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This paper contains a brief account on complex planar splines which are 
complex valued functions defined piecewise on a grid. For noncontinuous (so called 
nonconforming) splines the problem of the placement of knots at which these 
splines are required to be continuous is investigated. It is shown that this problem 
reduces to finding complex Chebyshev polynomials under the additional 
requirement that the zeros of the polynomials are on the boundary of the 
corresponding domains. It is proved that the zeros of a generalized Chebyshev 
polynomial are in the convex hull of the domain on which the Chebyshev 
polynomials are defined. Some open problems are stated. A numerical and 
graphical display for the optimal location of three and six points on certain 
triangles is provided. 

1. INTRODUCTION 

To motivate this study, a brief account of the so-called complex planar 
splines is given. These splines were introduced by Opfer and Puri [ 151 and 
were further studied by Opfer and Schober [ 161. The problem of the optimal 
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choice of interpolating knots is closely related to the concept of noncon- 
forming complex planar splines. 

Let J D c C -+ C be a continuous mapping, where D is the closure of 
some bounded region in C. If/is complicated, then it is desirable to find an 
approximation for f which is easier to compute thanf itself. Since f is intrin- 
sically connected to its domain of definition D, D in general needs to be 
approximated by a simpler set, too. 

One approach to this problem is to replace D by a union of suitable 
simple configuration like triangles or rectangles and to approximate f 
piecewise by simple elements. 

Since triangles play a special role when dividing up a given two- 
dimensional set like D, the study here will be restricted to triangular grids. 

It is explained in Opfer and Puri [ 151 that the continuity requirement 
which is imposed upon the complex planar splines has the consequence that 
holomorphic elements like polynomials cannot be used reasonably. 

However, if one requires continuity of the approximation off only in the 
interior points and in certain selected points (knots) of the boundary of the 
triangles, one obtains approximations which (in analogy to the real case) 
should be called nonconforming complex planar splines. 

The advantage of relaxing the continuity requirement is that one can use 
holomorphic functions like complex polynomials as elements. 

In this connection the question of placing the knots in a certain optimal 
fashion when using polynomials on triangles is of much interest and is the 
subject of study in this paper. In a forthcoming paper by Opfer and Werner 
some further properties of nonconforming elements will be exhibited. 

To illustrate the problem suppose we take a triangular grid and define a 
quadratic complex polynomial in each triangle of that grid. Suppose further 
that we require that the resulting function is either continuous in all grid- 
points (i.e., vertices of the triangles) or continuous in all the midpoints of the 
edges. The question is which of the two requirements is favorable. 

To illustrate further we interpolate f (z) = exp(z) at the vertices (case 1) or 
at the midpoints (case 2) of the triangle 

T=((x,y)EIR’:jpl~x~~} (1.1) 

by a complex polynomial of degree two and suppose we denote the resulting 
polynomials by p, and p2 respectively. We now compare the uniform errors 
on T and we obtain after some numerical calculations that 

Ilf - P, Iloo = 0.0984, Ilf-Pzll, =0.1106 (1.2) 

which indicates that case 1 is preferable to case 2. 
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2. COMPLEX CHEBYSHEV POLYNOMIALS AND GENERALIZATIONS 

Let 17, denote the set of all polynomials with complex coefftcients and 
degree at most n E iNo = {0, l,...}. Let l7: denote the subset of l7, consisting 
of all the polynomials with real coefficients. 

If p E I7, interpolates a given functionf: D + C at points zo, z, ,..., z, E D, 
where D is a compact set in C, then the error takes the form 

r(z) =f(Z) -P(z) =f[Z09 z, 3*am9 z,Y z] [i (z - zj) (2.1) 
j == 0 

(Davis [ 7, p. 641) regardless of the assumptions on f since expression (2.1) 
can be derived by purely algebraic means. Here the expression 
fIz0.z I ,..., znr z] is defined in terms of divided differences. Implicity we 
always assume that D contains sufftciently many points; in this context at 
least n + 2. 

However, the assumptions imposed on f play an important role in deriving 
equivalent expressions for f[z,, z ,,..., z,, z] or estimates for 
l.flZ,~ ZI .**-, znr ZII. 

For a selection of these expressions and estimates see Davis [7, pp. 67-69) 
or Abramowitz and Stegun [ 1, Chap. 251. 

