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Abstract—A finite-difference scheme is proposed for the one-dimensional time-dependent Schré-
dinger equation. We introduce an artificial boundary condition to reduce the original problem into
an initial-boundary value problem in a finite-computational domain, and then construct a finite-
difference scheme by the method of reduction of order to solve this reduced problem. This scheme
has been proved to be uniquely solvable, unconditionally stable, and convergent. Some numerical
examples are given to show the effectiveness of the scheme. (© 2005 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

The Schrodinger equation has been widely used in various application areas, e.g., quantum me-
chanics, optics, seismology, and plasma physics. Here, we consider the following initial value
problem of the Schrédinger equation on R! x [0, 71,
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iy (z,t) = —%z/;m @, t) +V (@) ¢(n,t), V(z,t) e R x(0,T], (1.1)
¥ (2,0) = y° (z), Vze R, (1.2)

where V(z,t) is the potential (real valued) function given on R! x (0,7, 4%(z) is the complex
initial data given on R!, and the unknown function ¥(z,t) is a complex valued function on
R x [0,T}.

In order to solve such whole-space problems by numerical methods, one has to consider a finite
subdomain and impose an artificial boundary condition. When the solution of this new problem
is equal to the restriction to the subdomain of the original solution, we say that the artificial
boundary condition is transparent.

Suppose that V(z,t) is constant outside bounded domain (0,1) x (0,7] with

V+, 15.7)<+OO, O<tST,
V(zt) = (1.3)
V., —co<z<0, 0<t<T,
and ¢°(z) is compact with
Supp {¥°} C [0,1]. (1.4)

Then, we can introduce two artificial boundaries 'y = {z = 0,0 <t < T} and 'y = {z = 1,0 <
t < T}, which divide R! x (0,7 into three parts,

Q- ={(z,t)| ~0o<z<0,0<t<T},
Qr={(z,t) |1 <z < Fo0, 0<t < T},
Qe={(z,t) |0<z <], 0<t <T}.

The finite subdomain €, is our computational domain.
Transparent boundary conditions for this problem were independently derived by several au-
thors from various application fields [1-3]. They are nonlocal in ¢ and read,

s (0,8) = \F —i(m/4) p— iVt / L_._J_V_Ad,\ onT (1.5)
T dt \/’X ' » '
2 B 1/) zV+A
- ~z(1r/4) Vet 2 ) )
e (L,1) V= o / —————————\/_.,X d\, onl (1.6)

A simple calculation shows that (1.5),(1.6) are equivalent to the impedance boundary condi-
tions (3],

—iV_A
P (0,t) = —= €' /% / ¥= (0, ’\)e dX, on Ty, (1.7)

. 1 t— ) —iViA
Loy = gt [ el dx,
Y (1,1) f—'27re A \/X

Therefore, the initial-boundary value problem to approximate is now given by

on I'1. (1.8)

iy (2, 1) = _%wm (2,8) + V (2,9 (,1), V (1) € Q. (1.9)
_ )2 mitnsa) iVt & L (0,\) V>
e (0,8) = \/; G | e 0<t<T, (L10)
2 _. _ P (1,A) efV+*
_ A i) iVt YA
P (1,8) = \ﬂe e dt/o T da, 0<t<T, (1.11)
¥ (2,0) =9° (z), 0<z<1l.  (L12)

This initial-boundary value problem is well-posed and its solution coincides with the solution
of the original problem (1.1),(1.2) restricted to Qe [4].
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The main difficulty of the numerical approximation is linked to the boundary conditions
(1.10),(1.11) with the mildly singular convolution kernels, their numerical discretization is far
from trivial. In fact, the discretization scheme for the analytic transparent boundary condi-
tions often destroys the unconditional stability of the underlying Crank-Nicolson scheme used for
the Schrédinger equation and makes the overall numerical scheme only conditional stable [1,5].
Moreover, the numerical reflections at the artificial boundaries may appear.

So far, several approaches have been proposed. Instead of using a discretization of the analytic
transparent boundary conditions like (1.10),(1.11), Arnold and Ehrhard [6-9)], first discretized
the Schrédinger equation on the whole space by using a Crank-Nicolson scheme and then derived
an exact discrete transparent boundary condition directly from the fully discretized Schrodinger
equation. The resulting scheme is unconditionally stable and no numerical reflection appears at
the boundaries. However, it seems quite difficult to extend this approach to the finite-element
method, which has advantages for the problems on two-dimensional domains with curved bound-
aries. Similarly, Schmidt et al. [10-12], first discretized the Schrodinger equation in ¢ direction
and then derived the associated nonlocal transparent boundary condition from the semidiscretized
Schradinger equation. This approach has been proved to be efficient and the fully discrete scheme
is unconditionally stable when finite-element methods are employed for the spatial discretization.
However, this approach can induce small numerical reflections at the boundaries. Mayfield [5] and
Baskakov and Popov [1] proposed the most straightforward approaches. They used the Crank-
Nicolson scheme for the Schrodinger equation (1.9) and the left-point rectangular quadrature rule
or a higher-order quadrature rule to discretize the equivalent boundary conditions (1.7),(1.8) or
the conditions (1.10),(1.11). Unfortunately, the resulting schemes have been proved to be condi-
tionally stable and the strong numerical reflections can be induced. Recently, Antoine et al. [4]
and Friese et al. [13] also proposed some unconditionally stable discretization schemes for the
transparent boundary condition. In this paper, we also propose a straightforward approach.
First, we apply the so-called method of reduction of order to construct a finite-difference scheme
for the Schrédinger equation (1.9) and then directly discretize the analytic transparent boundary
conditions (1.10),(1.11). Our discretized boundary conditions are exact in spatial direction, the
overall scheme has been proved to be unconditionally stable and convergent, and our numerical
examples show that almost no numerical reflections are observed at the boundaries. Moreover,
this discretization method for the transparent boundary condition can be easily extended to
finite-element approximation [14].

