ing that, this section does not aim to establish a complete
analytical model for CPR bounds, but to analyze the rela-
tionship between CPR bounds and several network param-
eters that are directly measureable. As stated in Section
3.3.3, to get the exact value of those CPR bounds, one sill
needs to experimentally measure several network
parameters.

Since LDDoS flows tend to have a higher CPR than nor-
mal TCP flows, the minimum average CPR difference is ob-
tained by subtracting the upper bound of normal TCP
flows’ average CPR from the lower bound of the average
CPR of LDDoS flows. We obtain the theoretical equations
for these two bounds in this subsection and verify the re-
sults through experiments in a real network in Section 5.
Table 2 lists the notation used in our analysis.
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Table 2
Notations and abbreviations for network traffic.

Notations Definition

rTCP The average ratio of packets dropped to all incoming
packets from normal TCP flows

rLDDoS The average ratio of packets dropped to all incoming
packets from LDDoS flows

B The maximum bandwidth of the outgoing link of a
router (Mbps)

qTCP The average aggregate peak incoming rate (Mbps) of
normal TCP flows

qLDDoS The average aggregate peak incoming rate (Mbps) of
LDDoS flows

dTCP The average aggregate packet-dropping rate (Mbps) of
normal TCP flows

dLDDoS The average aggregate packet-dropping rate (Mbps) of
LDDoS flows

z The average packet size
T� The packet-dropping period of time
T The total time period
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When a network’s bandwidth is sufficiently high, pack-
ets are unlikely to be dropped in the network, and an
LDDoS attack cannot throttle normal TCP traffic either.
Therefore we focus on the scenario that a network’s band-
width is lower than users’ demands, i.e., the network is rel-
atively high loaded. This can be represented as qTCPþ
qLDDoS > B.

Consider the following scenarios. In a time period T, a
set of normal TCP flows and LDDoS attack flows with aver-
age aggregate peak incoming rates qTCP and qLDDoS go
through a router with outgoing bandwidth B. Since qTCPþ
qLDDoS > B, network congestion and packet dropping will
happen. Let T� # T be the time when the outgoing link is
in congestion and packets are dropped. We investigate
the CPR through the ratio r of dropped packets to all
incoming packets in this time period T. More specifically,
we want to establish the relationship between CPR and r.
Note that r is the packet drop ratio that can be measured
directly from network traffic.

3.3.1. Upper bound of the CPR for normal TCP flows
Although many sophisticated TCP models have been

proposed [12–15], we found that the simple model pro-
posed in this subsection is sufficient for determining the
upper bound of normal TCP flows’ CPR.
We first consider the situation when there is no LDDoS
attack flow, i.e., all flows are normal TCP flows. The situa-
tion when attack flows are present will be described next.

When there are only normal TCP flows, the traffic in
time period T can be depicted in Fig. 6, which is obtained
from our testbed experiment results. We assume that the
packet dropping is all due to network congestion. When
the outgoing link is congested, the buffers of routers are
fully filled, and qTCP is higher than B.That is the reason
for packet dropping. Thus, we have (2).

dTCP ¼ qTCP � B ð2Þ

From Fig. 6, one can see that the number of packets
dropped in time period T is (T� � dTCPÞ=z, whereas the total
number of incoming packets in T is (T� � qTCPÞ=zþ
ððT � T�Þ � BÞ=z, which gives us rTCP in (3).

Intuitionally, rTCP is the ratio of the shaded area to the
area enclosed by the Rate curve and the Time axis (from
0 to T) in Fig. 7, i.e., the area enclosed by the bold
curves.

rTCP ¼
T� � dTCP=z

T� � qTCP=zþ ðT � T�Þ � B=z

¼ T� � dTCP

T� � qTCP þ ðT � T�Þ � B
ð3Þ

According to the definition of CPR in (1), we have the
CPR of the aggregate TCP flows, hTCP , as

hTCP ¼
T� � qTCP=z

T� � qTCP=zþ ðT � T�Þ � B=z

¼ T� � qTCP

T� � qTCP þ ðT � T�Þ � B
ð4Þ

Fig. 8 graphically illustrates the calculation of hTCP in (4).
hTCP is the proportion of the shaded area to the area en-
closed by the bold curves.

Eqs. (3) and (4) yield the relationship between the CPR
of the aggregate TCP flows, hTCP , and rTCP in (5):

hTCP ¼
qTCP
dTCP
� rTCP ðdTCP > 0Þ

0 ðdTCP ¼ 0Þ

(
ð5Þ

In (5), when dTCP ¼ 0, no packet dropping is observed.
Consequently, T� ¼ 0 and hTCP ¼ 0.

