De Branges–Rovnyak spaces and Dirichlet spaces

Nicolas Chevrot, Dominique Guillot ¹, Thomas Ransford ² , ²

Département de Mathématiques et de Statistique, Université Laval, 1045, Avenue de la Médecine, Québec (Québec), Canada G1V 0A6

Received 12 March 2010; accepted 8 July 2010
Available online 31 July 2010
Communicated by N. Kalton

Abstract

Sarason has shown that the local Dirichlet spaces D_λ may be considered as manifestations of de Branges–Rovnyak spaces $H(b)$, and has used this identification to give a new proof that the spaces D_λ are star-shaped. We investigate which other Dirichlet spaces $D(\mu)$ arise as de Branges–Rovnyak spaces, and which other de Branges–Rovnyak spaces $H(b)$ are star-shaped. We also prove a transfer principle which represents $H(b)$-spaces inside D_λ.

© 2010 Elsevier Inc. All rights reserved.

Keywords: Hilbert space; de Branges–Rovnyak space; Dirichlet space

1. Introduction

The spaces now called de Branges–Rovnyak spaces were introduced by de Branges and Rovnyak in the appendix of [1] and further studied in [2]. Subsequently, thanks in large part to the work of Sarason [6–10], it was realized that these spaces have numerous connections with other topics in complex analysis and operator theory.

De Branges–Rovnyak spaces on the unit disk \mathbb{D} are a family of subspaces $H(b)$ of the Hardy space H^2, parametrized by b in the closed unit ball of H^∞. We shall give the precise definition...
of $H(b)$ in Section 2. In general $H(b)$ is not closed in H^2, but it carries its own norm $\| \cdot \|_b$ making it a Hilbert space.

The general theory of $H(b)$-spaces subdivides into two cases, according to whether or not b is an extreme point of the unit ball of H^∞. Perhaps the most important examples of extreme b are inner functions. If b is inner, then it turns out that $H(b) = (bH^2)^\perp$, sometimes called the model space associated to b. These spaces have been studied extensively in the literature.

In this article we shall concentrate on the case where b is not extreme. An interesting example is obtained by taking $b_\lambda(z) := (1 - \tau)z/(1 - \tau z)$, where $\lambda \in \Bbb T$, the unit circle, and $\tau = (3 - \sqrt{5})/2$. With this choice, it turns out that $H(b_\lambda) = D_\lambda$, the so-called local Dirichlet space at λ. The space D_λ was studied in detail by Richter and Sundberg in [5], and the identification $H(b_\lambda) = D_\lambda$ is due to Sarason [9]. The underlying theme of the present paper is to investigate to what extent this example may be considered typical.

Both the local Dirichlet spaces D_λ and the classical Dirichlet space D are instances of a more general family of Dirichlet spaces $D(\mu)$, indexed by finite positive measures μ on the unit circle $\Bbb T$. Indeed, $D_\lambda = D(\delta_\lambda)$, where δ_λ is the unit mass at λ, and $D = D(m)$, where m is normalized Lebesgue measure on $\Bbb T$. The spaces $D(\mu)$ first arose in [4], in connection with the problem of classifying the shift-invariant subspaces of D. For which measures μ does $D(\mu)$ arise as a de Branges–Rovnyak space $H(b)$? In Section 3 we shall show that only such measures are multiples of δ_λ ($\lambda \in \Bbb T$), at the same time recovering Sarason’s identification of the corresponding functions b.

The proof of this result is based on a formula for the inner products of monomials in $H(b)$. This is a special case of a formula, established in Section 4, for the $H(b)$-norm of functions holomorphic on a neighborhood of \overline{D}. To extend this further and treat general holomorphic functions in \mathbb{D}, we are led to consider the problem of approximation of a function f by its expansions $f_r(z) := f(rz)$ ($r < 1$). The spaces D_λ (and more generally $D(\mu)$) enjoy the property of being star-shaped, in the sense that f_r always converges to f. Is the same true of de Branges–Rovnyak spaces $H(b)$? In [9], it is mentioned that a counterexample can be constructed, but, as far as we know, it has never been published. In Section 5 we shall provide two different families of counterexamples, as well as a sufficient condition for $H(b)$ to be star-shaped which covers the case $H(b_\lambda) = D_\lambda$.

In Section 6 we prove a transfer principle which represents $H(b)$ inside D_λ. Thus, despite our results to the effect that $H(b)$ is almost never a local Dirichlet space, it can always be represented inside such a space.

The paper concludes with some open problems.

2. Background

2.1. De Branges–Rovnyak spaces

For $\chi \in L^\infty(\Bbb T)$, the Toeplitz operator $T_\chi : H^2 \to H^2$ is defined by $T_\chi f := P_+ (\chi f)$, where $P_+ : L^2(\Bbb T) \to H^2$ is the canonical projection. Given b in the unit ball of H^∞, the de Branges–Rovnyak space $H(b)$ is the image of H^2 under the operator $(I - T_b T_b^*)^{1/2}$. We define an inner product on $H(b)$ so as to make $(I - T_b T_b^*)^{1/2}$ an isometry from H^2 onto $H(b)$, namely

$$\langle (I - T_b T_b^*)^{1/2} f, (I - T_b T_b^*)^{1/2} g \rangle_b := \langle f, g \rangle_2 \quad (f, g \in (\ker(I - T_b T_b^*)^{1/2})^\perp).$$
The norm of f in $\mathcal{H}(b)$ is denoted by $\|f\|_b$. The space $\mathcal{H}(b)$ is a reproducing kernel Hilbert space, with reproducing kernel

$$k^b_w(z) := \frac{1 - \overline{b(w)}b(z)}{1 - w\overline{z}} \quad (z, w \in \mathbb{D}).$$

For example, if $b \equiv 0$, then $\mathcal{H}(b) = H^2$, and if b is inner, then $\mathcal{H}(b) = (bH^2)^\perp$, the model subspace of H^2. The book [7] contains a wealth of information about the spaces $\mathcal{H}(b)$.