The organization of this paper is the following. In Section 2, we derive our fully discrete finite-
difference schemes, the stability and convergence are analyzed in Section 3. Section 4 is devoted
to presentation of numerical examples to show the effectiveness of our approach.

2. THE CONSTRUCTION OF THE DIFFERENCE SCHEME

Let Q = (0,1). For a nonnegative integer k and real number p, 1 < p < oo, we use W*2(Q)
to denote the Sobolev space and LP(0,T; X) to denote the space of all L? integrable functions
w(-,t) from [0, 7] into the Banach space X, and define [15]

83
WEP(0,T;X) = {w € L?(0,T;X); (’91:) € LP(0,T;X), V0<s < k},
with norm,
k T K] P i/p

*w

lwllwes@orx) = (Z/ o ) , 1<p <o,

s=0 0 X
lw}| = max ow
Wk (0,T5X) — 0<s<k ots x|l £ 0,7 '

To simplify the notations, we denote WP and W*2 by LP and H*, respectively.
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Let J and N be two positive integers, and let h = 1/J and 7 = T/N. We introduce the
notations,

Qp = {z; =jh, 7=0,1,...,J}, Qr ={t,=nr, n=0,1,...,N},
. 1 1
e = [Tj-1,%5], ey = [tn-1,%n], Tj-1/2 = 5 (&) +25-1), tn-1/2 = 5 (tn +tn-1),

v 1722 =V (zj_12.tn12) . O =v(z5tn), UP=u(z),ta),

and for a given complex mesh function w == {w?, 0<3<J,0<n<N}onQy xQ,, we define

1 —172 1 -
Wi-172 =5 (Wi +wiy), wy /2= i) (wf +wy 1,
1 n-1/2 _ 1 1l
bsf_1j2 = 3 (WF ~wil1), Ortw - 7 W =ei™),
1 J
2 _
Oguf = W2 (Wiyy — 2] + 0l ), w4 = hzw_?_l/zw;l_l/g,
j=1

where @ denotes the complex conjugate of w.
Let u(z,t) = ¢ (x,t), then problem (1.9)—(1.12) can be rewritten as the following,

it (x,t) = —%um (z, ) + V (z,t) ¢ (z,1), Y (z,t) € Q., (2.1)
u(z,t) =Y, (z,1), Y (z,t) € Q, (2.2)
= ]2 it/ gmive P40, V> .
u(0,t) = \/; e 4 ) Ay e S dA, 0<t<T, (2.3)
etV A
u (1,t) — \/5 —1(7"/4) —'LV-I-tdt / }/_{_—\/—___—.—)T—- dA, 0 < t S T, (2.4)
¥ (z,0) = ¢° (z), u(z,0) = ¥2 (z), 0<z <1, (2.5)

Next, we construct the difference scheme for (2.1)-(2.5).
LEMMA 1. Suppose u(t) € W2(0,t,]. Then,

<er? fullys, 12[0,En] *

u(tr) —u (tk-1)
o) iy -3

th—1 n

where ¢ is a constant independent of b and 7.
PROOF. Similar to the proof of Lemma 1 in [16]. ]
Suppose that ¥(z,t) is the solution of problem (1.9)-(1.12) and

W (z,t) € H3 (0,T; H2 (Q)) n W2 (0,T; Wh1 (Q)) n H2 (0,T; H® () N H' (0, T; H* () .

