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Abstract 

This is the second in a series of papers on the Stokes flow past an arbitrary axisymmetrical body. The truncated series 
solutions of the two infinite systems of simultaneous ordinary differential equations with variable coefficients are obtained 
for an arbitrary truncation order N. Each series solution together with logarithmic terms is shown to be convergent in 
the entire physical interval of interest. By the construction of the complete solutions of the systems, the corresponding 
hydrodynamical problem formulated in terms of the stream function has been solved. As a specimen numerical application, 
the drag on a prolate spheroid is computed and compared with the exact one. Highly accurate numerical results have been 
achieved depending on the b/a ratio of the spheroid. 
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I. Introduction 

In the first paper of  this series [5] (hereafter referred to as PI), the original mathematical problem 
has been reduced to solving the two vector differential equations 

and 

N--I  
Tk, jXj (~)  = 0 (1 .1)  

j = 0  

N- - I  N--1 
-= (~ ~k,j + ~Ak, j + Ek, j )X j (~ )  (1 .2)  

j=O j = 0  
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for k = 0, 1, . . . ,  N - 1, simultaneously, where the differential operator Tk, j with matrix coefficients is 
of the form 

d 2 d 
2 Tk, j = (~ 6k, j + ~Ak, j + Bkd) ~ - Ck, j d-~ - Dkd. (1.3) 

The independent variable ~ lies in the interval ~ E [1,oo), and the vector-valued function Y(¢) in 
(1.2) obeys the boundary conditions 

Y(1) = 0 ,  r ' ( 1 )  = 0 (1.4) 

and 

lim r(¢) _ _L a2x//--~oe,, lim Y'(~) -- ~02x/~ooel. (1.5) 
¢--,oo ¢2 - -  2 ~ o o  

Notations and definitions of  all quantities in the above formulas may be found in PI. It should be 
noted that N actually tends to infinity so that we have infinite systems of  differential equations. 
However, we deal mainly with the truncated problem in which N is finite. 

There is, unfortunately, no general method of  finding closed-form solutions of such systems of 
differential equations, even for a single differential equation with variable coefficients. Therefore, it 
seems that the only efficient analytic way is to seek solutions in the form of  power series. 

The linearity of  the systems (1.1) and (1.2) is an important advantage since 2N linearly inde- 
pendent solutions of  the homogeneous system (1.1) are sure to exist from the basic theory. The 
homogeneous system of  equations corresponding to (1.2) is the same as (1.1) so that the crucial 
step lies in the problem of  the construction of the so-called fundamental matrix consisting of  those 
2N solutions. A particular solution of (1.2) may then be determined by the variation of  parameters, 
or otherwise. Hence, we will focus on finding 2N linearly independent solutions. 

However, the extension of  the classical Frobenius power series method to a system of differential 
equations is not trivial. Up to our knowledge, there is no such a procedure in the literature. In this 
work, we will proceed analogous to the procedure of obtaining power series solutions of a single 
differential equation. 

In the frame of these introductory remarks the paper is organized as follows: In Section 2, we 
examine some additional properties of the differential operator Tk, j which form a base of constructing 
convergent power series solutions of  the problem. The complete solutions of  (1.1) and (1.2) are 
presented in Sections 3 and 4, respectively. The modification of the method for centrally symmetric 
bodies is given in Section 5. Section 6 includes a numerical application, and the last section is 
devoted to a fairly detailed discussion of  the results as usual. 

2. Singularities of the system 

In the classical Frobenius theory the point about which a series solution is proposed gains a lot of  
importance. As is well known the radius of convergence of  a power series solution about a specific 
point is closely related to the distance between two adjacent singular points in the complex plane of  
the independent variable. Therefore, the validity and convergence properties of power series solutions 
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completely depends on the singularities of  the differential operator Tkd in the C-complex plane. 
In this section, we determine the location of the singular points of  the differential operator. To this 
end, we need some further investigations on the coefficient, L(~) = ~21 + ~A + B ,  of  the second-order 
derivative term in the system of  equations. 

P r o p o s i t i o n  1. The matr ices  A ,  B and  4 B  - A 2 are posi t ive  definite. 

Proof. Let Q~, 

1 
Q1 - 211all ~ a tAa,  (2.1) 

be a quadratic form which is called Rayleigh quotient. Here a is a nonzero vector with real elements 
such that its norm NaN = (at, a )  1/2 < ~ .  By the definition of the matrix A in PI, it follows that QI 
is expressible as 

f(r /)(  1 - r/2)~k(r/)~a.(r/) dr/. (2.2) ' S_' O'  - Ilall ~ ,<=os=o 

By inserting 

1 OO 

if0 ak~k(r/) = g(r/), NaN 
we obtain that 

i Q, = 9z(r / ) f (r / ) (1  - r/2) dr/ 
1 

(2.3) 

(2.4) 

which is always positive since the integrand is zero at only the points r /=  - 1 , 0  and 1 and otherwise 
positive. Therefore A is positive-definite. 

By defining another quadratic form, Q2 say, 

1 
02 = ~ - ~  a t B a  (2.5) 

it is similarly observed that 

Q2 = {fz(r/) + (1 - r/2)[f ' (r/)]z}gz(r/)(1 - qZ)dr/, (2.6) 
l 

and hence B is also positive definite since Q2 > 0. 
Finally, we find the integral form of  the Rayleigh quotient Of A 2. If  

1 
Q3 - 411all ~ a tA2a, (2.7) 

then it is written as 

= f ( n ) o ( r / ) f ( t ) a ( t ) ( 1  - r/2)(1 - t2)fgm(r/)%,(t) dr/dt. (2.8) 
m = 0  1 1 
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If we. now consider the expansion of  the product f ( x )g(x )  
O<3 

f ( x )9(x )  = ~ hkNk(x), xE[--1,  1] 
k=0 

in terms of  Gegenbauer polynomials, Q3 is expressible in the form 

f 
l 

Q3 = f2(t/)92(r/)(1 - t/2) dr/• 
1 

(2.9) 

(2.10) 

Therefore, the quadratic form, Q4 say, 

1 
Q4 - -  4llall z at( 4B - A2)a (2.11) 

related to the matrix 4 B -  A 2 takes the form 

Q4 = Qz - Q3 (2.12) 

which is, subtracting (2.10) from (2.6), equivalent to /1 
Q4 = [(1 - tl2)f'(tl)O(tl)] 2 dr/. (2.13) 

--1 

This completes the proof of  the positive definiteness of  the matrix 4 B -  A 2, since Q4 is obviously 
a positive quantity. [] 

Proposition 2. The roots o f  the determinantal equation det L(~) = 0 have negative real parts. 