From (2) and (5), we get (6):
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hTCP ¼
qTCP

qTCP � B
� rTCP ¼

1
1� B=qTCP

� rTCPðqTCP > BÞ . . .

ð6Þ

From (6), we can see that the average CPR of normal TCP
flows without attacks is determined by B=qTCP and rTCP ,
which in practice can be obtained from network traffic.
In other words, once we obtain B, qTCP and rTCP , we can
use (6) to get hTCP .In Section 5, the accuracy of (6) is vali-
dated by real network traffic.

When LDDoS attack flows are present with normal TCP
flows in the network, normal TCP flows would be forced by
the LDDoS flows to send packets only in the off-period of
the attack (when the network is not congested) or may
even stop sending. Thus the CPR of normal TCP flows in
this case is smaller than the one in the first case as shown
in (6). Therefore hTCP in (6) represents the upper bound of
the CPR of normal TCP flows.

3.3.2. Lower bound of the CPR for LDDoS flows
The lower bound of the average CPR for the aggregate

LDDoS flows should be achieved in the extreme scenarios
described in Section 3.2, i.e., when the aggregate rate of at-
tack flows is very close to the bottleneck bandwidth. Fig. 9
illustrates the scenarios where two aggregate bursts with
rate qLDDoS very close to bandwidth B were sent one after
the other with an interval between them. The network is
congested during two bursts T1 and T2. However, since
qLDDoS is close to B, the number of dropped packets may
be very small if no Active Queue Management (e.g., RED)
is being deployed. As previously described, our CPR-based
approach employs RED to actively drop packets from the
pulsing LDDoS flows. In Fig. 9, T�1 and T�2 represent
the packet-dropping period (mainly due to the RED) in
the two bursts. Note that in the figure, both T�1 and T�2 are
represented as a single period for illustrative purposes. In
fact, there may be multiple short periods distributed with-
in each burst. However, this simplification does not affect
our analysis below.

In this situation, we can get (7) and (8).

rLDDoS ¼
ðT�1 þ T�2Þ � dLDDoS=z
ðT1 þ T2Þ � qLDDoS=z

¼ ðT
�
1 þ T�2Þ � dLDDoS

ðT1 þ T2Þ � qLDDoS
ð7Þ

hLDDoS ¼
ðT�1 þ T�2Þ � qLDDoS=z
ðT1 þ T2Þ � qLDDoS=z

¼ ðT
�
1 þ T�2Þ
ðT1 þ T2Þ

ð8Þ

From (7) and (8), we can get (9).
T

T*1 T*2

B

TCP
T*=T*1+T

*
2

Peak
1

Peak
2TCP

Fig. 6. Normal TCP traffic (when there is no attack).
hLDDoS ¼
qLDDoS
dLDDoS

� rLDDoSðdLDDoS > 0Þ
0ðdLDDoS ¼ 0Þ

(
ð9Þ

In (9), when dLDDoS ¼ 0, no packet dropping is observed.
Consequently, T� ¼ 0 and hLDDoS ¼ 0. If no RED is deployed,
rLDDoS and dLDDoS could drop to 0, resulting in the CPR for the
LDDoS flow to be 0 as well. Under these conditions no at-
tack flows will be detected. However, when we turn on
RED on the router, packets will be dropped and attack
flows will be detected. rLDDoS and dLDDoS in (9) are mainly
determined by the RED mechanism in practice, as will be
described in the next section.
3.3.3. Minimum average CPR difference between TCP and
LDDoS flows

The minimum average CPR difference is obtained by
subtracting the upper bound of normal TCP flows’ average
CPR (hTCPÞ from the lower bound of the average CPR of
LDDoS flows (hLDDoSÞ. In order to calculate hTCP and hLDDoS

based on (6) and (9), several parameters need to be mea-
sured from network traffic, including B, qTCP ; rTCP;qLDDoS;

dLDDoS, and rLDDoS.
Note that qTCP and qLDDoS , which respectively represents

the average aggregate peak incoming rate of normal TCP
flows and LDDoS flows, are normally higher than B – the
bandwidth of the outgoing link of a router. They could be
measured at a router by sampling packets from its incom-
ing link before those packets enter the packet queue or be
dropped when the packet queue is full (packets that
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manage to enter the packet queue will be finally sent to the
outgoing link of the router).

We measure these parameters in three test-bed
experiments in Section 5 and show the calculation results
– he

TCP and he
LDDoS – in Table 6. According to Table 6, the min-

imum-average-CPR differences between normal TCP and
LDDoS flows (he

DIF , which equals to he
LDDoS � he

TCPÞ are 62.05%,
69.49%, and 73.46% for those three test-bed experiments,
resulting in an overall minimum-average-CPR difference
of 68.3%.

