
An International Joumal 

computers & 
mathematics 

a ~ i o n a  
PERGAMON Computers and Mathematics with Applications 41 (2001) 1535-15'44 

www.elsevier.nl/locate/camwa 

Solvability of Volterra-Stieltjes 
Operator-Integral Equations 

and Their Applications 

J. BANAS 
Department of Mathematics, Rzeszdw University of Technology 

35-959 RzeszSw, W. Pola 2, Poland 

K .  SADARANGANI 
Department of Mathematics, University of Las Palmas de Gran Canaria 

Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Spain 

(Received and accepted July 2000) 
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1. I N T R O D U C T I O N  

Integral equations create a very important and significant part of mathematical analysis and its 
applications to real world problems (cf. [1-6], among others). The theory of integral equations 

is now very developed with help of various tools of functional analysis, topology, and fixed-point 
theory, for example. 

In this paper, we are going to investigate a class of operator-integral equations of Volterra- 
Stieltjes type which create a generalization of numerous integral equations appearing in mathe- 

matical literature. For example, this class covers linear Volterra integral equations, several types 
of nonlinear Volterra integral equations and a class of the so-called quadratic integral equations 
of Volterra-Stieltjes type, among others. The mentioned integral equations are frequently used 

in the description of many real world problems in engineering, physics, biology, and economics, 
among others (cf. [3-5,7,8]). 

We will show that  the operator-integral equations investigated here are solvable in the space 

of continuous functions on some closed bounded interval. This class is sufficient in our study 
because in applications one seeks mainly continuous solutions of considered equations. The main 
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tool used in our s tudy is associated with the technique of measures of noncompactness. This 
technique is recently successfully applied in several branches of nonlinear analysis (see [5,9-11] 
and references therein). We will also show how our existence result may be applied to concrete 
types of nonlinear Volterra integral equations. 

The results of this paper generalize a lot of ones obtained up to now. Especially, we extend the 
results from the paper [12], where the so-called quadratic integral equations of Urysohn-Stieltjes 
type were treated. 

2.  A U X I L I A R Y  F A C T S  A N D  R E S U L T S  

In this section, we give a collection of results which will be needed further on. At the beginning, 
we start with some facts concerning functions of bounded variation and Stieltjes integral. 

If x is a real function defined on the interval [a, b], then the symbol Vba x indicates the variation 
of x on [a, b]. We say that x is of bounded variation whenever vba x is finite. If u(t, s) = u : 
[a, b] x [c, d] --* R, then we denote by V~ffip u(t, s) the variation of the function t ~ u(t, s) on 
the interval ~v, q] C [a, b], where s is arbitrarily fixed in [c, a~. In the similar way, we define 
V~=p u(t, s). We refer to [13,14] for the properties of functions of bounded variation. 

If x and ~ are two real bounded functions defined on the interval [a, b], then under some 
additional conditions [14], we can define the Stieltjes integral (in the Riemann-Stieltjes sense) 

b 

x(t) d~o(t) 

c t  

of the function x with respect to ~. In this case, we say that x is Stieltjes integrable on [a, b] with 
respect to ~o. There are known several conditions guaranteeing the Stieltjes integrability [14,15]. 
One of the most frequently used requires that  x is continuous and ~o is of bounded variation on 
the interval [a, b]. 

The properties of the Stieltjes integral used in the sequel are contained in below-given lemmas 

(cf. [161). 
LEMMA 2.1. I f  x is Stieltjes integrable on the interval [a,b] with respect to a function ~ of  
bounded variation, then 

Moreover, the followin$ inequaBty holds: 

x(t) d~o(t) 

b 

a 

LEMMA 2.2. Let x l , x2  be Stieltjes integrable functions on the interval [a,b] with respect to a 
nondecreasing function ~ and such that xz(t) <_ x2(t) for t E [a, b]. Then 

b b 

f <_ f  2(t)dv(t). 
a a 

In what follows, we will also consider the Stieltjes integral of the form 

b 

f x(t) dsg(t, s), 
c t  
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where g : [a, b] x [a, b] -* R and the symbol ds indicates the integration with respect to s. The  

details concerning the integral of this type will be described later. 

In nonlinear analysis there is frequently used the so-called superposition operator F ,  defined 
by the formula (Fx)( t )  = f ( t , x ( t ) ) ,  where f : [a,b] x R --* R is a given function and x is an 
arbitrary real function defined on [a, b]. For the properties of this operator,  we refer to [17]. 