As mentioned in the introduction, the study of de Branges–Rovnyak spaces is governed by a fundamental dichotomy, namely whether or not b is an extreme point of the unit ball of H^∞ (see [7, Chapters IV and V]). For instance, $\mathcal{H}(b)$ contains all functions holomorphic in a neighborhood of \mathbb{D} if and only if b is non-extreme [7, Theorem V-1].

In what follows, we are only interested in the non-extreme case. According to a well-known theorem [3, p. 138], the function b is non-extreme if and only if $\log(1 - |b|^2) \in L^1(\mathbb{T})$. In this case, there is an outer function $a \in H^\infty$ for which $|a|^2 + |b|^2 = 1$ a.e. on \mathbb{T}. Multiplying a by a constant, we may further suppose that $a(0) > 0$, and a is then uniquely determined. Following Sarason [8], we call (b,a) a pair.

Using the pair (b,a), we can express the norm in $\mathcal{H}(b)$ in terms of two H^2-norms.

Theorem 2.1. (See [6, Lemma 2, p. 77].) Let (b,a) be a pair. A function $f \in H^2$ belongs to $\mathcal{H}(b)$ if and only if $T_b f$ belongs to $T_\overline{a} H^2$. In this case there exists a unique function $f^+ \in H^2$ such that $T_b f = T_\overline{a} f^+$, and

$$\|f\|_b^2 = \|f\|_2^2 + \|f^+\|_2^2.$$

Many properties of $\mathcal{H}(b)$ can be expressed in terms of the pair (b,a) and more particularly, in terms of the quotient $\phi := b/a$. Notice that $\phi \in N^+$, the Smirnov space. Conversely, for every function $\phi \in N^+$, there exists a unique pair (b,a) such that $\phi = b/a$ [10, Proposition 3.1].

We next consider Toeplitz operators with unbounded symbols. Given ϕ holomorphic on \mathbb{D}, we define T_ϕ to be the operator of multiplication by ϕ on the domain $D(T_\phi) := \{f \in H^2 : \phi f \in H^2\}$. The bounded analytic Toeplitz operators are those with a symbol in H^∞, and the norm of T_ϕ is then equal to $\|\phi\|_\infty$. For a general ϕ, it can be shown that T_ϕ is densely defined on H^2 if and only if $\phi \in N^+$ [10, Lemma 5.2]. In this case, T_ϕ has a unique adjoint $T^*_{\overline{\phi}}$, and we henceforth define $T_{\overline{\phi}} := T^*_{\overline{\phi}}$. The next theorem shows that de Branges–Rovnyak spaces occur naturally as the domain of such adjoint operators.

Theorem 2.2. (See [10, Proposition 5.4].) Let (b,a) be a pair and let $\phi := b/a$. Then the domain of $T_{\overline{\phi}}$ is $\mathcal{H}(b)$, and $T_{\overline{\phi}} f = f^+ \quad (f \in \mathcal{H}(b))$. Consequently,

$$\|f\|_b^2 = \|f\|_2^2 + \|T_{\overline{\phi}} f\|_2^2 \quad (f \in \mathcal{H}(b)).$$ \hspace{1cm} (1)

In what follows, we shall sometimes need to exchange the order of Toeplitz operators. According to a classical lemma, if $\phi, \psi \in L^\infty(\mathbb{T})$ and if at least one of them belongs to H^∞, then $T_{\overline{\phi}} T_{\overline{\psi}} = T_{\overline{\phi \psi}}$ (see, e.g., [7, p. 9]). As an obvious consequence, if both ϕ and ψ are in H^∞, then $T_{\overline{\phi}}$ and $T_{\overline{\psi}}$ commute. The next result extends this to the case when one of the symbols belongs to N^+.

Theorem 2.3. (See [10, Proposition 6.5].) Let \(\phi \in N^+ \) and \(\psi \in H^\infty \). Then

\[
T_\phi T_\psi f = T_{\phi \psi} f = T_{\overline{\psi} \phi} f \quad (f \in D(T_\phi)).
\]

2.2. Dirichlet spaces

For \(\lambda \in \mathbb{T} \) and \(f \in H^2 \), the local Dirichlet integral of \(f \) at \(\lambda \) is defined by

\[
D_\lambda(f) := \frac{1}{2\pi} \int_\mathbb{T} \left| \frac{f(e^{it}) - f(\lambda)}{e^{it} - \lambda} \right|^2 dt.
\]

Here \(f(\lambda) \) denotes the value of the radial limit of \(f \) at \(\lambda \), assuming that it exists. If \(f \) does not have a radial limit at \(\lambda \), then we set \(D_\lambda(f) := \infty \). The local Dirichlet space at \(\lambda \) is the Hilbert space

\[
D_\lambda := \{ f \in H^2 : \| f \|_2^2 := \| f \|_T^2 + D_\lambda(f) < \infty \}.
\]

Given a finite positive Borel measure \(\mu \) on \(\mathbb{T} \), we define

\[
D_\mu(f) := \int_\mathbb{T} D_\lambda(f) \, d\mu(\lambda) \quad (f \in H^2),
\]

and we associate to \(\mu \) the Hilbert space

\[
D(\mu) := \{ f \in H^2 : \| f \|_\mu^2 := \| f \|_T^2 + D_\mu(f) < \infty \}.
\]

Note that \(D_\lambda \) is just \(D(\delta_\lambda) \), where \(\delta_\lambda \) is the Dirac measure at \(\lambda \).