Then, for nearly all ¢t € [0, T,

Tl cwrr@, =012,

and by the Sobolev embedding theorem W11(Q) — C(Q), we have

' eyt  _ ||ev it

|
< ) s=0,1,2.
ot lig(n) ' ot lwuig
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Notice that (0, 0) = ¢(1,0) = 0, then

d [*9(0,)) V-2 W 4 dA
?d_to'“'{\/—:—f—d’\ 2—/«/ {¢(o,\ )e'V=*} da= /d/\{“zpm)}\/t__x

From the boundary condition (2.3) and Lemma 1, we have

[2 i Z" wodg dA
n _ 2 —i(n/4) —iV_(tn—X) 0.\
Us e k=1/tk ) {e » (0, )}m

— 2 —i{n/4) = l —iV_(ta—ti) gk _ —1,V (ta—t )\Ilk 1 +0 3/2
R 3o L {etagg - oo [T 2B o (o)

n
=e DS a, {e—z'v_ (tn=te) gk _ g=iV- (tn—tk_x)q,gﬂ} +0 (Ts/z)

n—1
= e~ H7T/4) {ao\l'g + Z (@n—k — Gn-k-1) e’w‘(t"'t“)\llg} + 0 (7'3/2) , 1<n<N,

k=1
where
ak=2,/i(\/k+ —\/E), k=0,1,2,.... (2.6)
T
Then,
n—2 )
Uyt =eH/4 {ao‘I’g_l + Z (@n_1-k — Gn_k—2) e_"v'(t“"_tk)‘I’g} +0 (73/2)
k=1
n—1
= ¢~ i(n/4) {ao\Ilg'l + Z (@n-k — CGn—k—-1) e‘iv‘(t"_t")\llg_l} +0 (Ts/z) .
k=1 .

Therefore, for 1 < n < N, we have the discretization for (2.3)

n—1
Ug-—l/2 — e—i(x/4) {aoq,g—l/Z + Z (@n—k — Gn_k_1) e—iv_(tn—-tk)\llg"l/2} + ,73—1/2’ (2.7)
k=1

and similarly, for (2.4) we have

n—1
U?_1/2=—e‘i("/4) {GO\I’E_I/Z‘FZ (Gn—k — Gn—k-1) e—iv+(tn_tk)\I]§—1/2}+77}—1/2, (2.8)
k=1

with
|y~ < er® |v5 Y2 < er (2.9)

By the Taylor expansion with integral residue, we have

I (tnorya) = 5 "2+ 0 (1) ”f”W3v1(e,") )
I (tneyy2) = 21 0(n) ||f||w2-l(e;) )

1
If @)l < = W llpsgegy + 1F llwraey -

Therefore, we can obtain the following difference scheme of (2.1),(2.2),

i—-1/2 j—1/2>

Uit =e, \1/"‘1/2 + 87 1<j<J, 1<n<

80 2= 5 UM+ VIR T2 4 el Y, 1<5<J, 1<n<N,  (210)
j—1/2 N

-1/2
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where

1/2
&z 1//2 =0(r) [Hl/’ﬂwsvl(e;;wmm)) + ”"pHWzvl(e;;stl(Q))]

h
+0 ( ) [H‘/’“Wl Aerwri(e,)) TPl reswange, ))]
+ O (k) [l|1,b||wz,x(e;;wz,1(ej)) + WHWM(e*.-WM(e,-))] '
n—1/2
2 =0 [Whasc s + O (2) Wlsscsawssiean + OB Wl eswoncoy-

It is easy to check that
2 2 2
RY 1 lwes e wea @y = 11w ewn gy < € 19015 e ey »

J
2 2
h Z lekavl(e;;lel(ej)) < crh? W“Hk(e;;m(ﬂ)) .
—

So, we have

2
€ 1/2”A <er [||¢||Ha(e;;yl(n)) + Hi/’"m(e;;m(n))}
h* 2 2
+ C;‘ [Hw”HI(e;;H%Q ) + Hd}”Lz(e* 434(9))} + cTh4,

2
62| < or® |lfacep ez + o llwlle(e~ sy + Tk,

and then
- k—172|]” < .3 2 2
> e LSer 1% 0123 0,781 () + ¥ 220, 75803 00))
k=1
ht 2

te— [“¢”H1(0,T;H2(n)) + ||¢|iiz(o,T;H4(n))] + ch?, (2.12)
| k1212 31112 ht 2 4
S [ < e 1l o imscan + o5 11 Eao,msmscay + b (2.13)
k=1

Therefore, we obtain a finite difference-scheme of problem (2.1)—(2.5) as the following,

—i2 1 - .
60715 + 50005 Ua - VISR =0, 1<j<J 1<n<N, (214)
W -6yl e =0, 1<j<J, 1<a<N, (2.15)

n-—1
ul V2 = e/ {aow3“1’2+2 (Gr—k— k1) €™V~ “"'t*)w(’,"”z} ,

k=1
l<n<n @19

n—1
u’}'l/2= _e—i(m/4) {a0¢3—1/2+2 (Gt —Gn—k—1) e—iV+(tn—-ik)w§_1/2}

k=1 (2.17)

1<n<N,

=¢°(z;), wi=vg(z;), 0<j<J (2.18)
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The finite-difference scheme (2.14)~(2.18) contains two complex mesh functions {7, u7,0 < j <
J, 0 £ n < N}, by eliminating up, 0< 5 < J, 0 < n < N, we obtain a finite-difference scheme
which contains only mesh function ¢7,0<j < J,0<n <N,