Now assume that  x is a real function defined on [a, b]. Then by w(x,e) ,  we define the modulus 

of continuity of the function x, i.e., 

w(x ,e)  = sup[Ix(t ) - x(s)l : t, s e [a,b], It - sl < e]. 

If p(t, s) = p : [a, b] x [c, d] --* R, then the formula 

w(p, 6) = sup[ Ip ( t , s ) -p (u , v ) l  : t ,u  ~ [a,b], s ,v  ~ [c,d], I t - u l  <~ ~, I s - v l  <~ c] 

defines the modulus of continuity of the function p(t, s) with respect to both variables t and s. 
We can also use the modulus of continuity of p(t, s) with respect to one variable. For example, 

w(p(t ,  . ) ,c)  = sup[Ip(t ,s)  - p ( t , u ) l  : s , v  e [c,d],  Is - v I < e], 

where t is a fixed number in the interval [a, b]. 

Now we give a few facts concerning measures of noncompactness. 

Assume that  (E, It" II) is a given Banach space. Denote by B ( x , r )  the closed ball centered 
at x and with radius r. For a given nonempty bounded subset X of E,  we denote by x ( X )  the 
so-called Hausdorff measure of noncompactness of X. This quantity is defined by the formula 

x ( X )  = inf{¢ > 0 : X  has a finite ¢ - net in E}. 

Let us mention that  the concept of a measure of noncompactness may be defined in other 
way than that  given above (cf. [9,10]). Nevertheless, the Hausdorff measure X seems to be the 
most useful and important  in application. It is caused mainly by the fact that  in some Banach 
spaces this measure can be expressed by useful and handy formulas. For example, let C[a, b] be 
the space consisting of all real functions defined and continuous on the interval [a, b] with the 
standard maximum norm. Then, for a nonempty and bounded subset X of C[a, b], we have [10] 

. 

x(X) = ~ o ( X ) ,  

where To(X)  = lim~._,o{sup[w(x,¢) : x e X]}. 

Now, let us suppose that  M is a nonempty subset of a Banach space E and T : M --* E is a 
continuous operator that  transforms bounded sets onto bounded ones. We say that  T satisfies 
the Darbo condition (with a constant k > 0) if for any bounded subset X of M the following 
inequality holds: 

x ( T X )  <_ kx(X).  

If T satisfies the Darbo condition with k < 1, then it is said to be a contraction with respect 

to X- 

THEOREM 2.1. (See [18].) Let f~ be a nonempty  bounded closed convex subset of  E and let 
T : f~ --* f~ be a contraction with respect to X. Then T has at least one fixed point in the set ~.  
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3 .  M A I N  R E S U L T  

In this section, we will s tudy  the  solvabili ty of the  following opera tor - in tegra l  equa t ion  of 
Volterra-St iel t jes  t ype  

t 

x(t) = h(t) + (Tx)(t) / u(t, s, x(s)) dsg(t, s), 

0 

(3.1) 

where  t E [O, 1] = I and T is an opera to r  act ing from the space C(I) into itself. 

In  our  investigations,  we assume tha t  the  functions involved in equat ion (3.1) sat isfy the  fol- 
lowing conditions: 

(i) h E C(I);  
(ii) the  ope ra to r  T : C(I) --* C(I) is cont inuous and satisfies the  Da rbo  condit ion wi th  a 

cons tan t  Q; 

(iii) there  exist nonnegat ive  constants  a and b such t h a t  

](Tx)(t)] <_ a + bllx][, 

for each t E I and x E C( I ) ;  

(iv) g : I x I --* R and the funct ion s --+ g(t, s) is of bounded  var ia t ion on I for each t E I ;  

(v) for every  ~ > 0, there  is 5 > 0 such t h a t  for t l , t2 E / ,  t l  < t2, and t2 - t l  <_ 5 the  following 
inequal i ty  holds: 

1 

V [g(t2, - g(tl, _< 
8~0 

(vi) the  funct ion s --* g(t, s) is cont inuous on I for any t E I ;  
(vii) u : I × I × 1R ---* R is a continuous funct ion such t ha t  

I (t,s,x)l < f(Ixl), 

where  f : R+ -* R+. 

Now let us observe tha t ,  f rom Assumpt ions  (iv) and (v), it follows [19] t h a t  the  funct ion 

1 

V g(t,s) 
s~0  

is cont inuous on the  interval  I .  This  implies t ha t  there  exists a finite cons tan t  K such t h a t  

K = s u p  g ( t , s ) : t E I  . 