Proof. If detL(~) =- 0, the nullspace of  the matrix 

L(~) -- ~2! + ~h + B (2.14) 

is not empty, and there exists some nonzero vectors tin satisfiying the equation 

L(~)u = 0 (2.15) 

at some specific points, ~=~n say, in the i-complex plane. Premultiplying (2.15) by (1/llu.llZ)u t, it 
is found that 

1 utnAun + t 4 B - A  u,u~ A u n = 0 .  (2.16) 
+ 211Unll-------7 ~ Un 

Here, although the vectors u, are restricted as the homogeneous solutions of  L(~), the collection of  
them is a subset of  the set of  arbitrary vectors which are denoted by a in Proposition 1. So, from 
(2.1), we may write 

1 
t A u .  r . ,  (2.17) 

2NUnlI2 Un = 

where r, is a positive number. On the other hand, a real-symmetric matrix P for which pz = p is 
said to be a projection [3]. In (2.16), it is easy to deduce that the matrix u.utJI lu . l l  2 is a projection. 
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ImF 

Physical interval 

Re.F 

Fig. 1. Location of  the singular points. 

Therefore, (2.11) and the property that the norm of  a projection operator is bounded by one imply 
the inequality 

1 2 S n ~ ~ u t , (4B  --  h2)U, > 0, (2.18) 
'+llU.II 

where the substitution 

s, 411u.ll-----Tu'. 4 B - A ~ A  u, (2.19) 

has been made. Hence, (2.16) can be expressed as a quadratic equation 

2 = 0 (2.20) (C q-rn)2 + S. 

having complex roots, C,, 

Cn = --rn "~ is,, n = 0, 1,. . .  

with negative real parts, where i denotes the complex unit number v/L-] -. [] 

(2.21) 

The last proposition has very important consequences about the convergence properties of  power 
series solutions. Since r, and Sn in (2.21) depend on the shape function, finiteness of  body implies 
that 

V/r2max + sEa x < OO (2.22) 

and that all singular points can be enclosed in a circle with finite radius. In such a case a serial 
expansion at infinity converges in a domain outside of the smallest circle surrounding the singularities 
according to Abel's theorem [2]. 

It is very easy to show that "the point at infinity" is a regular singular point of our system of  
equations. Therefore, series solutions can be constructed in terms of the inverse powers of  C - C0, if 
we choose a circle centered at an appropriate point C0 on the negative part of  the real axis which 
excludes the point C = 1 (Fig. 1). Hence, these types of solutions are valid and convergent in the 
whole physical domain of  (E  [1, cxz). 
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We complete this section by introducing a very useful relation 

( n + l ) A n , n _ l + C n , , _ l = 0 ,  n =  1,2 . . . .  

between subdiagonal entries of  the matrices A and C which was shown in [4]. 

(2.23) 

3. Solution of  the homogeneous system of equations 

Regular singularity of  infinity implies that any truncated solution vector Xk(¢) of  order N may 
be proposed to be of  the form 

o~  

Xk(~) = ~ bk,,(~ - ~o) -i-rk, (3.1) 
i=0 

where the subscript k indicates the kth solution, and we expect totally 2N linearly independentsolu- 
tions. For convenience, we introduce the shifted variable x such that 

x =  ¢ + ~ o ,  x E [Xo, c~) (3.2) 

where x0 = 1 + G0, and G0 is replaced by -G0 so that henceforth G0 is regarded to be a positive 
parameter. In terms of  the new variable x, the mathematical problem introduced in Section 1 is 
completely unaltered in form; only the original matrices A, B and E are redefined as 

A ~ -2~01 + A, (3.3a) 

B --, ¢021 - ¢0A + B, (3.3b) 

and 

e - - ,  - + e ,  (3.3c) 

respectively. It is important to note that we have used the same symbols here for symbol economiza- 
tion. Obviously, for G0 = 0 we have the original matrices defined previously. Otherwise, the matrices 
A, B and E, from now on, will denote the matrices defined in (3.3) involving G0 dependent extra 
terms. 

Now the solution (3.1) takes the form 

o o  

Xk(x)  = ~ bk ix -'-r~, (3.4) 
i = 0  
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and since it is convergent by Proposition 2, X~(x) and Xff(x)  may be determined by term-by-term 
differentiation. Substitution of  Xk(x)  and its derivatives into Eq. (1.1) leads to 

{[(i + rk)(i + rk + 1)I - D]bk, i + (i + rk -- 1)[((i + rk)A + C)bk,,-1 
i=0 

+ (i + rk - 2)Bbk, i-2]}x -i-rk = O, (3.5) 

from which the three-term recurrence equations 

[(i + rk)(i + rk + 1 ) l - D ] b k ,  i + (i + rk - 1){[(i + rk)A + C]bk,,-1 

+ (i + r~ - 2)Bbk, i-2} = 0 (3.6) 

are obtained for the calculation of the coefficient vectors bk, i, for i~>0 where bk.-i and bk,-2 are 
both identically zero by definition. By a direct analogy, we identify the case of i = 0 as the "indicial 
equation" which determines the possible values of  the rk in the proposed solution (3.1). Therefore, 
the indicial equation is of  the form 

r2 + r k - 2  0 .. .  0 ) 
0 r ~ + r t  - -6  . . .  0 
. . . .  bk, o = O. 