. 1 -1/2 n—1/2 2 ,m—1/2
wt{§ (¥5riss + ¥ 1,2)}+ SO%;
Y2 n-1/2 | yne1/20-1/2) _ (2.19)
2 {V;-Ll—uz ¢;L+1/2 Jn 1/2 1'/’n 1//2} =0,

n—1/2 5,12y 1/2 n—1/2
z¢1/2 _h{_“stdﬁ/z ¢1/2 }

) . (2.20)
= g—iln/4) {ao%z—uz n Z (@i — Gn_k—1) e—zv_(tn—tk)¢§—1/2} ’ 1<n<N,
k=1

-1/2 . ~1/2 4 yn=1/2,n-1/2
6“”—152 +h {"5t¢TJL~1/z VJn 1/2 ¢J—1/2}
| = | (2.21)
=— {9 {ao¢3_1/2+z (@nok—n 1) eVl tgh=1/28 1 < < N,
k=1
=¢0(z;), 0<ji<J (2.22)
We have the following theorem.

THEOREM 1.

(i) Suppose that {¢7, u},0< j < J,0<n < N} is a solution of problem (2.14)-(2.18), then
{#7,0<j<J,0<n< N} is a solution of problem (2.19)~(2.22).
(ii) Suppose that {4/7,0 < j < J,0<n < N} is a solution of problem (2.19)~(2.22), let

W =92(;), 0<j<], (2:23)
-1 -1/2 . n—1/2 “1/2 1/2
up = —ult 42 {5“/’?/2 —h (—z5t¢1/z +Vin Y )} (2.24)
1<n<N,
W =—ul g - (T ) 46T 1<5<J, 1<n<N. (2.25)

Then, {$}, u},0<j < J,0<n < N} is a solution of problem (2.14)-(2.18).
In the above sense, we say that problem (2.19)-(2.22) is equivalent to problem (2.14)—(2.18).
Proor.

(i) Suppose that {47, v}, 0 < j < J, 0 < n < N} is a solution of problem (2.14)-(2.18).
From equality (2.14), (2 15), we have

1 . 1 - n—
2dn 1/2 _ 5 " 1/2+h{-—15t¢" 1/2+an 11/21/1 1/2}

2 4 1/2 —-1/2 (2.26)
1<j<Jd, 1<n<N,
L=z Loz gm0 ooy 1<n<N (2.29)
5 Ui = Uil N Ry <j<J <n<N. .
Summing up equation (2.26) and (2.27), we arrive at
-1/2 __ n—1/2 n— 1/2 n—1/2 n—1/2
u? = 5:1; j—1/2 { Zdt'lp] 1/2 ~1/2 7/1 —-1/2 } (228)

1<j<J, 1<n<N.
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Subtracting equation (2.26) from (2.27), we get

~1/2 _ ~1/2 o ne1/2 ~1/2,,n—1/2
w5y = 8T _h{‘“st‘w—l/z +Vi ?—1//2}7

i (2.29)
1<j<J, 1<n<N,
namely,
n-1/2 _ o ,n—1/2 o n—1/2 n-1/2_ n—1/2
uj =8y —h {_“5“%41/2 V2 Vi }’ (2.30)

0<j<J-1, 1<n<A.

Therefore, we can get (2.19) by combining (2.28) and (2.30), get (2.20) by substitut-
ing (2.29) with j = 1 into (2.16), and get (2.21) similarly. Namely, {¢7,0< 7 < J,0<
n < N} is a solution of problem (2.19)—(2.22).

(ii) Suppose that {9}, 0 < j < J, 0 < n < N} is a solution of problem (2.19)-(2.22). By
formulations (2.23)—(2.25) we obtain a mesh function {u}, 0 < j < J, 0 < n < N}
Obviously, (2.15) follows from (2.25). Substituting (2.25) with j = 1 into (2.24), we can
get (2.14) with j = 1. Once (2.14) with § = jo, 1 < jo < J — 1, holds, then we can
get (2.14) with j = jo + 1 by subtracting (2.14) with j = jo from (2.19) with j = jo,
s0 (2.14) holds for any j, 1 < j7 < J. (2.16) follows from (2.20) and (2.24). (2.17) can
be obtained by subtracting (2.14) with j = J from (2.21) and combining the resulting
equality and (2.15). 1

At n*® time level, scheme (2.19)-(2.22) is a tridiagonal system of linear algebraic equations in
the complex number space with respect to {¥7, 0 < j < J}. Let v} and w} be the real part and
imaginary part of ¥} respectively, then we can obtain the corresponding system of the following
form in the real number space,

A1 Ag u™ _n
Bl -
where
Un:[vgav?a"'av.’}]tv wn:[wg’w;t’___’w:r;]t’

(J +1) x (J + 1) real-valued matrices A; and Ajp, are symmetric and tridiagonal. This system
can be solved by some iteration methods, for example, the GMRES method.

3. ANALYSIS OF THE DIFFERENCE SCHEME
First, we introduce the following lemma [17].

LEMMA 2. For any T > 0, let u(t) € HY/4(0,T) with the extension u(t) =0, for t > T'. Then,

Re{ei“/‘*/owﬁ(t)% [/{:\Z@Xd)\] dt} >0.