Fur ther ,  let us assume addi t ional ly  t ha t  

(viii) there  exists  a posi t ive solution r = r0 of  the  inequali ty 

IIh]t + K(a -}- br)f(r) < r, 

such t h a t  KQf(ro)  < 1. 

Now we can  formula te  our ma in  existence result. 
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THEOREM 3.1. Under Assumptions (i)-(vii O, there exists at least one solution x = x(t) of 
equation (3.1). 

Before we proceed to the proof, we notice the following remark which will be used in it. 

REMARK 3.1. Let us note that ,  under Assumption (iv) Hypothesis (vi), is equivalent to the 
condition claiming that  the function 

P 

s----0 

is continuous on the interval I for any t E I (cf. [14,15], for instance). 

PROOF. At the beginning, let us denote 

{)0 } M(e) = s u p  [9(t2, s ) -g( t l , s )]  : t l , t 2HI ,  tl <t2, t 2 - t l  <e  . 

In view of Hypothesis (v), we deduce that  M(e) ~ 0 as e ~ O. 

Further, for any x H C(I) and t H I, let us denote 

t 

(Ux)(t) = / u(t, s, x(s)) dsg(t, s), 

0 

(Fx)(t) = h(t) + (Tx)(t) . (Ux)(t). 

Next, fix arbitrarily ¢ > 0 and take tl,t2 E I such that  t l  < t2 and t2 - t t  _< ¢. Then, in view of 
our assumptions, for an arbitrary function x E C(I), we obtain 

[ ( U x ) ( t 2 )  - ( U x ) ( t l ) [  

t2 t l  

_< / u(t.,s,=(s)le.~(t2,.)- fo u(t2, ., =(s)) e.~(t.,s) 
tl  t l  

+ /~(t2,.,=(~))e.~(t.,~)- fo ~(t,,~,=(~))e.~(t.,s) 
t l  t l  

+ / ~(tl,s,~(sl)e.g(t~,~) - f0 ~(tl,s,=(sl)e.g(tl,.) 

" ( 2 o )  <_ f lu(t2, s,x(slllds g(t2,p) 
t l  

+ J lu(t2,s,z(s)) - u(tl,s,x(s))[d8 g(t2,p) 
0 

+ / l u ( t l ,  s, x(s))lds [g(t2, p) - g(ti, P)I 

0 

" )'/ (20) <_ f(llxH) / d, g(t2,p) + lu(tu, s,x(s)) -u( t l , s ,x (s ) ) lds  g(t2,p) 
t l  0 

+ f(Hxll) / d~ [g(t2,p) - g(tl,p)] . 
0 
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Now, let us denote  

w(e) = sup {lu(t2, s,y) - u(t~,s,Y)l: t~,t~, s • I ,  It2 - tll __ ~, y • [-Ilxll, Ilxll]}. 

Then  we get 

] I(Ux)(t2) - (Ux)(tl)l ~ :(llxll) g(t2,s) - V g(t2,s) 
s~O 

t l  t l  

+ ~(~1 V g(t2, s) + f(llxll) V [g(t2, s) - g(tl, s)] 
s ~ 0  8=0 

_<:(r]xlP) g(t2, s ) -  V g ( t 2 , s )  + w ( e ) V g ( t 2 , s ) + f ( l l x l l ) M ( e ) .  
8=0 S=0 

(3.2) 

Observe that ,  in vir tue of  the  uniform continuity of the function u on the set I x I x [-Ilxll, t]xll], 

we have tha t  w(c) --+ 0 as c --* 0. Linking this fact with Remark  3.1, we can easily deduce from 
est imate  (3.2) t ha t  the function Ux is continuous on the interval I .  

Hence, keeping in mind Assumptions  (i) and (ii), we conclude tha t  F x  E C ( I ) ,  i.e., the  opera- 
tor  F maps  the  space C(I)  into itself. 

Next, let us notice tha t  in order to show tha t  the opera tor  F is continuous on the space C(I)  
it is sufficient to prove (in view of (ii)) the continui ty of  U on C(I)).  To do this, fix e > 0 and 

take a rb i t ra ry  x, y • C(I)  with Nx - Yll -< ~. Pu t  P = Ilxll + ~. 