The Dirichlet integral \(D_\mu(f) \) can also be expressed as an area integral on the disk. Writing \(P_\mu \) for the Poisson integral of \(\mu \), and \(dA \) for area Lebesgue measure, we have

\[
D_\mu(f) = \frac{1}{\pi} \int_\mathbb{D} |f'(z)|^2 P_\mu(z) \, dA(z) \quad (f \in H^2).
\]

For a proof of this, see, e.g., [5, Proposition 2.2]. Thus, in particular, if \(\mu \) is normalized Lebesgue measure on \(\mathbb{T} \), then \(D_\mu(f) \) is just the usual Dirichlet integral of \(f \) and \(D(\mu) \) is the classical Dirichlet space.

For further information on the local Dirichlet integral, we refer to [5].

3. Coincidence of de Branges–Rovnyak spaces and Dirichlet spaces

Our goal in this section is to identify the functions \(b \) and the measures \(\mu \) for which \(\mathcal{H}(b) = D(\mu) \).
Theorem 3.1. Let b be an element of the unit ball of H^∞, and let μ be a finite positive Borel measure on \mathbb{T}. Then $\mathcal{H}(b) = D(\mu)$, with equality of norms, if and only if

$$\mu = c\delta_\lambda \quad \text{and} \quad b(z) = \frac{\sqrt{\tau \alpha \lambda z}}{1 - \tau \lambda z},$$

where $\lambda \in \mathbb{T}$, $c \geq 0$, $\alpha \in \mathbb{C}$ with $|\alpha|^2 = c$, and $\tau \in (0, 1]$ with $\tau + 1/\tau = 2 + c$.

The proof is based on a comparison of inner products of monomials in the two spaces $\mathcal{H}(b)$ and $D(\mu)$. We begin by computing these inner products in $\mathcal{H}(b)$. The first part of the following lemma was already proved in [6, p. 81].

Lemma 3.2. Let (b, a) be a pair and let $\phi := b/a$, say $\phi(z) = \sum_{j \geq 0} c_j z^j$. Then

$$\|z^n\|_b^2 = 1 + \sum_{j=0}^n |c_j|^2 \quad (n \geq 0),$$

$$\langle z^{n+k}, z^n \rangle_b = \sum_{j=0}^n \bar{c}_{j+k} c_j \quad (n \geq 0, \ k \geq 1).$$

Proof. By (1) and the polarization identity, we have

$$\langle f, g \rangle_b = \langle f, g \rangle_2 + \langle T_{\bar{\phi}} f, T_{\bar{\phi}} g \rangle_2 \quad (f, g \in \mathcal{H}(b)). \quad (3)$$

It therefore suffices to compute $\langle T_{\bar{\phi}} (z^{n+k}), T_{\bar{\phi}} (z^n) \rangle_2$. For each $n \geq 0$, we can write $\phi(z) = \sum_{k=0}^n c_k z^k + z^{n+1} \psi_n(z)$, where $\psi_n \in N^+$. Thus

$$T_{\bar{\phi}} (z^n) = \sum_{k=0}^n \bar{c}_k T_{\bar{\psi}} (z^n) + T_{z^{n+1} \psi_n} (z^n).$$

Now $T_{z^k} (z^n) = z^{n-k} \ (0 \leq k \leq n)$. Also, by Theorem 2.3, we have

$$T_{z^{n+1} \psi_n} (z^n) = T_{\bar{\psi}_n} T_{z^{n+1}} (z^n) = T_{\bar{\psi}_n} (0) = 0.$$

It follows that $T_{\bar{\phi}} (z^n) = \sum_{m=0}^n \bar{c}_{n-m} z^m$. Hence

$$\langle T_{\bar{\phi}} (z^{n+k}), T_{\bar{\phi}} (z^n) \rangle_2 = \sum_{m=0}^n \bar{c}_{n+k-m} c_{n-m} = \sum_{j=0}^n \bar{c}_{j+k} c_j.$$

Together with (3) this gives the result. \qed

The next lemma is the corresponding result for $D(\mu)$. We denote by $\langle \cdot, \cdot \rangle_\mu$ the inner product in $D(\mu)$. Also we write $\hat{\mu}(k) := \int_{\mathbb{T}} e^{-ikt} \, d\mu(e^{it}) \ (k \in \mathbb{Z})$.
Lemma 3.3. Let \(\mu \) be a finite positive measure on \(T \). Then

\[
\| z^n \|^2_\mu = 1 + n \mu(T) \quad (n \geq 0),
\]

\[
\langle z^{n+k}, z^n \rangle_\mu = n \hat{\mu}(-k) \quad (n \geq 0, \ k \geq 1).
\]