Based on this lemma, we obtain the following lemma (see also [18]).

LEMMA 3. For any complex vector u = (u!,u2,- -+ ,uN), the following inequality holds,
N n-—~1
Re {6”/4 Zﬁ” [aou” — Z (Gpei—1 = On—k) uk} } >0,
n=1 k=1

where oy, is defined in (2.6).
PrOOF. We define function u(t) by
un’ th—t St <ip, 1STL<N,
u(t) = {
0, t>tn.
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We can easily check that u(t) € H/4(0,T). Then, we have

/jﬁ(t)%[/o*;%ﬂ]dhi/%_ o8 [[ 20 ] w

n=1

[

N n-—-1 t
dX k di
= a" uk/ _ uk
n=1 k=1 i Vin— A k=1 tic: Vin—1— A
T N n n—1
_—_T”§Zﬁn [Zan‘ku - zan—k—lu jl
n=1 k=1 k=1
- N n—1
= T\/;Zl'&" [aoun - Z (n—k—1 — Qn—k) ukl .
n= k=1

=:1r-\/gRe{ei”/4/0°°ﬁ(t)% [/Ot\;‘%dx] dt} 0.

THEOREM 2. Difference scheme (2.19)-(2.22) is uniquely solvable.

PROOF. From Theorem 1, it suffices to prove that difference scheme (2.14)-(2.18) is uniquely
solvable. Suppose that we have determined {1/);?, 0<j<J,0<k<n—1}. We consider the

homogenous equations, about {y7, u?“lm, 0 < j < J}, of (2.14)-(2.18),

1 n n—1/2 1 n-1/2

“¥i-2t 3 ‘5 cU; 179 2Vj—1/2 12=0, 1<j<, (3.1)
LT %wy_l 2=0, 1<j<J, (3.2)

WiV %aoe—i(w/@wg’ (3.3)

W2 = —%aoe_"(”/‘*)zﬁ’j. (3.4)

Multiplying (3.1) by 1/) _1/2 (3.2) by ﬁ"’ll /20 and adding the results, we get

1

_71/2 +

2 1
n—1/2 _n-1/2 n—1/2
U, 1/2| = (: 1//2‘S d’? 1/2 1/’:1 1/26"“3 1//2)

1/2
‘Vn -1/2

j— 1/2\ = Tl +T21

where the imaginary valued term T} and the real valued term T, are given by

1 / ne n - _n—

T, = E(n1/21/}_n1/2¢n 711/2;,1_*_7;1/2]1),
1 n— n 2 Tn _'n.— n n-—
To= o (<075 — A + T + D)

1 n- 1/2
§V -1/2 |¥i- 1/2‘ :

Therefore, we have
i 2
- 1/’7_1 /2| = Tl-
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Multiplying the above equality by h and summing up for j, from (3.3),(3.4), we get

zh

L ~1/2 7 _n-12n n—1/2
7 31/21=4( s = — T + )
=1

2(10

= (w312 +1451)

therefore, ¢ = ¢ = ¢} ;,, =0, 1 <J < J, which means that ¥7 =0, 0 < j < J. From
(3.2)-(3.4), we have

—1/2 - -
n—-1/2 __ _n 1/2=u3 1/220,

=] 1<j <,

sou} M =0,0<j <. ]

THEOREM 3. Difference scheme (2.19)-(2.22) is unconditionally stable, and

™ a < (1] - (3.5)

Proor. From Theorem 1, it suffices to prove that (3.5) holds for difference scheme (2.14)—(2.18).

Multiplying (2.14) by 21,bn 11//22 , we get

i 2 - 2 i n—1
- ( ?—1/2' ?_11/2! ) += (¢?‘1/2¢j—1/2 B /¥5la)
1 n—=1/2 Tn-1/2  n-1/2 7n—1/2 3
ton (u v o Y ) (3.6)
1 —1/2 Tn—1/2 —~1/2 7n—1/2 /2| =172
T35 (“? ’J’?—l “n—l/ ‘Z’: ) - 2Vn -1/2 ;l 1/2 ‘ =0.

Multiplying (2.15) by uj 1/2, we get

n—1/2 1/ ne1/2 n=1/2 _n-1/2 ,n-1/2
j—l/2’ 3h (“ L/ )

L] (3.7)
-1/2 n~1/2  -n—-1/2 n-1/2
g (BT - g
Summing up (3.6),(3.7), comparing the imaginary parts of the results, we get
1 n 2 n— 1/2 n~—1/2 n—1/2 7n-1/2
- (1%‘—1/21 = |¥5- 1/2I ) Im{ —u Y } (3.8)
Multiplying the above equality by h and summing up for j, we have
1 n —in2 -1/2 1/2 ~1/2 7n—1/2
~ (h i = ) = T {ug ™20 — 252 (3.9)
Summing up the above equality for n, we get
1 2 = l-1/2 7l-1/2  1-1/2 7I-1/2
- (l|¢”||i - ”¢°||A) = Zlm {uo / ¥y / —u; / e } (3.10)
=1