Then,  using L e m m a t a  2.1 and 2.2, we have 

I(Ux)(t) - (Uy)(t)l < _ / l u ( t , s , x ( s ) )  - u( t ,s ,y(s)) ld8 g(t,p) 
0 

1 ( 2 o )  <_ / l~(t,~,x(s)) - u(t,~,y(~))ld8 g(t,p) 
0 

Hence, if we denote  

wp(u( t , s , . ) , e )  = sup{lu( t , s ,v  ) - u(t ,s ,q)l  : v,q • [ -P,P] ,  I v -  q] < ~}, 

from the previously wri t ten estimate, we obtain  

1 
I ( u x ) ( t )  - _< g(t,z) 

0 

1 

< sup{wp(u(t ,  s, "), e ) :  t, s e I }  V g(t, s) 
s = 0  

<_ K sup{wp(u(t ,s ,  .),e) : t , s  E I}.  

Thus,  taking into account  the  uniform continui ty of  the  function u(t, s, x) on the set I x I x [ - P ,  P] ,  
we derive tha t  U is continuous on the space C(I).  

Now, let us fix an a rb i t ra ry  x E C(I) .  Then,  in view of our  assumptions,  L e m m a t a  2.1 and 2.2, 
we get 
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This implies 

I (Fx)(t)l  <_ Ih(t)l + l(Tx)(t)l / lu(t,s,x(s))lds g(t,p) 
0 

< Ilhll +(~+bllxll)//(llxll)d~ g(t,p) 
0 

1 

< Ilhll + C a + bllzll)f(llxll) V g(t,s) 
s=O 

_< IlhlJ + (a + b l l x l l ) f ( l l x l l  ) • K .  

tIFxll <_ IIhll + K(a  + bllxII)f(I]xll ). 

Hence, in view of Assumption (viii), we deduce that  F : B(O, r0) --* B(O, r0), where r0 is a 
positive solution of the inequality [Ihll + K(a  + br)f(r)  < r such that  K Q f ( r o )  < 1. 

In what follows, let us take a nonempty subset X of the ball B(O, r0) and x E X. Then, for a 
fixed ~ > 0 and t l , t2  E I,  t l  • t2 such that  t2 - tl _< ~, in view of estimate (3.2), we obtain 

I(Fx)(t2) - (Fx)(t l) l  <_ Ih(t2) - h(tl)l 

+ I(Tx)(t2)(Ux)(t2) - (Tx)(t2)(Ux)(tl)[ + ](Tx)(t2)(Ux)(tl) - (Tx)( t l ) (Ux)( t l )]  

<_ w(h,~) + I(Tx)(t2)l . I(Ux)(t2) - (Ux)(tl)] + I(Ux)(tl)l " I(Tx)(t2) - (Tx)( t l ) l  

<_w(h,e)+(a+bHxl l )  f(llxH) g(t2, s ) -  g(t2, s) 

1 ] 
+ ~o(s) V g(t2, s) + I(HxlI)M(e) + IIUxll~o(Zx, e) _< ~(h, s) 

s=O 

+ ( a + b r o )  f(ro) g(t2, s ) - o y  g(t2, s) + Ka~(e)+ f (ro)M(e)  

+ Kf(ro)w(Tz, e). 

Hence, keeping in mind the properties of the terms appearing in the above estimate which were 
established previously, we arrive at the following evaluation: 

wo(fX)  < Kl(ro)~oo(TX) < KQf(ro)~oo(X). 

Now, taking into account the choice of the number r0 and Theorem 2.1, we complete the proof. 

4. A P P L I C A T I O N S  A N D  F I N A L  R E M A R K S  

We are going to discuss here some special cases of the operator-integral equation of Volterra- 
Stieltjes type investigated in the previous section. Namely, we show that  our existence result 
contained in Theorem 3.1 can be applied to some special integral equations. 

At the beginning, we will discuss the same equation as before, i.e., equation (3.1) assuming 
that  the function f appearing in Assumption (vii) has the form 

f ( x )  = c + dx, 

where x > 0 and c and d are nonnegative constants. In such a case, equation (3.1) is called 
quadratic integral equation of Volterra-Stieltjes type (cf. [8,12,20,21]). Observe that  in the con- 
sidered situation Assumption (viii) has the form: 

(viii I) there exists a positive solution r = r0 of the inequality 

Hhtl + K (a  + br)(c + dr) <_ r 

such that  K Q ( c  + dro) < 1. 
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Of course, in this case, we have to  impose  some assumpt ions  on the  cons tan ts  K ,  Q, a, b, 
c, d, and  IlhlI involved in the  above inequalities. For example ,  if we restr ict  ourselves to  the  case 
h -- 0 and  c~ -- a -- b, ~, -- c = d, then  the  assumpt ion  to be  required has the  form: 

(viii") a ' y K  < 1/4  and moreover,  ei ther  

(1) Q < 2 a ,  or 
(2) Q >_ 2a  and Q -  a >_ Q2K~,. 