4. Simulation experiments

In this section we present our experiment results ob-
tained from ns-2 [16]. Section 4.1 tests the influence of
the RED mechanism on the approach. Section 4.2 evaluates
the performance of the CPR-based approach in the pres-
ence of different LDDoS attacks. Section 4.3 evaluates the
performance of the approach in a challenging scenario –
distinguishing LDDoS flows from short-lived HTTP flows.
Section 4.4 evaluates the trade-off between the detection
rate and the false positive rate of our CPR-based approach
that provides a quantitative guideline to determine the
CPR threshold s in practice.

Dumbbell network topologies are commonly used in
congestion control studies [17]. Fig. 10 shows the experi-
mental topology, which consists of two routers (R0, R1Þ,
30 users (User1� � �User30), 20 attackers (Attacker1� � �
Attacker20), 30 servers (Server1� � �Server30), and a victim
server (Victim Server). The link between two routers is
the bottleneck link with a bandwidth of 5 Mbps and one-
way propagation delay of 6 ms. All the other links have a
bandwidth of 10Mbps and a one-way propagation delay
of 2 ms. In this topology, Useri communicates with Serveri

(i = 1� � �30) using FTP (generated by Application/FTP using
Newreno TCP in ns-2), and 20 attackers send UDP packets
(generated by Application/Traffic/CBR in ns-2) to attack the
Victim Server. The queue size of the bottleneck link is 50.
A RED based on packet count is deployed at router R0 on
the queues of the bottleneck link. Other links use DropTail
queues. A CPR-based detection module is installed at rou-
ter R0 where most normal TCP packets are dropped when
an LDDoS attack is present. For comparison, we also install
a module based on Cumulative Amplitude Spectrum (CAS)
[18] at R0, CAS uses Discrete Fourier Transform (DFT) to
locate anomalies caused by LDDoS flows.

A set of simulations are conducted and outlined in each
of the following subsections. Each simulation lasts for
240 s. LDDoS attack traffic begins at 120 s and continues
until 220 s. In Sections 4.1, 4.2, and 4.3, normal TCP traffic
(the FTP flows from User to Server) begins at 20 s and ends
at 240 s. While in Section 4.4, it begins at a random time
between 20 s and 240 s, and ends at 240 s. In this section,
we use a 7-tuple ðn; g;m;r; Ta; Tb;RbÞ to describe the
parameters of an LDDoS attack.

4.1. RED on our approach

We first explore the influence of the RED mechanism on
normal TCP flows, LDDoS flows and their CPRs. We con-
sider an AFI LDDoS attack with parameters ðn ¼ 20; g ¼
20; m ¼ 1; r ¼ 1 s; Ta ¼ 20 s; Tb ¼ 200 ms; Rb ¼ 5 MbpsÞ.
Here Rb is chosen to be close to the bandwidth of the bot-
tleneck to represent the extreme situation to our CPR-
based approach as described in Section 3.2.

Then using the same parameters we repeat the experi-
ment two times. The first time we employ DropTail on the
bottleneck queue at router R0 and the second time we em-
ploy RED. The sampling frequency is f = 1000 Hz in both
experiments and the results are shown in Table 3.

In Table 3, qa and qna represent the average rates of nor-
mal TCP flows when there is an attack and when there is no
attack, respectively. rna represents the ratio of dropped
packets to all packets at router R0 when there is no attack
and ra is the one when there is an attack. hTCP represents
the average CPR of the normal TCP flows and hLDDoS is for
the LDDoS flows.

The results in Table 3 indicate that when there is no at-
tack RED has no obvious influence on the normal TCP flows
(qna and rna are almost the same for DropTail and RED).
However, when LDDoS attacks are present, RED signifi-
cantly improves the throughput of normal TCP. Note that
in this case, RED drops 25% packets, much more than the
7.6% from DropTail. In other words, when the aggregate
rate of the LDDoS flows is very close to the bottleneck
bandwidth of network, deploying RED is able to drop more
attack packets while increasing the throughput of the nor-
mal TCP flows. Admittedly RED might also drop more legit-
imate packets than DropTail here, however it achieves a
higher normal-TCP-flow throughput qa than DropTail.
The throughput qa of normal TCP flows is considered to
be more important than its drop ratio ra when a network
is under an LDDoS attack.



Table 3
RED vs DropTail.

AQM qna rna qa ra hTCP hLDDoS

DropTail 4.9 Mbps 10.6% 1.0 Mbps 7.6% 13.5% 14.4%
RED 4.9 Mbps 10.6% 3.1 Mbps 25.0% 12.5% 85.9%
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Table 3 shows that under DropTail, the CPR-based ap-
proach may not be able to distinguish an LDDoS attack flow
from a normal TCP flow since the two CPRs are close to one
another. However, it is also clear that the CPR-based ap-
proach under RED is able to detect an attack flow since
the two CPRs are significantly different under RED.