Proof. By (2) and the polarization identity, we have

\[
\langle f, g \rangle_\mu = \langle f, g \rangle_2 + \frac{1}{\pi} \int_D f'(z) \overline{g'(z)} P_\mu(z) dA(z) \quad (f, g \in D(\mu)).
\]

It thus suffices to compute the last integral with \(f(z) = z^{n+k} \) and \(g(z) = z^n \). With this choice of \(f, g \), we get

\[
\frac{1}{\pi} \int_D (n + k)z^{n+k-1}n\bar{z}^{n-1} P_\mu(z) dA(z) = \frac{1}{\pi} \int_0^{2\pi} \int_0^{2\pi} (n + k)n r^{2n+k-1} e^{ikt} P_\mu(re^{it}) dt dr
\]

\[
= \int_0^{2\pi} 2(n + k)n r^{2n+2k-1} \hat{\mu}(-k) dr
\]

\[
= n \hat{\mu}(-k).
\]

The result follows. \(\square \)

Proof of Theorem 3.1. Suppose that \(H(b) = D(\mu) \), with equality of norms. Notice first that every function holomorphic on a neighborhood of \(\mathbb{D} \) belongs to \(D(\mu) \), and therefore also to \(H(b) \). By [7, p. 37], this implies that \(b \) is not an extreme point in the unit ball of \(H^\infty \). Thus there exists an outer function \(a \) such that \((b, a) \) forms a pair, and we may consider \(\phi(z) := b(z)/a(z) = \sum_{j \geq 0} c_j z^j \), say.

The next step is to determine the coefficients \(c_j \). Since \(\| z^n \|_b = \| z^n \|_\mu \) for all \(n \), Lemmas 3.2 and 3.3 give

\[
1 + \sum_{j=0}^{n} |c_j|^2 = 1 + n \mu(T) \quad (n \geq 0).
\]

Hence \(c_0 = 0 \) and \(|c_j|^2 = \mu(T) \) for all \(j \geq 1 \). Also, since \(\langle z^{n+1}, z^n \rangle_b = \langle z^{n+1}, z^n \rangle_\mu \) for all \(n \), the same lemmas imply that

\[
\sum_{j=0}^{n} \bar{c}_{j+1} c_j = n \hat{\mu}(-1) \quad (n \geq 0).
\]

Hence \(\bar{c}_{j+1} c_j = \hat{\mu}(-1) \) for all \(j \geq 1 \). Putting these facts together, it follows that \(c_j = \alpha \bar{\lambda}^j \) for all \(j \geq 1 \), where \(\lambda \in \mathbb{T} \) and \(\alpha \in \mathbb{C} \) with \(|\alpha|^2 = \mu(T) \).
Next, we determine μ. Using Lemmas 3.2 and 3.3 once again, we have

$$\hat{\mu}(-k) = \langle z^{k+1}, z \rangle_{\mu} = \langle z^{k+1}, z \rangle_{b} = \sum_{j=0}^{1} c_{j+k} c_{j} = |\alpha|^2 \lambda^k = \mu(\mathbb{T}) \lambda^k \quad (k \geq 1).$$

Since μ is a real measure, the same relation holds for all $k \leq -1$, and clearly it is also true for $k = 0$. Thus μ has the same Fourier coefficients as the measure $c \delta_{\lambda}$, where $c = \mu(\mathbb{T})$, and we conclude that $\mu = c \delta_{\lambda}$.

It remains to determine b. To do this, we follow the method in [9]. Note first that

$$\phi(z) = \sum_{j \geq 0} c_{j} z^{j} = \sum_{j \geq 1} \alpha^{j} \lambda^{j} z^{j} = \frac{\alpha \lambda z}{1 - \lambda z} \quad (z \in \mathbb{D}).$$

Since $\phi = b/a$ and $|a|^2 + |b|^2 = 1$ a.e. on \mathbb{T}, it follows that $|a|^2 = 1/(1 + |\phi|^2)$ a.e. on \mathbb{T}. Thus

$$|a(z)|^2 = \frac{|1 - \lambda z|^2}{|1 - \lambda z|^2 + |a|^2} \quad \text{a.e. on } \mathbb{T}.$$

A simple calculation shows that $|1 - \lambda z|^2 + |a|^2 = \tau^{-1} |1 - \tau \lambda z|^2$ for $z \in \mathbb{T}$, where $\tau \in (0, 1]$ is chosen so that $\tau + 1/\tau = 2 + |a|^2 = 2 + c$. As a is an outer function, it follows that

$$a(z) = \sqrt{\tau} \frac{1 - \lambda z}{1 - \tau \lambda z} \quad (z \in \mathbb{D}).$$

Hence, finally,

$$b(z) = a(z) \phi(z) = \frac{\sqrt{\tau} \alpha \lambda z}{1 - \tau \lambda z} \quad (z \in \mathbb{D}).$$

This completes the proof of the “only if”.

For the “if”, note that with the given choice of b, μ, working back through the calculations above we get $(z^{n+k}, z^{n})_{b} = (z^{n+k}, z^{n})_{\mu}$ for all $n, k \geq 0$. Since polynomials are dense both in $\mathcal{H}(b)$ [7, IV-3, p. 25] and in $\mathcal{D}(\mu)$ [4, Corollary 3.8], we deduce that $\mathcal{H}(b) = \mathcal{D}(\mu)$, with equality of norms.