0 0 . . .  r ~ + r k - N 2 - N  

(3.7) 

By choosing the bk,0 parallel to the unit vector ek, 2N roots of  the indicial equation have been found 
that 

rk = k +  1, k = 0 , 1 , . . . , N -  1 (3.8) 

and 

r k = - - ( k + 2 ) ,  k - - - - 0 , 1 , . . . , N - 1 .  (3.9) 

As is known, these roots are called the "exponents of  the singularity". Note that equation (3.4) gives 
2N linearly independent series solutions corresponding to each rk determined by (3.8) and (3.9) if 
the coefficient vector bk, i is obtained successfully from the recurrence equation (3.6). However, if 
bk,/ cannot be determined from the recurrence equation (3.6) for any rk, the corresponding series is 
then not a solution of  the homogeneous system. This is probably the case due to the singularities of  
the diagonal matrix [(i + rk)(i + rk + 1 ) I  - D]. In such a case, we have to introduce some additional 
series multiplying by certain powers of  In(x) according to the theory of  differential equations. This 
can be seen clearly from solving recurrence equations (3.6) for the bk, i. Let us first consider the 
equation with rk = k + 1. For i = 0 

[(k + 1)(k + 2)1 - D]bk, o = 0 (3.10) 
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in which the matrix has zero entries on the kth row. The equation has been satisfied by the choice 
of  b~,0 = coek, where Co is an arbitrary constant. However, for i = 1, we have the singular equation 

[(k + 2)(k + 3)1 - D]bk, l + (k + 1)[(k + 2)A + C]bk, o = 0 (3.11) 

since the (k + 1 )th row of  [(k + 2)(k + 3)I  - D] is identically zero. The equation has a solution for 
bk,1 if and only if the (k + 1)th row of  [(k + 2)A + C]bk, o is zero. Replacing bk,0 by coek, bk, l can 
be determined subject to the condition that 

(k + 2)Ak+l,k + Ck+l,k = 0. (3.12) 

It is obvious from (2.23) that (3.12) is fulfilled so that (3.11) is solvable, and bk,1 has the form 

bk,1 = cobk I + clek+l (3.13) 

where the components ~k,1,l, 0 ~< l ~ < N -  1, of  the vector bk,1 are found to be 

(k + l)[(k + 2)At, k + Cl,k] 
~k,l,t = (3.14) 

(k + 2)(k + 3) - (l + 1)(l + 2) 

for l # k + l  and 

~k,l,k+l = 0. (3.15) 

for l = k + 1. In Eq. (3.13) c~ is a constant resulting from the equality of  0 = 0 on the (k + 1)th 
row. Now, for i = 2, we obtain the equation 

[(k + 3)(k + 4 ) I  - D]bk,2 + (k + 2){[(k + 3)A + C]bk,1 + (k + 1)Bbk,0} = 0. (3.16) 

The singularity of  [(k + 3)(k + 4 ) / -  D] is at the (k + 2)th row, so b~,2 can be determined if and 
only if the (k + 2)th row of  

{[(k + 3)A + C]bk,1 + (k + 1)Bbk,0} (3.17) 

is identically zero. If we use (2.23) for n = k + 2  together with (3.13)-(3.15), we can see that (3.17) 
becomes 

{[(k + 3)A + C]~k,~}k+2 + (k + 1)Bk+2,k, (3.18) 

where the subscript k + 2 denotes (k + 2)th row of  vector in { }. Analytical and numerical 
inspections show that (3.18) is never zero, i.e., the vector coefficient bk,2 is undetermined. There- 
fore, the bk,; cannot be determined for i~>2 unless k = N -  1 or k = N - 2 .  Actually, for the 
two roots, rN-~ = N and rN-2 = N -  1, bN-~,i and bN-2,i are solvable from (3.6) so that the 
corresponding series yield the first two linearly independent solutions of  the homogeneous sys- 
tem. 

On the other hand, for the set of  roots rk = - ( k  + 2), it is not difficult to see that corresponding 
to the root r0 = - 2 ,  it is always possible to obtain a solution which is a polynomial of  degree 2. 
Also for the root r~ = - 3 ,  a polynomial of  degree 3 may be obtained. But for the other roots we 
have the same problem of singularities as in the set of  roots rk = k + 1. 

Further inspections indicate that for each of the two set of  roots rk = k + 1 and rk ----- - ( k  + 2), 
the solutions may be separated into two groups, namely, the groups of even and odd solutions, 
respectively. To see these solutions in detail, we first consider the set of  roots rk = k + 1. 
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3.1. The f irst  set o f  exponents  o f  the singularity, rk = k + 1 

Above considerations clarify that there exists only two solutions in the form of  pure power series. 
By defining the vector function 

OG 

17m(X) ~_ ~ h -i-N+m o.m,i x , m = 0, 1 , . . . ,N  - 1, (3.19) 
i=0 

the correct form of the other solutions containing logarithmic terms can be expressed into two groups 
which are [ 1 ] 

n 

Uzn(X) = ~ yE,,EkFzk(x)ln"-k(X) (3.20) 
k=O 

for n = 0 , 1  . . . .  , l ( N - 2 )  i f N  is even, or for n = 0 , 1  . . . .  , ½ ( N -  1) i f N  is odd, and 

n 

U2,+1 (x) = ~ YZ,+l,Zk+l FEk+l (x) lnn-k(x) (3.21 ) 
k=O 

for n = 0 ,  1,. . . ,  I ( N -  2) if N is even, or for n = 0 ,  1,. . . ,  l ( N -  3) if N is odd. Obviously, u0(x)= 
Fo(x) corresponds to pure series solution XN_1(x) with hO, i ---- bN-l,i. Similarly, the first term of the 
odd group solutions u l ( x ) - - F l ( X )  stands for the other series solution XN-2(X) with hl,i - bN-2,i. 
Hence, we define N solutions by these two groups of functions. 

The coefficients Yn,~ to be determined, are introduced to simplify the calculations in the recursion 
formulas. In order to show that (3.20) and (3.21) are solutions of the homogeneous system of 
equations, it is enough to show that (3.20) is a solution. Then, in a similar fashion, by replacing 
every 2n by 2n + 1 and every 2k by 2k + 1, it is seen that (3.21) will also be a solution. Now 
substitution of u2,(x), U~n(X ) and u~'n(x) into (1.1), we have 

k: 0{ ~)2n,2kTF2k(X)q_(n__k..t_l)[72n,2k_2L(x)(2F~2(x) F2k-2(X))x 2 

F2k-4(X)" }lnn_k(X) -Yz~,2k-2C F2k-2(x) + (n - k + 2)72n,2k_4L(x ) X2 
X 

= O. (3.22) 

Inserting the F,n(X) and their derivatives into (3.22), and collecting coefficients of  X -i-N+2k ln"-k(x), 
we obtain 

~(Y2n,2k[(m0(mo + 1)I  - D)h2k, i 
k=0 i=0 

+ (mo - 1)((moA + C)h2k, i_ 1 -~- (mo - 2)Bh2~,i-2)] 