4.2. LDDoS attacks

In this subsection, we conduct experiments to compare
the effectiveness of our proposed CPR-based approach and
the CAS approach [18] on detecting LDDoS attack flows un-
der different categories of LDDoS attacks. Parameters of the
experiments are listed in Table 4, where for each of the
three categories (AFI, AWI and ARI), we select a range of
values for one variable and fix all the others. For example,
for the AFI LDDoS attack, we vary the attack period Ta for
each single attack flow from 20 s to 40 s. The italic values
in the table list the parameters corresponding to the aggre-
gate attack flow. They are calculated according to Table 1,
which demonstrates the relationship between the parame-
ters of each LDDoS flow (Ta; Tb, and RbÞ and their aggregate
flow (Tþa ; T

þ
b , and Rþb Þ. The results for the MI LDDoS attack

are not presented here and can be provided upon request,
but this category is just the combination of other three and
the results are quantitatively comparable.

Fig. 11 shows the results for the AFI LDDoS attack. Both
the CPR-based approach and the CAS-based approach are
quite effective for this category of the LDDoS attack. It is
worth noting that the difference between normal TCP
flows and LDDoS flows in CPR (around 0.6) is larger than
that in CAS (around 0.4). We also observe that the average
CPRs do not change too much as Ta increases. This is be-
cause the CPR is calculated based on a ratio (Eq. (1)). When
the attack period Ta increases, the attackers tend to send
fewer packets. However, the ratio of the incoming packets
in congestion to the total incoming packets measured by a
router may remain unchanged. This explains the similar
observations in Figs. 12 and 13.

Fig. 12 shows the results for the AWI LDDoS attack. Our
CPR-based approach is still effective – the difference in the
average CPR for normal TCP flows and LDDoS flows is evi-
dent. However, as Tb decreases (from 10 ms to 0.1 ms), the
average CAS of the attack flows under the CAS-based ap-
Table 4
Parameters of LDDoS attacks experiments.

Categories LDDoS attack Single flow

n g m r Ta (s) Tb

AFI 20 20 1 Ta/20 [20,40] 20
AWI 20 20 1 Tb 1 [0
ARI 20 1 20 0 1 20
proach also decreases. When Tb is around 0.5 ms, the aver-
age CAS of the normal TCP flows and the LDDoS flows is
about the same.

Fig. 13 shows the results for the ARI LDDoS attack. Sim-
ilar to previous results, our CPR-based approach is still
effective whereas the effectiveness of the CAS-based ap-
proach decreases as Rb decreases (from 0.25 Mbps to
0.01 Mbps).

These experimental results clearly demonstrate that
our CPR-based approach works well for all three categories
(AFI, AWI, and ARI) of LDDoS attacks whereas the CAS-
based approach only works for AFI LDDoS. CAS distin-
guishes LDoS flows from normal TCP flows using their
spectrum difference in low frequency band. It works well
for small-scale LDoS attacks. However, an attacker can dra-
matically reduce the burst width Tb and burst rate Rb of
each LDDoS flow by launching large-scale LDDoS attacks,
including LDoS attacks with spoofing IP addresses. The
spectrum difference in low frequency band between an
LDoS flow and a normal TCP flow decreases when Tb and
Rb of each LDDoS flow are reduced. For this reason DFT-
based approaches, such as CAS, are not effective in detect-
ing large-scale LDDoS attacks.

4.3. HTTP traffic

LDDoS flows can be short lived so that their traffic pat-
tern is similar to that of normal short-lived flows like HTTP
flows. Therefore, it is challenging to distinguish LDDoS
flows from HTTP flows. In this subsection, we evaluate
the performance of the CPR-based approach for distin-
guishing LDDoS flows from HTTP flows.

HTTP traffic in our experiment is generated by Pack-
Mime generator [19], that uses real Internet traces. The
network topology is similar to that in Fig. 10, but with only
10 users (this is due to the limit of PackMime), 10 servers,
and 10 attackers. Let Rc represent the average number of
new connections started per second in PackMime. We
investigate the relationship between Rc and the average
CPRs of normal HTTP flows and LDDoS flows. The experi-
mental results are shown in Fig. 14. One can see from the
figure that the difference between the average CPR of nor-
mal HTTP flows and that of LDDoS flows increases as
Rcincreases. Thus it is not harder but easier for our CPR-
based approach to distinguish LDDoS flows from normal
HTTP flows when there are more normal HTTP flows.