What if $\mathcal{H}(b) = \mathcal{D}(\mu)$ without equality of norms? Since both $\mathcal{H}(b)$ and $\mathcal{D}(\mu)$ embed boundedly into H^2, using the closed graph theorem it is easy to see that the norms $\| \cdot \|_{b}$ and $\| \cdot \|_{\mu}$ must be equivalent. Do there exist measures μ, other than point masses, for which $\mathcal{D}(\mu) = \mathcal{H}(b)$ with equivalence of norms?

4. Formulas for the norm in de Branges–Rovnyak spaces

Lemma 3.2 provides a formula for the inner product of monomials in $\mathcal{H}(b)$, expressed in terms of the coefficients c_{j} of the function ϕ. Since polynomials are dense in $\mathcal{H}(b)$, we might expect there to be an analogous formula for the norms of more general functions. The following theorem, which is implicit in [10], is a first step in this direction.
Theorem 4.1. Let \((b,a)\) be a pair, and let \(\phi := b/a\), say \(\phi(z) = \sum_{j \geq 0} c_j z^j\). Let \(f\) be holomorphic in a neighborhood of \(\mathbb{D}\), say \(f(z) = \sum_{j \geq 0} \hat{f}(j) z^j\). Then the series \(\sum_{j \geq 0} \hat{f}(j + k) \hat{\epsilon}_j\) converges absolutely for each \(k\), and

\[
\|f\|_b^2 = \sum_{k \geq 0} |\hat{f}(k)|^2 + \sum_{k \geq 0} \left| \sum_{j \geq 0} \hat{f}(j + k) \hat{\epsilon}_j \right|^2.
\]

(4)

Proof. Suppose first that \(f\) is a polynomial, of degree \(n\) say. In this case, we argue as in the proof of Lemma 3.2. Writing \(\phi(z) = \sum_{n \geq 0} c_j z^j + z^{n+1} \psi_n(z)\), where \(\psi_n \in \mathbb{N}^+\), we have

\[
T_{z^{n+1} \psi_n}(f) = T_{\psi_n} T_{z^{n+1}}(f) = T_{\psi_n}(0) = 0,
\]

and so

\[
T_{\hat{\phi}}(f) = \sum_{j=0}^n \hat{\epsilon}_j T_{z^j}(f) = \sum_{j=0}^n \hat{\epsilon}_j \sum_{k=0}^{n-j} \hat{f}(j + k) z^k = \sum_{k=0}^n \sum_{j=0}^{n-k} \hat{f}(j + k) \hat{\epsilon}_j z^k.
\]

Using Theorem 2.2, we obtain

\[
\|f\|_b^2 = \|f\|_2^2 + \|T_{\hat{\phi}} f\|_2^2 = \sum_{k=0}^n |\hat{f}(k)|^2 + \sum_{k=0}^n \sum_{j=0}^{n-k} |\hat{f}(j + k) \hat{\epsilon}_j|^2,
\]

which proves the theorem in this case.

For the general case, let us write \(f_n(z) := \sum_{j=0}^n \hat{f}(j) z^j\). By what we have already proved, we have

\[
\|f_n\|_b^2 = \sum_{k=0}^n |\hat{f}(k)|^2 + \sum_{k=0}^n \sum_{j=0}^{n-k} |\hat{f}(j + k) \hat{\epsilon}_j|^2.
\]

(5)

Fix \(R > 1\) such that \(f\) is holomorphic in a neighborhood of \(\mathbb{D}(0, R)\). Then \(\hat{f}(j) = O(R^{-j})\) as \(j \to \infty\). Since \(c_j = O(R^j)\) for each \(R' \in (1, R)\), it follows that the series \(\sum_{j \geq 0} \hat{f}(j + k) \hat{\epsilon}_j\) converges absolutely for each \(k\). Thus, as \(n \to \infty\), the right-hand side of (5) converges to the right-hand side of (4). Also, using Lemma 3.2, we have, for each \(R' \in (1, R)\),

\[
\|f_n z^k\|_b = |\hat{f}(k)| \left(1 + \sum_{j=0}^k |c_j|^2 \right)^{1/2} = O((R'/R)^k) \quad \text{as} \quad k \to \infty.
\]

Thus the Taylor series of \(f\) converges in the norm of \(\mathcal{H}(b)\). The norm limit agrees with \(f\) on the unit disk, because norm convergence implies pointwise convergence. Therefore the left-hand side of (5) converges to the left-hand side of (4) as \(n \to \infty\). This completes the proof. □
It is instructive to look at what formula (4) gives when \(\mathcal{H}(b) = D_\lambda \). Recall that, in this case,
\(c_0 = 0 \) and
\(c_j = \tilde{\lambda}^j \) for all \(j \geq 1 \). Thus formula (4) becomes

\[
D_\lambda(f) = \sum_{k \geq 0} \left| \sum_{j \geq 1} \hat{f}(j + k) \lambda^j \right|^2.
\]

Writing \(S \) for the shift operator on \(H^2 \), and \(S^* \) for its adjoint, namely \(S^* f(z) := (f(z) - f(0))/z \), we obtain

\[
D_\lambda(f) = \sum_{k \geq 1} |(S^k f)(\lambda)|^2.
\]

This formula is already known. It is implicit in [5], and explicit in [11].