- no[yz~,2k-2((2m0 + 1 )h2k-2,i-2 "-]- ((2m0 - 1)A + C)h2k-2,i-3 
+ (2m0 - 3)Bh2k-2,i-4) - (no + 1 )'~2n,2k_4(h2k_4,i_4' 
J r - A h 2 k _ 4 , i _  5 "-~ Bh2k_4,i_6)]}x -i-N+2k lnn-k(x) = 0 (3.23) 
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in which the integers mo and no are 

mo = i + N  - 2k, no = n - k + 1. (3.24) 

Since the x -i-N+2k ln"-k(x) are linearly independent, the coefficient term in Eq. (3.23) must vanish 
so that the hzk,~ satisfy the recurrence equations 

[mo(mo + 1)I - D]h2,,i + (mo - 1)[(moA + C)h2k, i-1 + (mo - 2)Bh2k, i-2] 

= dzn,2k-2{(2mo + 1)h2k-2,i-2 + [(2m0 - 1)A + C]h2k_2,i_ 3 

+ (2m0 - 3)Bh2k-2,i-4 - d2n, Ek-4(h2k-4,i-4 + AhEk-4,i-5 .Jr_ BhEk-4,i-6)} (3.25) 

in which 

h - j - t  - h-j , t  - hj ,- t  - 0 (3.26) 

for any positive integers j and l, where we have defined a new parameter d2.,2k such that 

( n - k + l )  
d2,,2k-2 = 72.,2k-2, y.,, = 1. (3.27) 

~2n,2k 

Even though the recurrence equations (3.25) seems to make sense only for k/>2, it is in fact valid 
for all k~>0 since all the vectors hj, l of  at least one negative subscript are zero by (3.26). When 
k = 0 the right-hand side of (3.25) becomes zero making the equation a homogeneous one 

[(i + N ) ( i  + N + 1)I  - D]ho,~ + (i + N - 1){[(i + N ) A  + C]ho, i-1 + (i + N - 2)Bh0,;_2} = 0 

(3.28) 

which is completely equivalent to solving (3.6) for bN_l, i. For i = 0 

[N(N + 1)I - D]h0,0 = 0 (3.29) 

is trivially solvable by 

ho, o = eu-1. (3.30) 

Note that Eq. (3.30) does not contain an arbitrary constant because such a constant is considered 
implicitly in d2n,2k-2. On the other hand, for i t> 1, the matrix [(i + N ) ( i  + N + 1 ) I  - D] becomes 
nonsingular. Thus, by the formula 

ho, i = - ( i  + N - 1 )[(i + N ) ( i  + N + 1 ) I  - D] -1 {[ ( /+  N ) A  + C]ho, i-1 + (i + N - 2)Bho, i_2} 

(3.31) 

the vector coefficients ho, i have been completely determined. It is not a problem to find the inverse 
of the matrix appearing in (3.31) since [(i + N ) ( i  + N + 1 ) I -  D] is diagonal. 

The vectors h2k, i are obtained for all k and i by solving (3.25) recursively for k ~> 1 with initial 
vectors ho, i. It is significant to indicate that singularities appearing in each step have been removed 
by means of an appropriate selection of  the parameter dEn,Ek in a systematic way. The details of  the 
calculations can be found in [1]. Therefore N linearly independent solutions u2~(x) and UZn+l(X) of 
the homogeneous system of  differential equations have been determined. 
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3.2. The second set o f  exponents  o f  the singularity, rk = - ( k  + 2) 

Corresponding to the roots rk = - ( k  + 2), we have the recurrence relation 

[(i - k - 2)(i - k - 1)I  - D]bk, i + (i - k - 3){[(i - k - 2)A + C]bk, i-1 

+ (i - k - 4)Bbk,,_2} = 0 (3.32) 

which is solvable for i = 0 and 1. For i >_-2, however, the coefficient vectors cannot be determined 
unless k = 0 and 1. Actually, for k = 0 or r0 = - 2 ,  a polynomial o f  the second degree bo, o x2 q- 
bo, lX + bo,2 may be seen to be a solution of  the homogeneous system of  equations. Similarly, 
a polynomial solution of  the third degree can be obtained for r~ = - 3 .  The construction of  the other 
solutions, however, is much more complicated comparing with that determined by the first set of  
exponents of  the singularity. This is due to the fact that the matrix [ ( i -  k -  2 ) ( i -  k -  1 ) I -  D] in 
(3.32) becomes singular in each step o f  i = 0 ,  1 . . . . .  k; and nonsingular for i = k + 1 and i = k + 2, 
and then singular again in each step o f  i = k + 3, k + 4 , . . . ,  N + k + 2. To remove the singularities 
in steps o f  i = 0, 1 . . . .  , k, a logarithmic structure in the solution vectors similar to the previous 
ones is necessary. But for i = k + 3, k + 4 . . . .  ,N  + k + 2 additional logarithmic terms should be 
introduced. Therefore, we again split these N linearly independent solutions into two groups, define 
a vector-valued function 

o~  
x--i+m+2 Gm(x) = Y']~gm, i , m = 0, 1 , . . . , N  - 1 (3.33) 

i=O 

and express the solutions in the forms 

Vz,(X) = ~ fl2n,2kG2k(x) lnn-~(x) + Zo(X) + Z2(x) (3.34) 
k=O 

for n . . . . .  0,1, .  ½ ( N -  2) i f N  is even, or for n=O, 1 . . . .  , ½ ( N -  1) i f N  is odd, and 

V2n+I(X) ~ n-k = ~2n+l,2k+lG2k+l(x)ln (X) + Zl(X) + Z3(X) (3.35) 
k=0 

for n = 0 , 1 , . . . ,  ½(N - 2) i f  N is even, or for n = 0,1 . . . .  , ½ ( N - 3 )  i f  N is odd. The addi- 
tional logarithmic structures in the solutions have been presented by means of  the functions z , (x) ,  
n = 0, 1,2, 3, the definitions o f  which are 

and 

l0 

zo(x) : E 
k=O m=O 

n lo 
z , (x)  = 

k=O m=O 

z2(x) = E 
k=0 m=O 

]~2n,2k,2rn+joF2m+jo(X ) ln l°-m+n-k (X ), 

lo-m+n--k I.t2n+l,2k+l,2m+joF2m+jo(X) In (x), 

#2,,2k, Zm+j. Fzm+j, (X) In l'-m+"-k(x) 

(3.36) 

(3.37) 

(3.38) 

II 
z3(x) E ,,-m+.-k : ~2n+l,2k+l,2m+j, F2m+jl ( x )  In ( x ) ,  

k=O m=O 
(3.39) 
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respectively. It should be noted that the integers I0, Ii, j0 and j l  are  chosen in such a way that 
10 = l~ = ½(N - 2) , j0  = 1 andj~ = 0 i f N  is even; otherwise, lo --=- ½(N - 1), Ii = ½(N - 3) , j0  = 0 
and j l  = 1. Here we have the relations 210 + j 0  = N - 1 and 211 + j l  = N - 2. The parameters fln, k 
and #,,k,m will be determined so as to remove the singularities appearing in the recurrence relations 
of  the vector coefficients gm, i in (3.33). 