Now, let us consider the  special  case of equat ion (3.1) having the  form 

t 

x(t) = h(t) + (Tx)(t) / k(t, s)~(s)x(s) ds. 

o 

(4.1) 

This  equa t ion  is a coun te rpa r t  of  the  equat ion 

1 

x(t) = h(t) + (Tx)(t) / k(t, s)~(s)x(s) ds 

o 

considered in [21]. 
Following the  ment ioned  paper ,  we will assume the  hypotheses:  

(1) h, ~ E C ( I ) ;  
(2) T satisfies Assumpt ions  (ii) and (iii) of  Theo rem 3.1; 
(3) k : I x I \ {(0,0)} --* R is continuous and for each t E I there  exists the  integral  

1 

Ik( t ,  s)l ds; 
0 

(4) there  exists a bounded  funct ion w : I --+ lit with the  p rope r ty  w(0) = l imt-,0 w(t) = 0 and  

such t h a t  
1 

/ I k ( t : ,  s )  - k ( t l ,  s) l  ds < w(]t2 - tll), 
0 

for t l ,  t2 E I .  

Now, let us put  

{0/ } p = s u p  k ( t , s ) [ d s : t E I  , 

{0/ } q - - - s u p  k ( t , s ) ~ ( s ) l d s : t E I  . 

In  view of the  above assumpt ions ,  we have t ha t  p, q < oc. 

Fur ther ,  we assume tha t :  

(5) there  exists a posi t ive solution r of the  inequalities 

]]hl] + (a + br)qr <_ r and qQr < 1. 

T h e n  we can prove the  following result. 
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THEOREM 4.1.  Under Assumptions (1)-(5), equation (4.1) is solvable in the space q(I). 

PROOF. We check t h a t  the  assumpt ions  of  T h e o r e m  3.1 are satisfied. 

Thus ,  let us pu t  

I t  m a y  be shown t h a t  

8 

g(t, s) = J k(t, z) dz. 
0 

1 1 P 

V g(t,s) <_/ Ik( t , z ) Idz  <_ P, 
J s=O 0 

which means  t h a t  Assumpt ion  (iv) is satisfied. 

Fur ther ,  t ak ing  tl,t2 E I ,  t l  < t2, and an a rb i t r a ry  par t i t ion  0 = so < Sl < . . .  < sn = 1 of 
the  interval  I ,  it is easily seen t h a t  

n 

Z ][g(t2, si) - g ( t l ,  si)] - [g( t2 ,  8 i_1  ) - g ( t l ,  8 i_1) ] [  < w ( l t  2 - t l  [). 
i=1 

Linking the  above  e s t ima te  wi th  Assumpt ion  (4), we derive t h a t  Assumpt ion  (v) of  T h e o r e m  3.1 
is also satisfied. 

Moreover,  in view of the  equi- integrabi l i ty  of  integral  [15] it is easy  to deduce t h a t  Assump-  
t ion (vi) is fulfilled. 

Finally, let us observe tha t ,  for u(t, s, x) = ~v(s)x, we have 

[u(t,s,x)l <~ I1~11 Fxl, 

which implies t h a t  the  funct ion ~ appear ing  in Assumpt ion  (vii) has the  form 

f (r)  = I I : l l r  

We omi t  o ther  details. 

As a special  case of  equat ion  (4.1), we can consider the  following Vol terra  coun te rpa r t  of  the  
famous  C h a n d r a s e k h a r  quadra t ic  integral  equation: 

t 

0 

Indeed,  here we can pu t  Tx = x, u(t, s, x) = ~(s)  • x, h = 1, and 

t In t + s for t E (0, 1], 
g(t, 8) 

L O, for t = O. 

T h e n  it is easily seen t h a t  the  assumpt ions  of T h e o r e m  4.1 are satisfied. In  fact,  it is sufficient 
to  t ake  Q = 1, q < [[~[[ln2, [[h[[ = 1, g = ln2,  a = c = 0, b = 1, d = [[~vl[ , and to  
choose ~ in such a way t h a t  there  exists  a posi t ive solution of the  inequalit ies 1 -4-[]~][r21n2 
< 2, [[qv[[rln2 < 1. Moreover,  as the  funct ion w appear ing  in Assumpt ion  (4), we can take  the  
modu lus  of  cont inui ty  of  the  funct ion t --+ g(t, 1). 
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