4.4. Trade-off of detection rate and false positive rate

In this subsection, we conduct experiments based on MI
LDDoS attacks to systematically understand the principle
Aggregate flow
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Fig. 11. AFI LDDoS attack experiment.
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Fig. 13. ARI LDDoS attack experiment.
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of our CPR-based approach. The parameters of the LDDoS
attack are ðn ¼ 20; g ¼ 5;m ¼ 4; Tg ; Ta; Tb;RbÞ, where
Ta 2 ½0:5;5� s, Tb 2 [25] ms, and Rb 2 ½0:75;1:5�Mbps.
It took over 36 h to conduct hundreds of experiments that
still use the dumbbell network shown in Fig. 10. In these
experiments, each user starts to send normal TCP traffic
at a random time between 20 s and 240 s, and stops send-
ing at 240 s. This simulates users’ random behavior on the
Internet.
Fig. 15a depicts the probability distribution of CPR of
normal TCP flows and LDDoS flows. Clearly, the CPRs of
these two different flows are distributed on the two ends
between 0 and 1, with a small overlap in the middle.

Fig. 15a also provides experimental guidance for choos-
ing the CPR s threshold in practice. From the figure, for any
given CPR x 2 ð0;1Þ, one can obtain the experimental like-
lihood (Hx) that the average CPR of LDDoS flows is higher
than x, which is the ratio of the red area on the right side
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Fig. 16. Topology of the test-bed.

Table 5
Setup of test-bed machines.

Entities Function OS Software

User1� � �4 Client Debian 4 FTP, SCP
Attacker1� � � 4 Attack Debian 4 TFN2K4R
Router1 & 2 Packet forwarding

Packet dumping
Debian 4 Tcpdump

Server Server Debian 4 vsftpd, ssh
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of x to the whole red area. Similarly, one can obtain the
likelihood (Lx) that the average CPR of normal TCP flows
is smaller than x. Based on this, one can choose the CPR
threshold s to be x to achieve detection rate Hx with a false
positive rate (1 � Lx). Obviously, a higher x corresponds to
a lower Hx and a higher Lx. This trade-off is indicated in the
Receiver Operating Characteristic (ROC) curve in Fig. 15b,
where each point on the ROC curve corresponds to a CPR
x 2 ð0;1Þ in Fig. 15a. For example, when x ¼ 0:63, we can
achieve a 100% detection rate with a 1.625% false positive
rate.

5. Real network and internet trace experiments

In addition to the simulation conducted using ns-2, we
set up a test-bed shown in Fig. 16 to further evaluate the
performance of the CPR-based approach. Entities in
the test-bed are all PCs, whose function, OS and installed
software are listed in Table 5. In the test-bed experiments,
normal TCP flows include short-lived TCP (e.g., SSH) and
long-lived TCP (e.g., FTP). We use these two kinds of TCP
flows to represent the mixed TCP traffic on the real net-
work. We modify the TFN2K [20], a well-known DDoS at-
tack tool, to label its attack flows by the ID field in the IP
header. We also add LDDoS attack function to the TFN2K
and correct its header-checksum algorithm. We name the
refined program as TFN2K4R (Tribe Flood Network 2000
For Research). TF2K4R is used to generate labeled LDDoS
traffic. The labels are used to verify the detection rate of
our CPR-based approach.
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In the experiments User1 and User2 use FTP (long-live
TCP flows) to upload a 32 MB file to Server while User3
and User4 use SCP (short-lived TCP flows) to transfer 50
copies of a 0.5 MB file to Server. For the attack, we fix the
first six parameters in the 7-tuple ðn; g;m;r; Ta; Tb;RbÞ
and vary the last parameter Rb. The first six parameters
are fixed as n = 4, g = 1, m = 4, r ¼ 0; Ta ¼ 1 s, and
Tb ¼ 200 ms. The setting of these fixed parameters means
that four attackers each simultaneously start an LDoS at-
tack ðTa ¼ 1 s; Tb ¼ 200 ms; Rb; s ¼ 5 sÞ. A total of three
experiments are conducted, each with a different Rb. Table
6 presents the average CPR for different flows, where hFTP is
the average CPR for long-lived FTP flows (User1 and User2),
hSCP is the average CPR for short-lived SCP flows (User3 and
User4), and hLDDoS is the average CPR for LDDoS flows.he

TCP is
the estimated average CPR of normal TCP flows calculated
using (6) and he

LDDoS is the estimated average CPR of LDDoS
flows calculated using (9). he

DIF is the estimated average CPR
difference between normal TCP flows and LDDoS flows,
which equals to he

LDDoS � he
TCP .
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Table 6
Analysis of real network experiments.