For any zo, z, ,..., z,, z E C we set 

c = (zo 3 Zl ,‘**1 ZJ (2.2) 

and 

w(z, () = [\ (z - Zj). 
j -7 0 

A uniformly best choice of zo, z, ,.... z, in (2.1) which is independent off 
is apparently made if we require that 

is as small as possible by appropriate choice of [. Since 

W(Z,i)=zn+l +p(z), PELT,, nE NO, (2.4) 

the problem of minimizing ]]w(., [)]I, may be regarded as a linear complex 
approximation problem. n,, is a Haar space of finite dimension n + 1 which 
implies that the stated approximation problem is uniquely soluble (cf. 
Meinardus [ 14, p. 161). It also implies that the zeros of the best o(z, [) are 
unique. For each fixed n E No, the polynomial 

fn+,(Z)=Zn+’ +#(z), zED, p”~I7, V-5) 
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defined by 

llt,+,ll, < Ilz”+’ +PIlm for all p E l7, (2.6) 

wil be called the Chebysheu polynomial (or for short T-polynomial) of degree 
)I + 1 with respect to D, and the corresponding zeros the Chebyshev points of 
D. In addition, we define 

t,(z) = 1 for all z E D. (2.7) 

The ordinary T-polynomials usually called T, (cf. Rivlin [17]) are 
obtained by letting D = [-1, 11. However note that usually the 
normalization T, = fn/]] t,II, implying ]I T,, Ija, = 1 is used. 

Interestingly the ordinary T-polynomials for D = [- 1, 1 ] are at the same 
time the T-polynomials for all confocal ellipses with foci -1 and + 1. This 
was already observed by Faber [S]. 

Since the T-polynomials are essentially uneffected by the linear transfor- 
mation of D, 

w(z) = az + b, zED, a#O, a,bEC, (2.8) 

one can compute the nth degree T-polynomial of w(D) if the nth degree T- 
polynomial of D is known. We note that the inverse of w in (2.8) is given by 
z(w) = (w - b)/a. 

To be precise let 
n-1 

f,(Z) = z” + s cfj,j 

j=o 
(2.9) 

be the nth T-polynomial of any compact nonempty set D c C and D = w(D). 
Then 

= (w - b)” t c ajan--‘(w - by’ 
j=O 

(2.10) 

is the T-polynomial of degree n with respect to 0’. We also note that T- 
polynomials with respect to D are in IT:, n E iN, provided D is symmetric 
with respect to the real axis (cf. Meinardus [ 14, p. 28)). 

EXAMPLE 2.1. Let E be any ellipse in the plane with foci f,,f2 E C, 
f, #fi. Then 

w(z) = [(fi -fJ z + vi +f,)lP 
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maps D = [-I, I] onto the segment [f, J,] in C. Let 

fJz)=z" + cf,-*z"-2 + a,-qZn-4 + -*- + an-Z,n,*,Zn-2'n'2' (2.11) 

be the (ordinary) T-polynomial for D = [-1, 1 ] where the coefficients a,-,j, 
j = 1, 2,..., [n/2] are given up to a factor 2”-’ in Abramowitz and Stegun 
[ 1, see 22.3.61. 

Explicit numbers for all n < 20 are given by Luke [ 13, p. 4581. Then the 
T-polynomials of E are given explicitly by 

f,(Z)= (Z -‘*r + :,I a,-2j (+)“(z -li+!5)n~*‘~ (2.17) 

It should be noticed that for ellipses E the polynomials given in (2.12) are at 
the same time also the so called Faber polynomials of E (cf. Gaier 
[ 10, P. 471). 

EXAMPLE 2.2. Define 

D= (zEC:Iz-2)< l}U{zEC:(z+2~< l}. 

In this case the first degree T-polynomial with respect to D is 

f,(Z) = z, z ED, 

(2.13) 

(2.14) 

and the only zero of t, is at z0 = 0 CZ D. However 

t2(z) = z2 - 5, zED (2.15) 

has its zeros zO=-fi, z, = + fi in D. It may be remarked that 
applications do occur where the approximation problems are treated on 
unconnected sets (cf. de Boor and Rice [6] and Fuchs [9]). A slightly more 
general problem than stated so far is to find a vector 
[=(zo,z I,..., z,)EC”+’ of knots such that for a given vector 
v= (vo, VI,..., v,) E rNm+’ of natural numbers the uniform norm of a 
polynomial w, defined by 

W,.(Z, LJ = fi (z - zj)L'i3 z ED, 
j=O 

is minimal. This allows for multiple knots in the mentioned interpolation 
problem. 

The problem of minimizing the norm of w, by appropriate choice of the 
knots C was recently treated for the real case by Bojanov [4] under the 
additional requirement that the knots are pairwise distinct. Related problems 
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for the real case were investigated by Boyanov [5], Barrar and Loeb [2], and 
Barrar, Loeb and Werner [3]. 