We are not going to give further details about the calculations of  those solutions in order not 
to overfill the content of  the paper with a material of  lengthy mathematical formulas anymore. The 
readers may refer [1] for details. 

Now we have the occasion to define two N × N fundamental matrices l~l(x) and g22(x), 

 l(x) = [uo(x) ,u l (x) , . . . ,uN_l (x) ]  (3.40) 

and 

~-~2(X) = lifo(X), VI(X) , , - , ,  VN--I(X)] (3.41) 

having the vector solutions Un(X) and v,(x) as their columns, respectively. Therefore, the comple- 
mentary solution Xc(x) of  the homogeneous system of  differential equations (1.1) can be written in 
a more neatly form 

Xc(x ) = ~'~1(X)Cl --~ ~2(X)C2 (3.42) 

where cl and c2 are some arbitrary constant vectors of  order N. 

4. Solution of the inhomogeneous system of equations 

In this section, we consider the inhomogeneous equation (1.2) in vector form 

L(x) Y"(x) - CY' (x )  - D Y(x)  = S(x)Xc(x), (4.1) 

where 

S(x)  = ~(xZI  + xA + E). (4.2) 

It is obvious that the complementary solution corresponding to (4.1) is given by 

Yc(x) = ~-~l(X)C3 -~- ~'-~2(x)c4, (4.3) 

where 121(x) and g22(x) are fundamental matrices defined in the previous section while c3 and Ca are 
additional arbitrary constant vectors of  order N. In order to obtain the general solution it remains 
only to find a particular solution of  (4.1). To this end, it is preferable to reduce its order from 
second to first order. Introducing the 2N × 1 vector-valued function W(x)  of  the form 

Y(x) ] 
W ( x ) =  Y'(x) J'  (4.4) 

the inhomogeneous equation (4.1) can be converted to a 2N × 2N system of  first-order ordinary 
differential equations 

W'(x)  = M ( x ) W ( x )  + R(x), (4.5) 
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where the 2N x 2N matrix M(x)  and the 2N x 1 vector R(x) are defined, respectively, as 

I0 ,] M ( x ) =  L_I(x) o L_I(x) C , R ( x ) =  L_~(x)S(x)Xc(x ) 

It is clear that the 2N x 2N matrix 

~l(x) ~2(x) ] 
U(x) = ff~tl(X ) ~r~;(x) j  = [ U 0 ( x ) ,  U I ( X ) , . . .  , U2N_I(X)] ( 4 . 7 )  

is the fundamental matrix solution of the homogeneous equation 

W'(x) = M(x) W(x) (4.8) 

corresponding to (4.5). Moreover, we shall use the notion of the homogeneous system adjoint to 
(4.8) which is given by 

Z'(x)  = - M t Z ( x ) .  (4.9) 

It is well known that if Zk(x) is a solution of the adjoint system, the relation between Zk(x) and 
Uj(x) is 

t Z~ ( x ) U j( x ) = U] ( x ) Zk ( x ) = constant (4.10) 

for all x. Let Q(x) be the fundamental matrix solution of  the adjoint system (4.9) defined by 

Q(x) = [Z0(x), Z l (x ) , . . . ,  Z2N-I(X)], (4.1 1 ) 

then 

(4.6) 

for all x, where cg is a 2N x 2N constant matrix. 
By the variation of parameters a particular solution of  (4.5) can be written in the form 

Wp(x) = U(x) U-~(t)R(t)dt  (4.13) 

where U-l (x )  is the inverse of  (4.7). To find the inverse of a matrix with variable entries by 
conventional techniques is not practical which is rather difficult even for small orders. Therefore, in 
order to evaluate the inverse of  the fundamental matrix U(x) we employ the relation given by (4.12). 
More specifically, 

U-I(x)  = ~-1  Qt(x ) 

so that the particular solution (4.13) takes the form 

Wp(X) = U(x )~  -1 Qt(t)R(t)dt. (4.15) 

(4.14) 

Qt(x)U(x) = ~ (4.12) 
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Now the problem is to determine the fundamental matrix Q(x) of the adjoint system. A careful 
inspection shows that the 2N vector solutions in (4.11) are of the form 

[ D-1Hk(x) 1 Zk(x) = -L(x)H~(x) ' (4.16) 

where the vector-valued functions H~(x) have to be the 2N solutions of the homogeneous equation 

L(x)H"(x) + (2xI + A - C)H'(x) - DH(x) = 0. (4.17) 

The method of the previous section is also applicable to solve this equation [1]. Therefore, we may 
define the two fundamental matrices 123(x) and g24(x) of order N, and express the fundamental 
matrix Q(x) of order 2N of the adjoint system (4.9) in the form 

-/)-lg-]3(X) D-lg']4(X) ] (4.18) 
Q ( x ) =  L(x)12,3(x) L(x)12](x) j . 