Rb

(Mbps)
hFTP

(%)
hSCP

(%)
hLDDoS

(%)
he

TCP

(%)
he

LDDoS

(%)
he

DIF

(%)

0.25 3.27 4.19 67.1 4.15 66.2 62.05
0.5 5.95 5.43 78.7 6.51 76.0 69.49
1 8.02 8.37 84.9 7.84 81.3 73.46

C. Zhang et al. / Computer Networks 56 (2012) 3417–3431 3427
Table 6 shows a clear difference between the average
CPR of LDDoS flows ðhLDDoSÞ and normal TCP flows ðhFTP

and hSCPÞ. It is also noticeable that the calculated he
TCP and

he
LDDoS are quite close to the measured CPR ðhFTP; hSCP and

hLDDoSÞ, which indicates that our analysis in Section 3.3 is
reasonable.

We further use real Internet traffic to validate our CPR-
based approach. The LBNL/ICSI Enterprise Trace [21] is col-
lected at a medium-sized enterprise site – one of the most
possible places to install our approach. We use (6) to esti-
mate the average CPR of the TCP flows contained in the
traces. The collected trace did not record dropped packets,
thus we cannot calculate the drop-packet-ratio rTCP needed
in (6). Instead, we use the out-of-sequence packets [22] to
approximate rTCP . The average CPR of the normal TCP flows
for the three traces selected from [21] are 0.93%, 0.77%, and
0.70%, respectively. This is because the traces were col-
lected when the network was not congested (the ratio of
out-of-sequence packet is very small) and their CPR values
tend to be zero. Since currently there is no LDDoS attack
trace publically available, using real attack traffic to vali-
date our CPR-based approach remains one of our future
work.

6. Discussion

Our CPR-based approach is an online algorithm that can
be easily implemented in a router because its basic mech-
anism is simply counting packets, and then calculating the
CPR based on Eq. (1), whose accuracy has been verified in
the previous section. In this section we discuss practical is-
sues related to the implementation of the CPR-based
approach.

6.1. Flow table sizes

Compared to existing approaches on detecting LDDoS
attacks [9,18,23–27], our CPR-based approach is capable
of detecting whether a flow is an attack flow or a normal
TCP flow. A flow table is required to maintain the CPR of
all the flows passing through the router where the CPR-
based approach is installed. Our CPR-based approach re-
quires 19.44 MB memory to maintain 11,341,289 flows in
an ISP trace with OC48 speed (conducted in.[28–30]) using
a bloom filter calculator [31] with the probability of false
positive of 0.001. However, the CPR-based module should
be installed on routers to which the bottleneck link, to
the potential victim, is connected. Such routers are
unlikely to be ISP routers since they are unlikely to be
bottleneck [32]. Consequently the number of flows our
CPR-based approach needs to maintain will be consider-
ably less than the one in the ISP trace leading to smaller
size memory requirements. Additionally, as will be dis-
cussed in the next subsection, Multilevel Bloom Filter tech-
niques have been proposed, which can be used to further
reduce the flow table size.

Besides the flow table, our CPR-based approach also
needs a flow size estimation, which can be achieved
through existing solutions implemented at current routers
such as Cisco NetFlow [10].

6.2. IP address spoofing

According to the way it generates spoofed source ad-
dresses, IP address spoofing can be classified into two
types: fixed spoofing and random spoofing. Fixed spoofing
generally does not cause a large-space overhead for our ap-
proach, as its source addresses are chosen from a prede-
fined list [33]. While random spoofing would drastically
increase the flow table size needed in our approach be-
cause a flow is defined based on IP addresses. There are al-
ready a number of solutions to tackle IP spoofing [34], such
as Network Ingress Filtering [35]. However, since none of
the solutions are widely deployed, we describe an alterna-
tive technique ‘‘Multilevel Bloom Filters’’ that can be inte-
grated into our approach to mitigate the large-space-
overhead problem caused by random spoofing.

Multilevel Bloom Filters (MBF) have been shown to be
an effective approach for mitigating the large-space-over-
head problem by providing a trade-off between the space
requirement and the false positive rate [36]. The MBF tech-
nique is inspired by the success of the Stochastic Fair Blue
(SFB) [36] algorithm, which is a scalable approach to record
and update the state information of flows through Multi-
level Bloom Filters. According to [36], the MBF effectively
gives the algorithm NL unique ‘‘buckets’’ using L� N num-
ber of bins (L levels with N bins in each level). That is, we
can save ð1� L� N=NLÞ � 100% of required buffer or mem-
ory space by using Multilevel Bloom Filters. For example,
we can save up to (1–2�23/232) = 91.3% of the required
memory by using a MBF with L = 2 and N = 23. In our re-
cent work.[37], we have employed MBF techniques and ob-
serve an efficient memory save using the approach with an
affordable false positive rate.