Although we have proved (6) only for functions holomorphic on a neighborhood of \(\bar{D} \), when suitably interpreted it is actually valid for all functions holomorphic in \(D \), thereby providing a test for membership of \(D_\lambda \). For the formula to make sense, we interpret \(S^k f(\lambda) \) as the radial limit of \(S^k f \) at \(\lambda \) if this limit exists, and we set \(|S^k f(\lambda)| := \infty \) otherwise. This version of the formula can be deduced from the more restricted version by considering the functions \(f_r(z) := f(rz) \) and using the fact that \(D_\lambda(f_r) \to D_\lambda(f) \) as \(r \to 1 \) (see [5, p. 377]).

This naturally raises the question of whether a similar approximation procedure is possible in general \(\mathcal{H}(b) \)-spaces. This is the subject of the next section.

5. Star-shapedness of de Branges–Rovnyak spaces

Throughout this section we assume that \(b \) is a non-extreme point of the unit ball of \(H^\infty \), that \((b, a) \) is a pair, and that \(\phi = b/a \) is the associated function in \(N^+ \).

Given \(f \in \mathcal{H}(b) \) and \(r \in (0, 1) \), we write \(f_r(z) := f(rz) \). As \(f_r \) is holomorphic on a neighborhood \(\bar{D} \), we certainly have \(f_r \in \mathcal{H}(b) \). By the closed graph theorem, \(C_r : \mathcal{H}(b) \to \mathcal{H}(b) \), defined by \(C_r f := f_r \), is bounded linear map.

We seek to determine whether \(\lim_{r \to 1} \| f_r - f \|_b = 0 \) for all \(f \in \mathcal{H}(b) \). A space \(\mathcal{H}(b) \) for which this holds is called star-shaped. The following proposition provides some criteria for \(\mathcal{H}(b) \) to be star-shaped.

Proposition 5.1. The following are equivalent:

(i) \(\lim_{r \to 1} \| f_r - f \|_b = 0 \) for all \(f \in \mathcal{H}(b) \);
(ii) \(\sup_{r < 1} \| f_r \|_b < \infty \) for all \(f \in \mathcal{H}(b) \);
(iii) \(\sup_{r < 1} \| C_r \|_{\mathcal{H}(b) \to \mathcal{H}(b)} < \infty \).

Proof. Obviously (i) implies (ii), and the Banach–Steinhaus theorem shows that (ii) implies (iii). Finally (iii) implies (i), because \(\lim_{r \to 0} \| f_r - f \|_b = 0 \) when \(f \) is a polynomial, and polynomials are dense in \(\mathcal{H}(b) \) (see [7, p. 25]). □

The following weak version of (ii) always holds.
Theorem 5.2. If \(f \in \mathcal{H}(b) \), then
\[
\log^+ \| f_r \|_b = o\left(\frac{1}{1-r} \right) \quad \text{as} \ r \to 1.
\] (7)

Proof. Let \(g \in aH^2 \). Then
\[
\| \langle T_{\phi} f_r, g \rangle \|_2 = \| \langle f, \phi_r g \rangle \|_2 \leq \| f \|_2 \| \phi_r \|_\infty \| g \|_2.
\]
As \(a \) is outer, \(aH^2 \) is dense in \(H^2 \), and therefore \(\| T_{\phi} f_r \|_2 \leq \| \phi_r \|_\infty \| f \|_2 \). From (1) we get \(\| f_r \|_b \leq \max\{\| \phi_r \|_\infty, 1\} \| f \|_2 \). Thus, to prove the theorem, it suffices to show that \(\log^+ \| \phi_r \|_\infty = o(1/(1-r)) \) as \(r \to 1^- \).

Let us write \(\phi^* \) for the radial limit function of \(\phi \) on \(\mathbb{T} \). Then, for all \(z \in \mathbb{D} \), all \(r \in (0,1) \) and all \(K > 1 \), we have
\[
\log^+ |\phi(rz)| \leq \frac{1}{2\pi} \int_0^{2\pi} \frac{1-|rz|^2}{|e^{it} - rz|^2} \log^+ |\phi^*(e^{it})| \, dt
\]
\[
\leq \log K + \frac{1}{2\pi} \int_0^{2\pi} \frac{1-|rz|^2}{|e^{it} - rz|^2} \log^+ |\phi^*(e^{it})| \, dt
\]
\[
\leq \log K + \frac{2}{1-r} \frac{1}{2\pi} \int_0^{2\pi} \log^+ |\phi^*(e^{it})| \, dt.
\]
Therefore
\[
\log^+ \| \phi_r \|_\infty \leq \log K + \frac{2}{1-r} \frac{1}{2\pi} \int_0^{2\pi} \log^+ |\phi^*(e^{it})| \, dt.
\]
As \(K \) is arbitrary, we get \(\log^+ \| \phi_r \|_\infty = o(1/(1-r)) \) as \(r \to 1 \), as required. \(\square \)

We shall see shortly that (7) cannot be improved, in general. However, the first part of the preceding argument can be adapted to provide a simple condition on \(\phi \) which guarantees that \(\mathcal{H}(b) \) is star-shaped.