A polynomial w,, with the described minimal property will be called 
generalized ChebJlshev polynomial or generalized T-polynomial. 

By the following example it is shown that in the complex case we cannot 
require the knots to be pairwise distinct, or in other words the requirement of 
distinct knots would imply that a generalized T-polynomial will not 
necessarily exist. 

EXAMPLE 2.3. The uniform norm of the polynomial w defined by 

4-G C) = (z - z& - z, ). zED= (z:Iz(< 1) 

is minima1 if and only if z,, = zI = 0. The proof is elementary and omitted. 

THEOREM 2.1. Let u = (uO, u,,..., v,,) E N” +’ be given. Then there exists 
a vector [= (To, 2, ,..., f,) E C ‘+’ such that 

for all [E 6”+ ‘. 

If H is the convex hull of D in rC, then ii E H for all j = 0, l,..., n. 

Proof. Let 0 = (0,O ,..., 0) E Cnt’. The set 

is nonempty and compact in 6”” and ]]w,(., [)I], as a function of [ E C”” 
is continuous on K. Therefore a vector [which minimizes ]]w,.(., [)I], exists. 
Thus the existence of generalized T-polynomials is established. To show that 
all Tj E H, j = 0, l,..., n, we assume the contrary, namely, that one of the fi, 
say i, is outside of H. Since H is compact and convex there is a uniquely 
determined point u E H with 

O<Ji,-ul<lf,-z( for all z E H. 

FIG. I. Zero zO outside of H. 
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In addition, since H can be separated strictly from (.?,,} (see Fig. 1) we have 

,2-u, < ,z-20, for all z E H. (2.17) 

Let 

w,.(z, Lfj = fi (z - Tj)“J, 
j=O 

then there is a I” E D with 

aTp,“!l!“-q’q3 (1 ,z-sjp for all z E D. (2.18) 
j-0 

By letting z = z” in (2.18) we obtain 

l,5f-ulL’o fi I~-~jl~i.>(~-~olL’o fi I,j-fj/“i 
j=l j=l 

which contradicts (2.17) in case ny=:, ) z” - ijl”i > 0. If, however, 
nJ!=, II” - fJ”j = 0, then w,, vanishes identically, which implies 
D = (~0, z, v..., zn}, a case which we have excluded. 

If all vi, j = 0, l,..., n, are the same, then the problem of finding the 
corresponding generalized T-polynomial may be regarded as finding a best 
approximation of z” + ’ by polynomials of degree n or less. This problem has 
a unique solution. However, in general the unicity problem is open here. 

It is easy to see that t,(z) = zn is the nth T-polynomial with respect to all 
disks centered at zero. An even sharper result, given by Geiger and Opfer 
[7], says that t,(z) = z” is the nth T-polynomial with respect to any sector. 

S”= (zEC:lzl,< l,/argzl<a}, (2.19) 

provided a > nx/(n + 1). In example 2.2 we have also observed that f,(z) = z 
is the T-polynomial for the unconnected set D defined in (2.13). Also the 
ordinary T-polynomials are T-polynomials on a whole family of sets (see 
Example 2.1). 

On the other hand, Rivlin [ 181 established that any manic polynomial 
(i.e., the coefficient of the highest power is one) is the T-polynomial for a 
certain set D. 

It seems therefore natural to pose the following: 

Problem 2.1. Let t,(z) = z” + p(z), p E II,-, , n E N be any given 
polynomial. 



96 OPFER AND PlJRl 

(A) Characterize (or determine explicitly) those compact sets D c @ 
for which I,, is the nth T-polynomial with respect to D. 

(B) Problem A with additional restriction that D is convex. 
(C) Consider problems A and B for the special case when p E ZZr-, . 

As mentioned earlier a compact set D which is symmetric with respect to 
the real axis yields real T-polynomials. To see that the converse is not true, 
assume that t,(z) = z” is the T-polynomial with respect to a compact set D 
which is not a disk centered at zero. Examples of such a set D are the sectors 
S” introduced in (2.19) for a E [nn/(n + l), rr] (cf. Geiger and Opfer [ 111). 

An application of formula (2.10) shows that fn(z) = zn is also the T- 
polynomial for e”D for all angles 4 E [0, 2~1. Since D is not a disk, the sets 
eimD cannot be symmetric with respect to the real axis for all 4. 

DEFINITION 2.1. Let t,(z) = zn + P(Z), p E n,-, , n E N, be a manic 
polynomial. All compact sets D c C which have the property that t, is the 
T-polynomial with respect to D will be called Chebyshev sets with respect to 
t ,,. The family of all Chebyshev sets with respect to t, will be called 
Chebyshev cluster with respect to t,. 