From (2.16),(2.17),

[-1/2 71-1/2
u /wo /

; 1-1/2]? - iV_(ti—tx) ) k—1/2 71-1/2 (3.1)
= —ie’™% L ag |y ’ + Z (- — ar—j—1) €~ V- Tty 200 ,
k=1
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1-1/2 71-1/2
uy Py

' 12t | : k—1/2 71-1/2 (3.12)
= ’l:el(ﬂ’/‘l) agp ’w‘]_ \ + Z (al—k — al—k——l) 6—1V+(t¢—tk)¢.]— '¢7J_ .
k=1
Then, according to Lemma 3,
3 Im {uf;l/z pi=1/2 _ us—1/2$3—1/2}
I=1
n
= —Re {e’i(ﬂ'/‘i) z ¢é‘1/2eiv_ t; [aowé—l/ZeiV_tl
=1
-1 -y
=Y (k-1 — k) %y 2eiV—”‘} }
’; (3.13)
—Re {ei(ﬂ‘/4) z ,‘pf]—l/2eiv+t, l:a'o'l,b.l]_l/QeiV"‘t’
I=1
-1
- Z (a'l—k—l - al—k) "/’I;_I/Ze"‘qtkjl }
k=1
<0.
Therefore, (3.5) follows from (3.10) and the above inequality. I

Next, we give the convergence result.

THEOREM 4. Assume that ¢(z,t) is the solution of problem (1.9)-(1.12), and
¥ (z,t) € H* (0, T; H2 (Q)) n W2 (0,T; W (Q)) n H? (0,T; H* (Q)) n H' (0,T; H* () .

Let {¢}} be the solution of problem (2.19)—(2.22), and let ¢} = (x;,tn) — ;. Then, we have
o7 ll.4 < k2 (B2 +73/2), (3.14)

where h, = min{h,7}.

PROOF. Denote wf = u(z;,t,)—u}. Subtracting (2.14)-(2.17) from (2.10),(2.11) and (2.7),(2.8),
respectively, we obtain the following error equations,

o on—1/2 n—1/2 n-1/2 n-1/2 |, n—-1/2
Wep; 172 = =509 170 HViia Pioipe TE L1 (3.15)

1<j<J, 1<n<N,

=G 1i<a 1gnsN, o
WU/ gmitn/4) {awg—m i nz_:l (@n—k — Gn-k—1)e"*V= (t"‘t")<ﬁg_1/z} (8.17)
k=1 .
+? 1< <N,
w3_1/2 — _gmiln/Y) {ampr}—l/z + nz—:l (Gp—k — Op—k—1) e_iv+(t"—t")‘l’§_1/2} (3.18)
k=1 .

+477Y3 1<n<N,
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From (3.16), we have

n-—1/2_n 1/2
Sz ~1/2Pj-1/2 T

n-1/21° _ n—1/2 _n-1/2
8ot 1/2‘ = 02w 175P5172
n-1/2  n—1/2\ ¢ _n—1/2
+ (“’1—1/2 8- 1/2)519"7 1/2

1 —1/2 _n—1/2  n-=1/2 _n—1/2
—‘<“’; /‘P? TYi-1 -1 )

(3.20)

h
1/2; -n—1/2
6_;1 1/2 633 ] 1/2°

Multiplying (3.15) by 2(,5;1—11 //2 , from (3.20), we get

i) _ .
s (]‘91—1/2] I‘PJ 1/2‘) (‘pa 1265 1/2 9’?—1/2‘P?—1/z)

_ n-1/2 n—1/2 n=1/2 n~1/2 _n—1/2 n—1/2| n-1/2|?
0z, 1/2‘ + -1 Pj-1 W ®j )+ 2V; -1/2 %’—1/2’
n—l/Z_n 1/2 1/2¢ -n—1/2 .
+267 175 ®; 1/2+5;’ 12028, 119 1<j<J, 1<n<N.

Multiplying the above equality by h and summing up for §, comparing the real part and imaginary
part of the result, respectively, we obtain

2
Héx(pn—quA —Re {wn—1/2¢n~1/2 _ wg~1/2¢g—1/2}

2
—1/2 1/2
_QZhV" 1/2 ;l 1/21
9 L (3.21)
—;Im Z;hw?q/z@?_uz
J=
J 1/2 /2 /2 /
n-— —n-—1 n—1 -n—1/2
—Re Eh(%a 1/2Pj-1/2 T 95 172005 1/2) ’
j=1
1/ 2 112 n—1/2 _n—1/2 n—1/2 _n—1/2
= (Il — o™ %) = —Im {5265 7Y2 — w25
J 2
I k{2 n—1/2 —n—1/2 677,—1/26 -n—1/2 (3 2)
+1m Z (% 172Pj-1/2 T 95-1/292%;. 1/2)
j=1
Using e-inequality with £ = 1, we have
1/25n-1/2 | gn=1/2 on=1/2 —172|? ~1/2]2
*Re {25? 1/2% ’; 1/2 5? 172 0=P ;l 1/2} = 5;-1-1/2. + ‘P?—l/z’
1| m—1/2 1/2
+§ ;11//2| + w71/2l
Let V;, = ||V(2,1)|lc0,0 and notice that Jh = 1, then from (3.21) we have
1 n_l/znz n—1/2 n—1/2 _ n=1/2 _n-1/2
g Joee2] < Re {202 205
2
+(2Vm +1)] cp""1/2“A
1 112 -
+;(||90n||,24+”¢n IHA) s 1/2“ |5n 1/2“
(3.23)