Theorem 5.3. If \(\phi_r/\phi \) is bounded on \(\mathbb{D} \), then
\[
\| C_r \|_{\mathcal{H}(b) \to \mathcal{H}(b)} \leq \max\{ \| \phi_r/\phi \|_\infty, 1\}.
\]
Consequently, if \(\sup_{r<1} \| \phi_r/\phi \|_\infty < \infty \), then \(\mathcal{H}(b) \) is star-shaped.
Proof. Let \(f \in \mathcal{H}(b) \) and let \(g \in aH^2 \). Then
\[
\left| \langle T_{\phi} fr, g \rangle \right|_2 = \left| \langle f, \phi g_r \rangle \right|_2 = \left| \langle T_{\phi} f, (\phi r/\phi)g_r \rangle \right|_2 \leq \|T_{\phi} f\|_2 \|\phi r/\phi\| \|g\|_2.
\]
As \(a \) is outer, \(aH^2 \) is dense in \(H^2 \), and therefore \(\|T_{\phi} fr\|_2 \leq \|T_{\phi} f\|_2 \|\phi r/\phi\|_\infty \). From (1) we get
\[
\|fr\|_b \leq \max\{\|\phi r/\phi\|_\infty, 1\} \|f\|_b,
\]
whence the result.

As a special case, we recover a result that we cited in Section 4. This is essentially Sarason’s proof in [9].

Corollary 5.4. The space \(\mathcal{D}_\lambda \) is star-shaped and \(\|Cr\| \rightarrow \mathcal{D}_\lambda \leq 1 \) for all \(r \in (0, 1) \).

Proof. We have \(\mathcal{D}_\lambda = \mathcal{H}(b) \) with \(\phi(z) = \frac{\lambda z}{1 - \lambda z} \). Therefore, for \(r \in (0, 1) \), we obtain
\[
\|Cr\| \rightarrow \mathcal{D}_\lambda \leq \max\left\{\frac{2r}{1 + r}, 1\right\} = 1.
\]

If \(\sup_{r \leq 1} \|\phi r/\phi\|_\infty < \infty \), then necessarily \(\phi(z) = z^k \phi_o(z) \), where \(\phi_o \) is outer and \(1/\phi_o \) is bounded (or, equivalently, \(b(z) = z^k b_o(z) \), where \(b_o \) is outer and \(1/b_o \) is bounded). The example in Corollary 5.4 is thus rather typical. Based on this, one might guess that \(\mathcal{H}(b) \) is star-shaped whenever \(1/b \) is bounded. We shall now prove that this is not the case.

Theorem 5.5. Let \(\rho : (0, 1) \rightarrow \mathbb{R}^+ \) be a function such that \(\rho(r) = o(1/(1 - r)) \) as \(r \rightarrow 1 \). Then there exist \(b \) (non-extreme in the ball of \(H^\infty \)) and \(f \in \mathcal{H}(b) \) such that
\[
\limsup_{r \rightarrow 1} \frac{\log \|fr\|_b}{\rho(r)} = \infty.
\]
The function \(b \) may be chosen to be outer with \(1/b \) bounded.

Remarks.

(i) Taking \(\rho \equiv 1 \) in the theorem, we obtain the promised example showing that \(\mathcal{H}(b) \) need not be star-shaped, even if \(1/b \) is bounded.

(ii) The theorem also shows that the estimate (7) cannot be improved.

The proof of the theorem is based on two lemmas.

Lemma 5.6. Given \(b, \phi \) as above,
\[
\|Cr\|_{\mathcal{H}(b) \rightarrow \mathcal{H}(b)}^2 \geq \sup_{w \in \mathbb{D}} \frac{1 + |\phi(rw)|^2}{1 + |\phi(w)|^2} \frac{1 - |w|^2}{1 - r^2 |w|^2}.
\]

Proof. Let \(k_w(z) := 1/(1 - wz) \) be the reproducing kernel for \(H^2 \). Then \(T_{\phi} k_w = \overline{\phi(w)} k_w \). Hence
\[
\|k_w\|^2_b = \|k_w\|^2 + \|T_{\phi} k_w\|^2 = \|k_w\|^2 + |\phi(w)|^2 \|k_w\|^2 = \frac{1 + |\phi(w)|^2}{1 - |w|^2}.
\]
Likewise
\[\|C_r k_w\|_b^2 = \|k_{rw}\|_b^2 = \frac{1 + |\phi(rw)|^2}{1 - r^2|w|^2}. \]

The result follows. \(\Box \)

Lemma 5.7. Let \(\rho : (0, 1) \to \mathbb{R}^+ \) be a function such that \(\rho(r) = o(1/(1 - r)) \) as \(r \to 1 \). Then there exists an outer function \(\phi \) on \(\mathbb{D} \) such that \(|\phi| \geq 1 \) and

\[\limsup_{r \to 1} \frac{\log(|\phi(r^2)|/|\phi(r)|)}{\rho(r)} = \infty. \]

Proof. Fix a positive sequence \((\epsilon_n) \) such that the series \(\sum k \epsilon_k \) converges and satisfies \(\sum_{k>n} \epsilon_k = o(\epsilon_n) \) as \(n \to \infty \). For example, \(\epsilon_n := e^{-n^2} \) will do. Since \(\lim_{r \to 1} \rho(r)(1-r) = 0 \), there exists an increasing sequence \(r_n \to 1 \) such that \(\rho(r_n)(1-r_n)/\epsilon_n \to 0 \) as \(n \to \infty \). Define

\[s_n := \frac{1 - r_n}{1 + r_n} \quad \text{and} \quad t_n := \frac{1 - t_n^2}{1 + t_n^2}. \]

Let \(\psi \) be the outer function on the upper half-plane whose non-tangential limit \(\psi^* \) on \(\mathbb{R} \) satisfies

\[\log |\psi^*| = \sum_{k \geq 1} \left(\epsilon_k / t_k \right) 1_{[t_k, 2t_k]} \quad \text{a.e. on } \mathbb{R}. \]

Note that

\[\frac{1}{\pi} \int_{\mathbb{R}} \frac{\log |\psi^*(x)|}{1 + x^2} \, dx \leq \sum_{k \geq 1} \epsilon_k < \infty, \]

so \(\psi \) is well defined and \(|\psi| \geq 1 \). Define \(\phi \) on the unit disk by

\[\phi(z) := \psi \left(i \frac{1 - z}{1 + z} \right) \quad (|z| < 1). \]

Then \(\phi \) is also an outer function and \(|\phi| \geq 1 \). We shall show that this function \(\phi \) satisfies the conclusion of the lemma.