It seems even difficult to determine the Chebyshev cluster 57 with respect 
to t,(z) = z. Clearly all compact sets D which are symmetric with respect to 
the real and imaginary axes belong to $7’. Also all sectors S” E % for 
a E (42, n). It may be noted that S” is not convex for CI E (42, n). If 
D E g;‘, then a . D E P for all a E 6, a # 0. 

Let f: D c C --$ C be any continuous function. Then 

E,= P E D: If(z)I = Ilfll,l (2.20) 

will be called the set of extremal points off: The number and distribution of 
extremal points is studied by Grothkopf and Opfer [ 121 for T-polynomials 
on sector S”. 

3. OPTIMAL KNOTS ON TRIANGLES 

There are two aspects of choosing knots. One is the purely interpolating 
aspect to reduce the error in (2.1) by an appropriate choice of the zeros of 
w(z, [) as defined in (2.2). 

The other aspect is relevant if we want to use the knots for constructing 
splines. In that case we have to impose the additional side condition that the 
knots are on the boundary of the corresponding meshes. 

If, for example, the underlying set D is a triangle, then Theorem 2.1 
implies that all zeros of the corresponding T-polynomial with respect to D 
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are in D. However, the zeros will usually not be on the boundary 8D of D as 
can be seen in the following: 

EXAMPLE 3.1. Let D be any triangle. The Iirst degree T-polynomial 
t,(z) = z - a is obtained either by letting a be the center of the circumscribed 
circle about D (in case D is acute, i.e., all angles are less or equal to 77/2), or 
by letting a be the midpoint of the longest side of D (in case D is obtuse). It 
may also be noted that in the acute case t, has three extremal points, namely. 
the vertices of D, whereas in the obtuse case there are only two extremal 
points, namely, the endpoints of the longest side of D. 

If we want to construct splines on triangular grids as explained earlier, 
then the knots must be on the edges of the corresponding triangles which 
imposes additional side conditions. Usually the desired number of knots is a 
multiple of three since we want to place the same number of knots on each 
edge of the triangles. 

Let us now study the problem for the triangles 

D = convex hull(0, e’“, e-‘“}, a E [O, n/2]. (3.1) 

Let t,(z) = z - a be the first T-polynomial with respect to D”. Then 

a = l/(2 cos a) 

= cos u 

for 0” < a < 4Y 
(3.2) 

for 45” < a < 90”, 

II T, IL = l/(2 ~0s a> for 0” < a < 45” 

= sin a for 45O < a < 90”. 
(3.3) 

It may be noted that the coefficient a as a function of a is not differen- 
tiable at a = 45”, whereas )I T, /Ii0 is differentiable in (0, n/2) with respect to 
a. 

If we call r,” the nth T-polynomial with respect to D” for a E [0, n/2], 
then tc may be regarded as a homotopy from tl to t,““. The T-polynomial tz 
is the usual T-polynomial (up to normalization) on [0, l] and tz’2 is the T- 
polynomial with resfiect to the segment [-i, i] which can easily be deter- 
mined from the ordinary T-polynomials on [ - 1, 1 ] just by changing all coef- 
ficients into their absolute values. This follows from (2.10). 

Thus the number of extremal points of l,, will start with n + 1 for a = 0 
and will end with the same number for a = n/2. Even for a small n explicit 
expressions for the nth T-polynomials t, with respect to a are difficult to 
obtain. The additional requirement that the zeros of t, should be on c?D~ 
makes the problem even more complicated. 

Thus we have made an attempt to find the optimal knots for the 
interesting cases n = 3 and n = 6 by numerical means. The T-polynomials 
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were computed by a method which is described in Grothkopf and Opfer 
[ 121. Optimal knots on the boundary BD (which are not necessarily unique) 
were computed by a direct search method. 

We selected the values a = lY, 30”, 45”, 60”, including the equilateral and 
the rectangular isosceles triangle. The results are displayed in Figs. 2 and 3. 

FIG. 4. “Union Jack” triangulation, optimal knots coincide on common edges of 
neighboring triangles 

FIG. 5. Triangulation with noncoinciding optimal knots. 



COMPLEX CHEBYSHEV POLYNOMIALS 101 

If one wants to use the optimal knots in the grids, then the so called 
“Union Jack” triangulation of a rectangular grid of congruent rectangles is 
well suited (see Fig. 4). 

On the other hand, an unsymmetric triangulation of the same rectangular 
grid cannot be used since, on a common edge of two triangles, the optimal 
knots will, in general, not coincide (see Fig. 5). 
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