The constant matrix c~ in (4.12) may be taken as 

[ (~l r-~2 ] (4.19) 

where the matrices c~l, ~2, c~3 and cg4 are expressible as 

q~l gvd; (x )O- l~ '~ l (x )  t , , = - [~3(x)] L(x)~ l(x), (4.20a) 

c~2 [-~;(x)O-l~,-22(x)  t ! ! = - [g23(x)] L(x)g22(x), (4.20b) 

(1~3 ~¢~4(X)D--I~'~I(X) t , ' = - [124(x)] L(x)121(x), (4.20c) 

and 

c~4 = g2t4(x )D- l122(x ) - [124(x ) ]'L(x )g2'2(x ) (4.20d) 

respectively. The inner product in (4.12) is valid for all x so that letting x tends to infinity implies 
that 

~l = 0 (4.21 ) 

since the terms which have negative powers of x vanish. Therefore, the constant matrix in (4.19) 
simplifies into 

[ 0  ~2] (4.22) 

whose inverse is of the form 

eft-1 = [~5 eft7 0 cff6] (4.23) 

in which the matrices cffs, cff 6 and c~7 are new matrices related to the matrices eft2, eft3 and eft4. 
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Now the complete solution of Eq. (4.5) is given by 

' x 

Y'(x) ] ~[ [ [12t3(t)]'S(t)Xc(t)] dt}. [g24(t)],S(t)Xc(t ) (4.24) 

Using the boundary conditions Y(xo) = Y'(xo) = 0, we obtain that 

c3 - c4 = 0. (4.25) 

Hence, the general solution Yg(x) of (4.1) takes the form 

Yg(X) = - {~1(x)~5 + ~2(x)~7} [~t3(t)]'S(t)Xc(t)dt 

-I2,(x g2 t)]'S(t)Xc(t)dt. (4.26) 

It is clear that Xc(x) in (4.26) contains the arbitrary vectors c~ and c2 which are to be determined 
according to the boundary conditions in (1.5). If we carefully study the leading powers of x dividing 
by x 2 as x ~ ~ ,  the existence of the limit in (1.5a) then implies that c2 must vanish. Therefore, 
taking c2 as the zero vector reduces the general solution to 

Yg(x) = - [~l(X)~5 + ~2(x)~fT] [~t3(t)]'S(t)~l(t)dt 

- ~ , (x)~6  ~[~4(t)]'S(t)~,(t)dt} Cl (4.27) 

in which the only unkown is the arbitrary constant vector c~. Now employing the boundary condition 
(1.5b) yields an algebraic system of equations of order N for the determination of el.  Hence, we 
obtain the required solution of the inhomogeneous system of differential equations (1.2) or (4.1) 
satisfying the boundary conditions. 

5. Modification of the method for centrally symmetric bodies 

In this section we provide certain remarks about the modification of the method presented in PI 
for bodies which are centrally symmetric. For this particular case, the odd indexed terms in the 
function f ( r / )  are identically zero so that we may redefine the shape function, r = F(q), 

F(q) = c~0[1 + f ( r / ) ] ,  f(tl) ~- ~O~i?] 2i (5.1) 
i=1 

to contain only the even powers of q. Such a symmetry of the shape function implies that ~(¢, i/) 
and ~u(~,~/) cannot include Gegenbauer polynomials with odd indices in their series expansions. 
Thus, 

OO 

• n) = (1 - n2)Exk( ) 2 (n) ( 5 . 2 )  
k=0 
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oo 

~ ( ~ , , )  = (1 - ~ ) ~  5(¢)fc2k(q). 
k=O 

Consequently, we obtain the truncated systems of equations similar to (1.1) and (1.2), 

and 

N e m l  

E rkj(¢)xj(~) = o 
j = 0  

= ~ o E ( ~ 6 k ,  j +  + , 
j=0 j=0 

The matrix operator Tk, j is formally the same as the original one, 

~ ~ d 2 ~ d ~ 

Tkd = (~26k, j' + ~2,,j + Bk, j ) ~ -  5 -- C,,s~- ~ - D,,j, 

however, symmetric matrices A, B and /~  have the new definitions 

Aj, k = 2E~if2i,2j,2k, 
i=1 

Bj, k = E EO{mO{n {(1 - 4nm) f2n+2m,2j,2k q- 4nmf2n+2m-2,2j,2k} 
m = l n = l  

and 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

&k -- £ £  m J2.+2m,2,,2k, (5.9) 
m = l n = l  

respectively; the skew-symmetric matrix ~7 is 

c . =  (j-k)J2,.2.k-U+ 
L ,=1 V ~ 2 j  

/~k , } +(k + 1)V~f2i_, ,2j ,  zk_l (5.10) 

and the diagonal matrix b takes the form 

/)j,k = (2k + 1)(2k + 2)cSj, k, (5.11) 

where indices of the above matrices differ from 0 to Ne - 1. 
The boundary conditions, on the other hand, remain unchanged. Complementary solution of  (5.4) 

can be obtained by a procedure which is slightly different from that of (1.1). Another remark is that 
we find also the series representation of  the particular solution in this case of centrally symmetric 
bodies [1]. 
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6. A specimen numerical application 

In this section, we apply our method to a particular body, namely the prolate spheroid, in order 
to compute hydrodynamic drag on the body. O f  course, the determination o f  the stream function 
~P allows us to obtain any o f  hydrodynamic quantities such as velocity or vorticity distribution. 
However ,  drag on a body is a much more typical quantity which gives a better idea about the 
precision o f  the present method. To this end, we use our N-truncated solutions to calculate the drag 
on prolate spheroids with various b/a ratios, in a systematic way. Numerical  results are reported in 
Tables 1-7. 

From a computational point o f  view, our method mainly requires the shape parameters o f  the body 
as its input data. Obviously, the equation o f  the body under consideration should be expressed in 
such a way that it is compatible with our proposed shape function. Therefore, for a prolate spheroid 
the formulas (4.53) and (4.54) in PI are sufficient to this end. 

Furthermore, the order N o f  the simultaneous vector differential equation (1.1) and (1.2), or, in 
other words, the dimension N of  the truncated vector subspace is an important parameter o f  the 
method. The series parts in the solution o f  the simultaneous system o f  differential equations and the 
shape function in the form of  a power series are also truncated, and the truncation orders are denoted 
by L and M,  respectively. On the other hand, in the particular case o f  a centrally symmetric body like 
a prolate spheroid, the aforementioned truncation orders are denoted by Are, Le and Me, respectively, 

Table 1 
Drag calculations for the spheroid with b/a = 0.95, as a 
function of the mmcation order N, where ~0 = 0 

N M L Drag 

1 24 12 0.993 898 819 162 897 
3 24 14 0.993 425 823 878 110 
5 24 20 0.993 424 774 381 214 
7 24 25 0.993 424 772 612 751 
9 24 40 0.993 424 772 609 707 

11 26 60 0.993 424 772 

Table 2 
Drag calculations for the spheroid with b/a = 0.95, as a 
function of the truncation order N~, where ~0 = 0 

Ne Me Le Drag 

1 12 13 0.993 898 819 162 897 
2 12 17 0.993 425 823 878 110 
3 12 20 0.993 424 774 381 214 
4 12 25 0.993 424 772 612 751 
5 12 26 0.993 424 772 609 702 
6 13 29 0.993 424 772 609 696 