— - n—1/2 .n—1/2
sRe{wf} 1/2<PJ 1/2_% 1/ 903 1/ }
1 s”“1/2“2 +l 5n--1/2H2
A 2 A

+ (Vm + % + %) (Ilw"llf; + H‘P"_l“i) :
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Similarly, for any € > 0, from (3.22) we have

]- n— e n— -Nn—
= (“‘Pn”i - “‘Pn_l”i) < Im {wo 1/29"0 V2 Wy 1/2<PJ 1/2}
2 (el + o) (3.24)

£ 71—1/2“2 1 71—1/2”2 i
+2 ”6””(‘0 A + z |IIf A +

1 2
671-—1/2“ )
2 A

From (3.17),(3.18),

Wi 2gn=t/2 _  nm12gn=l2 g S g+ Sy (3.25)
with
Suo = (57257 AT S = (5T A B
and
-1/2 _n—1/2 —1/2 _n—-1/2
Snr =025 2 =y 2G5

_on-1/2 -2 _ho o niy2 n-1/2 ( gn-1/2 ho a1
=% (‘P1/z 51 ¥1/2 ) ~ (‘PJ-1/2 5%P;_ 1/2)

Therefore, for any €1 > 0,

erh 9
s < (o523 ot ) + 257 (et + o)
+2—51< n— 1/2' n n—1/2| > (3.26)
< 51h e1h

<2 (el + e l%) + 5

From (3.23), (3.25), and (3.26) with £; = 1, we have

bup™ Y 2”1 + '51'10 (7).

2 2
Haxga"-lﬂu < 4Re{Sns — Sno} +4 s”_1/2“ +2

ol o
(V + +,11+ )(Ilw 1%+ llem11%) -

From (3.24)—(3.27), we have

(3.27)

L (e = e 2) < {Sno — Sns} + 222 g1

Ol (nsa"ni + o)

1 n—1/2 3
+g( 5 ”>+ Lo
<Im{Sno— Sn,s}+ (25 +e1h)Re{Sn,s — Sn0}
1 1 1 eth~14¢
+ [(25+51h) (Vm+§+ﬁ+;> +———2——]
e+ e )

+ [25 +e1h + é + Ell} [Hs"—l/?”i + % ”5”_1/2“1 +0 (73)] .

e 1/2“
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Let hr = min{h, 7}, take &1 = & = A, - min{1/3, 1/[6(Vin -+ 3)T}, then

(101 1o 1) < I (S0 — S5} + (2 + R)eRe {5 — Sno)

= (I3 + Ilw"‘lll"’) +0 (h?)
- [ i R Lt R

=[1—-(2+h) ]Im {Sno—Snu}+(2+h}e[Re{Sns— Snpo}

~1m {8, - snon 4 (13 + o™ 1%) +0 ()
[ 5"-1/2“ ]+h 10 (3.

Similarly to the derivation of (3.11)—(3.13) and from (3.17),(3.18), and Lemma 3, we have

(3.28)

n— 1/2“

) Im{Sko— Sk} <O. (3.29)
k=1
We define a real symmetric matrix,
r1 0 B 0 [C N (N
0 1 0 A 0 o
B 0 1 0 Pn-2 0
By =1 0 B 0 1 0 Ba-2|,
Booi 0 Buz O ... 1
L 0 Buo1 0 Baa ... 0 1 ]
with

ﬂkzl,/l;lf““_z—“’“‘l=%<\/k+1—2\/E+\/k-—1), k=1,2,...,n—1

Then, B, is diagonally dominant and is then positive definite. Therefore, if we let eiV-tx
90’5_1/2 = Ry +il; and X = (Ry,I1,Ro, Iy, ..., Ry, I,)¢, Rg, and I are real numbers, then the
following quadratic form,

n n k-1
> Re{Sko} —Im{Sko}l =v2) {ao (RE+TR) + > (ak—s — aks-1) (RiRs + IkIs)}
k=1 k=1

g=1
4
= —\/=X By, X >0,
(3.30)
Similarly, we have
Z [Re {Sk,s} —Im {Sk s}] < 0. (3.31)

Summing up (3.28) for n, from (3 9) (3.31) and (2.12),(2.13), we get

1, . 1< 2 —1y2 - h?
He s g 2 (s 1) w0 (5 )
or

n~1
3171 < (1= gp) Wl < 1 0 et + 0 (6 79)
Using the discrete Gronwall inequality to the above inequality and noticing that nT < T, we have
™% < h710 (h* +7%) e2*/T = R0 (h* +7°)..
This completes the proof. |



A Finite-Difference Method 1359

4. NUMERICAL EXAMPLE

In this section, we present two examples to show the effectiveness of our scheme. In the first
example, we check the stability and convergence of our numerical method, and compare the
numerical solution with the known exact solution. In the second example, the exact solution
is also known, which is a travelling wave. The purpose here is to see whether there are any
numerical reflections on the boundaries, and also to compare with other numerical methods.