6.3. UDP traffic

Our CPR-based approach has been demonstrated to
work effectively in distinguishing normal TCP flows from
LDDoS flows. Since UDP flows normally do not reduce their
transmission rate when the network is congested, we be-
lieve that the current CPR-based approach will treat a
UDP flow as an attack flow if the UDP flow behaves non-
responsively. Further investigation on differentiating UDP
flows and attack flows, and the fairness issue will be inves-
tigated in future work.

6.4. Integration of RED

The motivation of employing the RED [11] queue man-
agement mechanism together with our approach is to im-
prove the performance of our approach in the extreme
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scenario described in Section 3.2. The the RED [11] mech-
anism enable our CPR-based approach to still be effective
in detecting LDDoS attack flows in that very extreme sce-
nario. Although the RED mechanism is found to be notably
vulnerable to LDoS attacks [37,38], it does not introduce
vulnerabilities, because our approach detects and filters at-
tack flows while simultaneously protecting RED from
being exploited.

6.5. Adversarial analysis

Finally we briefly discuss how difficult it would be for
an attacker to evade our CPR-based approach.

The various types of LDDoS attacks shown in Fig. 3 may
adopt different detection evasion strategies while causing
the same damage to normal flows. For example, AFI LDDoS
attacks could enlarge the attack period Ta for each attack
flow; AWI LDDoS attacks could narrow the attack burst
width Tb of each attack flow; ARI LDDoS attacks could re-
duce the attack burst rate Rb for every attack flow and MI
LDDoS attacks could employ one or several of the afore-
mentioned strategies. We have evaluated the performance
of the proposed approach under AFI, AWI, and ARI LDDoS
attacks in Section 4.2 and against MI LDDoS attacks in Sec-
tion 4.4. Experimental results show that the Congestion
Participation Rate (CPR) is a reliable and robust metric
for identifying LDDoS attack flows for all LDDoS attack cat-
egories listed in Fig. 3.

Generally, an attacker might want to lower the CPR va-
lue by sending fake pulses that do not cause network con-
gestion. Although fake pulses may lower the CPR value of
an LDDoS flow, as long as the flow still sends packets dur-
ing congestion periods, it will be detected since it still has a
higher CPR than a normal TCP flow.

The only way to completely evade our CPR-based detec-
tion is to send all the attack packets using the TCP conges-
tion control mechanism, in other words, to make an LDDoS
flow behave like a normal TCP flow. In this case, the LDDoS
flow hardly achieves any obvious attack effects. To sum-
marize, to the attacker, there is a trade-off between
mounting an effective attack but being detected or evading
our approach but loosing attack effectiveness.
7. Related work

LDoS attacks were proposed by Kuzmanovic [2] in 2003,
which were also called shrew [2] attacks and Pulsing DoS
(PDoS) attacks [9]. LDDoS attacks are LDoS attacks that
are launched from hosts distributed on the Internet. Since
LDoS was initially proposed in [2], a series of variants of
LDoS attacks have been discussed, including:

� Reduction of Quality (RoQ) attacks [39] that exploit the
performance vulnerability during a system’s adaptation
process. RoQ attacks could dramatically reduce the ser-
vice quality of a network element, or deprive it of a
large amount of its capacity, by only occupying a small
fraction of its capacity [39].
� LDoS attacks targeting application servers (LoRDAS

attacks) [40]. LoRDAS attacks can reduce the availability
of an application server in a controlled manner by gen-
erating pulsing service request, using only low-rate
traffic.

These LDoS variants are not directly addressable by the
CPR-based approach proposed in this paper. Adopting the
CPR-based approach to address these new variants is part
of our future work.

Presently approaches to detect and filter LDoS attacks
mainly consider two characteristics of LDoS attacks. One
is the pulsing high rate characteristic and the other is the
periodical characteristic.

Kuzmanovic [2] and Sarat [23] proposed approaches
that explore the pulsing high rate characteristic of LDoS at-
tacks. Active Queue Management (AQM) mechanisms
(such as SRED [41]) were used to mitigate LDoS attacks.
Their approaches were easy to deploy and effective at
improving the performance of normal TCP flows in the
presence of LDoS attacks. However, the adaptive mecha-
nisms in AQM algorithms are also targets of LDoS attacks.
RED-like algorithms [11,36,42], as typical representatives
of AQM algorithms, have already been found to be consid-
erably vulnerable to LDoS attacks [37,38].

Shevtekar [24] proposed an approach based on the traf-
fic anomaly of all the expired flows to detect LDoS attacks,
considering the pulsing (short-lived) characteristic of the
LDoS attacks. This approach has the capability to detect
LDoS attacks even when the source and destination IP ad-
dresses are spoofed. Unfortunately it only identifies the
presence of attacks, and not the identity of the attack
flows.