Dexact = 0.993 424 772 609 696 



250 H. Taceli, R. Eid/Journal of Computational and Applied Mathematics 78 (1997) 233-254 

Table 3 
Accurate drag calculations for the spheroid with b/a = 0.95, as a function of the 
truncation order N~, where 40 = 0 

N~ L~ Drag 

1 13 0.993 9 
2 18 0.993 425 8 
3 20 0.993 424 774 4 
4 24 0.993 424 772 613 
5 26 0.993 424 772 609 701 
6 28 0.993 424 772 609 696 101 
7 35 0.993 424 772 609 696 091 706 
8 40 0.993 424 772 609 696 091 680 361 
9 43 0.993 424 772 609 696 091 680 301 916 

10 50 0.993 424 772 609 696 091 680 301 777 1 
11 60 0.993 424 772 609 696 091 680 301 776 818 

Dexact = 0.993 424 772 609 696 091 680 301 776 817 

Table 4 
Accurate drag calculations for the spheroid with b/a = 0.90, as a function of the 
trunc~ion order Are, where ~0 = 0 

Ne Le Drag 

1 20 0.989 
2 26 0.987 08 
3 35 0.987 065 14 
4 43 0.987 065 015 
5 51 0.987 065 014 
6 55 0.987 065 014 
7 60 0.987 065 014 
8 64 0.987 065 014 
9 70 0.987 065 014 

10 75 0.987 065 014 
11 80 0.987 065 014 
12 85 0.987 065 014 
13 90 0.987 065 014 
14 130 0.987 065 014 

Oexact = 0.987 065 014 

41 
404 3 
404 223 93 
404 223 923 4 
404 223 917 895 
404 223 917 841 03 
404 223 917 840 488 
404 223 917 840 482 83 
404 223 917 840 482 768 2 
404 223 917 840 482 767 620 

404 223 917 840 482 767 614 

1 in the  n u m e r i c a l  tables .  It is s ign i f ican t  to no te  that  Are = l ( N  + 1) and  Me = g M ,  w h i c h  c lar i f ies  

the  c o m p u t a t i o n a l  a d v a n t a g e  o f  i n t roduc ing  the m o d i f i e d  m e t h o d  for  cen t r a l ly  s y m m e t r i c  bod ies .  

The  so f tware  is wr i t t en  in a m a c h i n e - i n d e p e n d e n t  manner .  The  Fo r t r an  p r o g r a m  is e x e c u t e d  in 

quad rup l e  p r e c i s i o n  a r i thmet i c  on the I B M - 3 0 7 0  c o m p u t e r  s y s t e m  for  large  va lue s  o f  N and  Are. 

H o w e v e r ,  w e  e m p l o y e d  a PC for  r e l a t i ve ly  smal l  t runca t ion  orders .  

In  Tab l e s  1 and  2, the  first s ix succes s ive  a p p r o x i m a t i o n s  to the  d rag  o f  a p ro la t e  sphero id ,  

h a v i n g  the ra t io  b/a = 0.95, are  g iven .  In  the  former ,  the  m e t h o d  w h i c h  is v a l i d  for  an a rb i t r a ry  

body ,  cen t r a l ly  s y m m e t r i c  o r  not,  is used .  In  the  lat ter ,  h o w e v e r ,  w e  c o n s i d e r  the  m o d i f i e d  m e t h o d  

w h i c h  is i n t roduced  for  a cen t r a l l y  s y m m e t r i c  b o d y ,  w h e r e  bo th  h o m o g e n e o u s  and  pa r t i cu l a r  so lu t ions  
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Table 5 
Accurate drag calculations for the spheroid with b/a = 0.75, as a function of the 
truncation order No, where ~0 = 0 

Ne Le Drag 

1 30 0.982 
2 42 0.970 8 
3 45 0.969 977 
4 55 0.969 934 5 
5 62 0.969 932 31 
6 70 0.969 932 185 
7 75 0.969 932 177 2 
8 85 0.969 932 176 71 
9 102 0.969 932 176 678 

10 120 0.969 932 176 675 31 
11 135 0.969 932 176 675 139 
12 150 0.969 932 176 675 126 7 
13 164 0.969 932 176 675 125 86 
14 170 0.969 932 176 675 125 797 

De×act = 0.969 932 176 675 125 793 

Table 6 
Drag calculations for the spheroid with b/a = 0.60, as a function 
of the truncation order N~ 

Ne ~o L¢ Drag 

251 

1 0.1 10 0.988 
2 0.3 15 0.964 7 
3 0.3 26 0.959 04 
4 0.4 29 0.958 15 
5 0.5 33 0.958 01 
6 0.6 43 0.957 992 
7 0.7 58 0.957 988 1 
8 0.7 68 0.957 987 39 
9 0.7 86 0.957 987 258 

10 0.8 99 0.957 987 233 
11 0.8 110 0.957 987 227 9 
12 0.8 125 0.957 987 226 9 
13 1.0 180 0.957 987 226 71 

Dexact = 0.957 987 226 68 

are in the form of  infinite power series. In these tables the convergence parameter 40, the number 
of terms taken from the series appearing in the solution of  the system and the number of  shape 
parameters are also included. We observe by means of  numerical experiments that the parameter 40 
may be taken as zero for prolate spheroids having b/a ratios grater than 0.60. 

In Tables 3-7, by using the modified method, highly accurate drag calculations for various pro- 
late spheroids have been presented as a function of  Are. The tables also include Le and 40 values 
corresponding to each Are. Particular comments on the numerical tables are given in the next section. 
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Table 7 
Drag calculations for the spheroid with b/a = 0.50, as a function 
of  the tnmcation order Ne 

Are G0 Le Drag 

1 0.1 12 0.999 6 
2 0.5 18 0.974 1 
3 0.9 24 0.960 59 
4 1.0 35 0.956 87 
5 1.1 47 0.955 915 
6 1.I 59 0.955 666 
7 1.3 77 0.955 597 
8 1.3 95 0.955 577 4 
9 1.3 113 0.955 571 4 

10 1.3 135 0.955 569 5 
11 1.3 151 0.955 568 89 
12 1.3 163 0.955 568 69 
13 1.3 187 0.955 568 63 

Dexact = 0.955 568 60 

7. Discussion and conclusion 

In this paper the general solution of a simultaneous system of vector differential equations, driven 
by Ta~eli and Demiralp [5] in their methodological work concerning the hydrodynamical problem of 
determining Stokes flow past an arbitrary axisymmetric body, has been studied. This linear double 
infinite system of the second order ordinary differential equations with variable coefficients has 
been truncated to a finite system of order N. The first system is homogeneous while the second is 
inhomogeneous with the same homogeneous part as the first system. The solution of the first system 
appears as a factor on the right-hand side of the second system. 