ExXAMPLE 1. We use scheme (2.19)-(2.22) to solve the following initial value problem of the
Schrédinger equation on R! x [0, 5],

it (z,8) = _%wu @)+ @t), V(zt)eR x(05), (@.1)

z(l-z)(1+2), VYVzel0,1],

0, otherwise.

P(z,0) = {

Its exact solution is the following [19],
1 il(omt)?

,t) = 1— 142 1[(1—5) /2t—t—7r/4] de.

For mesh size (h, T), we denote the relative error of the solution by

¥ (s, tn) — 97l 4
¥ (z5,ta)lls

enr (tn) =

We take 7 = h and h = hg = 0.1, ho/2, ho/4, ho/8, the corresponding errors ep, -(t,) at time
levels t, = 1,2,3,4,5 are listed in Table 1. We can see that e, -(t,) = O(h}, which is coincident
with the theoretical result given in Theorem 4. In the case that 7 = h?, the errors en,-(tn) are
listed in Table 2. We can see that ey -(t,) = O(h?), which is better than the theoretical result.
This suggests that the error bound obtained in (3.14) may not be optimal, further improvement
might be possible.

Table 1. Relative error ep (tn), 7 = h.

ho ho ho
Mesh h=ho=0.1 h=7 h=z- h=?
en,r(1) 1.503D - 01 8.609D — 02 4.928D — 02 2.512D — 02
en,+(2) 1.796D — 01 9.300D — 02 5.043D — 02 2.770D — 02
ep,r(3) 1.592D — 01 9.908D — 02 5.527D — 02 2.854D — 02
en,r(4) 1.587D — 01 9.423D — 02 5.332D — 02 2.932D - 02
ep,~(5) 1.706D —~ 01 9.521D — 02 5.701D — 02 2.940D — 02
Table 2. Relative error ep (tn), 7 = R2.
Mesh h=ho=0.1 h=@ h.=£(1 h=ﬁ2
2 4 8
en,(1) 1.100D — 02 2.823D - 03 7.061D — 04 1.736D — 04
en,+(2) 1.020D — 02 2.561D — 03 6.518D — 04 1.640D — 04
eh,.,.(3) 1.007D — 02 2.520D - 03 6.345D — 04 1.607D - 04
en,+(4) 1.002D — 02 2.510D - 03 6.289D — 04 1.589D — 04
€p,r (5) 1.000D — 02 2.505D — 03 6.270D — 04 1.577D — 04
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Figure 1. The exact solution |¢(x,t)| at different times.
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Figure 2. The solutions [¢)(x, t)| at ¢ = 0.005 and ¢ = 0.01.

EXAMPLE 2. We consider the right travelling Gaussian beam [4], with a wave number kg = 8,

3 i ~i (10z — 5)% — ko (102 — 5) + 50k3t
¥ (2,0 =\ 3000 +z’exP( 200t + 4 '

It is the exact solution of the Schrédinger equation (1.1) with V(z,t) = 0, its evolution at different
times are shown graphically in Figure 1.

In order to compare the numerical results using our method to the solutions using other dis-
cretization methods of the analytic transparent boundary conditions, we consider the computa-
tional interval [0,1), take the space step h = 1/160 and the time step 7 = 2 x 10~% and solve
the numerical solutions by our method, the Mayfield method [5] and the Baskakov and Popov
method [1], respectively. The evolutions of the exact solution and the numerical solutions at
different times are shown graphically in Figures 2 and 3. We can see in these figures that our
method almost does not induce the numerical reflection, but the other two methods induce strong
reflections travelling to the left. At time ¢ = 0.015, the numerical solution using our method has
almost completely left the domain [0, 1] but the numerical solutions using the other two methods
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1=0.015
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Figure 3. The solutions |y (z,t)| at ¢ = 0.015 and t = 0.02.

contain a reflected wave packet with the maximum modulus (which corresponds to the maximum
error) of about 0.086 for the Mayfield method and around 0.011 for the Baskakov and Popov
method.

5. CONCLUSIONS

In this paper, we consider a finite-difference approximation for the one-dimensional time-
dependent Schrédinger equation on unbounded domain. Artificial boundary conditions are
introduced to reduce the original problem to an initial-boundary value problem in a finite-
computational domain. Using the method of reduction of order, a finite-difference scheme is
constructed to solve the reduced problem. This scheme has been proved to be uniquely solv-
able, unconditionally stable and convergent. Numerical examples showed the effectiveness of our
scheme.
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