Sun’s approach [25] based on Dynamic Time Warping
(DTW) examined the periodical characteristic of LDoS at-
tacks. This approach can detect LDoS attacks that employ
variable attack pulsing periods. However, since this DTW-
based approach used the similarity between real-time
LDoS flows and the sampled LDoS flows, it is only effective
for the aggregate flow of LDDoS attacks. In other words, it
can only detect the presence of an LDDoS attack, but fails
to identify whether a given flow is an LDDoS flow or not.

Discrete Fourier Transform (DFT)-based approaches
proposed by Chen [18] and Wei [26] consider both the
periodical characteristic and the pulsing high rate charac-
teristic of LDoS attacks. They explore the difference be-
tween the traffic spectrum of attack flows and that of
normal flows. DFT-based approaches are considered to be
one of the most efficient approaches in detecting LDoS at-
tacks. However, they have difficulties in identifying single
flows in large-scale LDDoS attacks.

Luo [9] proposed an approach based on wavelet trans-
form after considering the influence of LDoS attacks on
the input TCP data traffic and output TCP ACK traffic. This
approach considers both the attack flows’ characteristics
and their influence on network traffic. An extension to this
approach is their Vanguard detection system that employs
more metrics to detect various LDoS attacks [43]. These ap-
proaches are both limited by their ability to only detect the
aggregate flow of an LDDoS attack.

The Shrew Attack Protection (SAP) mechanism.[44] mit-
igates the LDoS attack by giving priority to flows with high
packet loss rate. While SAP can maintain high throughput
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for TCP flows under certain LDoS attacks and always pre-
vent TCP sessions from closing, it has obvious performance
degradation when the attack uses the ports protected by
SAP.

The generalized entropy metric and the information
distance metric were proposed in [45] to detect LDDoS at-
tacks. This approach has advantages in terms of detection
speed and false positive rate. The impracticality of this ap-
proach is rather unfortunate with successful implementa-
tion relying on gaining full control of all the routers in
the network.

A mathematical model [46] and a defense technique
[47] were proposed for LDoS attacks targeting application
servers [40]. The model and defense technique are stimu-
lating, but more experiments and analyses are needed to
test their effectiveness for LDDoS attacks targeting TCP
traffic [2] that are studied in this paper.

In a large-scale LDDoS attack, the attack period of each
single attack flow could be very long. Its peak rate could be
very small, and the pulsing period could be very short.
Thus the average rate of every single attack flow could be
very low, even lower than a normal flow in a large-scale
LDDoS attack. This is the main reason that existing ap-
proaches can only detect the aggregate flow of an LDDoS
attack, rather than a single attack flow. The Congestion
Participation Rate (CPR)-based approach proposed in this
paper can detect single LDDoS attack flows.

In addition to existing LDoS detection approaches, flow-
level Active Queue Management (AQM) mechanisms are
also relevant to our approach as they detect and limit unre-
sponsive [48] flows, including FRED [49], RED-PD [50], SFB
[51], CHOKe[52], etc. However, most existing flow-level
AQMs aim to maintain fairness among traffic flows instead
of detecting LDDoS flows. Moreover, some of them (RED-
PD[50] and SFB[51]) have already been identified as being
vulnerable to LDoS attacks [37,38].
8. Conclusions

In this paper, we have proposed an effective and effi-
cient approach to detect and filter TCP-targeted LDDoS at-
tacks [2,9] based on a novel metric – Congestion
Participation Rate (CPR). The CPR-based approach can
achieve per-flow-level detection of LDDoS attacks. We
have analytically expressed the upper bound of the aver-
age CPR for normal TCP flows and the lower bound of the
average CPR for LDDoS flows, using several network
parameters that are directly measureable. We have imple-
mented the CPR-based approach and conducted compre-
hensive experiments in both ns-2 and test-bed. The
experiment results have demonstrated that, compared to
the existing Discrete Fourier Transform (DFT)-based ap-
proach, the CPR-based approach is effective for all LDDoS
attacks considered, while the DFT-based approach is effec-
tive for a limited set of LDDoS attack types.

We should note here that the CPR-based approach re-
quires the router where it is deployed to turn on the Ran-
dom Early Detection (RED) [11] queue management
mechanism, to work properly on an extreme scenario de-
scribed in Section 3.2. The RED mechanism is already sup-
ported by most existing routers (such as the WRED in Cisco
routers).

In the future work, we will reduce the required memory
size by implementing MBF techniques in the CPR-based
approach. Another promising direction we hope to achieve
is the deep integration of our CPR-based approach with the
RED mechanism. Lastly, the CPR metric proposed in this
paper could be applied to detect a number of variants of
LDDoS attacks, such as LDDoS attacks against application
servers [40] and LDDoS attacks against 3G/WiMax wireless
networks [53].
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