Since the truncated system being considered does not admit solutions in closed form, except for 
N = 1 [5], we obtain its series solutions. For this purpose, the classical Frobenius method used 
frequently for a single differential equation has been extended to, determining series solutions of 
systems of equations which have been confronted in our study. Such an extension, in fact, is not 
very trivial, especially in the case of expanding the solution around a regular singular point. As 
is well-known, in such a situation solutions may involve certain logarithmic terms. Therefore, the 
determination of the correct form of the combination of logarithms and infinite power series be- 
comes a difficult and a more elaborate task as the order N of the system increases. From this 
point of view, the systematic procedure given in Section 3 may be considered as a significant 
contribution to problems of constructing Frobenius type series solutions for systems of differential 
equations. 

In PI by Ta~eli and Demiralp, the methodology has been developed for an arbitrary axisymmetrical 
body which is not  necessarily centrally symmetric. In the case of a centrally symmetric body, 
however, the shape function does not contain the odd powers of the transformed variable r/. As 
a result of this fact the Gegenbauer polynomials with odd indices in the expansion of the stream 
function do not make any contributions to the hydrodynamical quantities. For this reason, a modified 
method for such bodies is also introduced. More specifically, we consider the expansion o f  the stream 
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function in terms of  the ~2k(?]) polynomials corresponding to the problem of a centrally symmetric 
body, the boundary shape of  which has a power series representation in terms of  r/2. 

A particular solution to the original system of  equations has been obtained by the use of  the 
variation of parameters. In the modified method, alternatively, the series expansion of a particular 
solution of  the resulting vector differential equations is constructed which seems to be computationally 
more useful. Indeed, numerical results presented in Table 1 and 2 support this argument. 

The comparison of  the two methods in connection with Tables 1 and 2, including drag calculations 
for the spheroid with b/a = 0.95, shows that the first five consecutive approximations are in a very 
good agreement. For N = 11 (Table 1 ), however, the general method starts to lose its efficiency due 
to the numerical difficulties in the calculation of  the inverse of the fundamental matrix which appears 
in the particular solution. Note that the corresponding truncation order to N - -  11 is Ne = 6 in the 
modified method, and successive approximations are still converging to the exact drag value (Table 
2). Furthermore, it is shown from Table 3 that the drag of the same body is calculated accurate to 30 
digits by systematically increasing Are and Le values. It is seen that a trtmcated system of  equations 
of  order 11, Are = 11, and taking 60 terms, L e ---- 60, from the series solutions are sufficient to obtain 
such an extreme accuracy. The general method fails to yield the same accuracy since the inverse 
of  the fundamental matrix becomes an ill-conditioned one as N increases. Actually, we observe that 
the algorithm is very sensitive to error accumulations when N = 11 which explains the numerical 
problems. 

We have seen from Tables 3-7 that the rate of convergence of the modified method falls off 
rapidly as b/a ratio of the prolate spheroid decreases. More specifically, the required truncation 
order Are and the number of  terms Le taken from infinite series solutions are 11 and 60, respectively, 
in order to reach 30 digits accuracy for the spheroid with b/a = 0.95, whereas nearly the same 
accuracy requires Ne--- 14 truncation order and L , - -  130 terms for the spheroid with b/a -- 0.90. 
Furthermore, as b/a ratio decreases the number of terms L~ in the series solutions rapidly increases. 
To deal with a problem in which the series are beyond a certain size results in an accuracy loss in 
drag calculations owing to the error accumulations. Therefore, we can present approximately 18, 11 
and eight significant figures for the drag values of the prolate spheroids with b/a ratios 0.75, 0.60 
and 0.50, respectively. 

On the other hand, the very important parameter of  the method is the convergence parameter 30. 
This parameter stands for the center of  the circle in which all the singularities of  the differential 
operator Ti, j are located. By numerical experiments we have shown that 30 is zero for a spheroid 
having the ratio greater than 0.60. However, for b/a <<. 0.60, it is given as a function of  N~ in Tables 
6 and 7. This is normally the case since the singularities of  the system of  equations completely 
depend on the body in question and the truncation order Are. Moreover, the convergence parameter 
should have an optimum value depending on the body shape and Are. As a matter of  fact, if 30 is 
not large enough the circle centered at 30 may include a part of  the physical interval C E [1, co) 
to  cover all of  the singularities of  the system. On the contrary, if C0 is larger than an optimum 
value we consider a very large circle unnecessarily. In such cases, the series solutions in terms of 
the inverse powers of (C + C0) are not guaranteed to converge, and we may face some divergence 
problems, especially, at the point C = 1. 

A specimen calculation of  the optimum 30 value is reported in Table 8. Here, to obtain the same 
drag values of the prolate spheroid with b/a = 0.50 in the truncated subspace Are ---- 3, the numbers of  
terms L~ should be taken from the series solutions are presented for various C0 values. It is shown 
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Table 8 
Convergence rate of the method 
as a function of the parameter 
~0 for the spheriod with b/a = 
0.50, where Ne = 3 

~0 Le 

0.0 divergent 
0.3 244 
0.4 143 
0.5 112 
0.6 90 
0.7 84 
0.9 71 
1.0 69 
1.1 65 
1.2 68 
1.3 71 
1.6 84 
2.0 103 
2.5 126 
4.0 196 
5.0 243 

that the series are divergent at least numerically when 40 = 0. For 40 = 0.3 we find the target 
by taking Le = 244. Le values then decrease, and we attain the optimum value o f  the convergence 
parameter around 40 = 1.1. As a consequence Table 8 supports exactly our intuition about ~0. 

It should be noted that the high accuracy o f  the drag presented in the numerical tables is un- 
necessary in practice. However,  such a numerical implementation o f  the method is o f  importance 
in understanding the capability and the limitations o f  the present method. Furthermore, we have 
shown numerically the convergence o f  the method which was discussed in the last section o f  PI. 
The method will be more generally applicable to arbitrary bodies i f  we get rid o f  some numerical 
difficulties mentioned above. 
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