For each \(n \geq 1 \), we have

\[\log |\phi(r_n^2)/\phi(r_n)| = \log |\psi(it_n)| - \log |\psi(is_n)| \]

\[= \frac{1}{\pi} \int_{\mathbb{R}} \left(\frac{t_n}{t_n^2 + x^2} - \frac{s_n}{s_n^2 + x^2} \right) \log |\psi^*(x)| \, dx \]

\[= \frac{1}{\pi} \sum_{k \geq 1} \epsilon_k \frac{2t_k}{t_k} \int_{t_k} \left(\frac{t_n}{t_n^2 + x^2} - \frac{s_n}{s_n^2 + x^2} \right) \, dx. \]
Now, if \(x \geq t_n \), then
\[
\frac{t_n}{t_n^2 + x^2} - \frac{s_n}{s_n^2 + x^2} = \frac{(t_n - s_n)(x^2 - s_n t_n)}{(t_n^2 + x^2)(s_n^2 + x^2)} \geq \left(\frac{t_n}{s_n} - 1 \right) \frac{1}{t_n} \geq \frac{r_n^2}{1 - r_n}.
\]
Therefore, if \(1 \leq k \leq n \), then
\[
\frac{\epsilon_k}{t_k} \int_{t_k}^{2t_k} \left(\frac{t_n}{t_n^2 + x^2} - \frac{s_n}{s_n^2 + x^2} \right) dx \geq \epsilon_k \frac{r_n^2}{1 - r_n}.
\]
Also, for every \(k \), we clearly have
\[
\frac{\epsilon_k}{t_k} \int_{t_k}^{2t_k} \left(\frac{t_n}{t_n^2 + x^2} - \frac{s_n}{s_n^2 + x^2} \right) dx \geq -\frac{\epsilon_k}{t_k} \int_{t_k}^{2t_k} \frac{s_n}{s_n^2 + x^2} dx \geq -\frac{\epsilon_k}{s_n} \geq -\frac{2\epsilon_k}{1 - r_n}.
\]
Putting this information together, we deduce that
\[
\log \left| \frac{\phi(r_n^2)}{\phi(r_n)} \right| \geq \frac{r_n^2}{1 - r_n} \sum_{k \leq n} \epsilon_k - \frac{2}{1 - r_n} \sum_{k > n} \epsilon_k.
\]
Since \(\sum_{k > n} \epsilon_k = o(\epsilon_n) \), it follows that \(\log |\phi(r_n^2)/\phi(r_n)| \geq C \epsilon_n/(1 - r_n) \), where \(C \) is a positive constant independent of \(n \). Hence, finally,
\[
\frac{\log \left| \frac{\phi(r_n^2)}{\phi(r_n)} \right|}{\rho(r_n)} \geq \frac{C \epsilon_n}{(1 - r_n) \rho(r_n)} \rightarrow \infty \quad \text{as } n \rightarrow \infty.
\]
This completes the proof. \(\square \)

Proof of Theorem 5.5. Let \(\phi \) be the function given by Lemma 5.7, and let \(b \) be the associated element of the unit ball of \(H^\infty \). Note that \(b \) is outer and \(1/b \) is bounded. By Lemma 5.6, applied with \(w = r \), we have
\[
\|C_r\|_{\mathcal{H}(b) \rightarrow \mathcal{H}(b)} \geq \frac{1}{2} \frac{1 + |\phi(r^2)|^2}{1 + |\phi(r)|^2} \geq \frac{1}{4} \frac{|\phi(r^2)|^2}{|\phi(r)|^2} \quad (0 < r < 1).
\]
Therefore,
\[
\limsup_{r \rightarrow 1} \frac{\log \|C_r\|_{\mathcal{H}(b) \rightarrow \mathcal{H}(b)}}{\rho(r)} \geq \limsup_{r \rightarrow 1} \frac{\log |\phi(r^2)/\phi(r)|}{\rho(r)} = \infty.
\]
Thus, there exist sequences \(r_n \rightarrow 1 \) and \(A_n \rightarrow \infty \) such that
\[
\left\| e^{-A_n \rho(r_n)} C_{r_n} \right\|_{\mathcal{H}(b) \rightarrow \mathcal{H}(b)} \rightarrow \infty.
\]
By the Banach–Steinhaus theorem, there exists $f \in \mathcal{H}(b)$ such that

$$\limsup_{n \to \infty} \|e^{-A_n \rho(r_n)} C_{r_n} f\|_b = \infty.$$

This gives the desired conclusion. □

If we multiply b by an inner function u, then a does not change, and the corresponding ϕ is also multiplied by u. How does multiplication by an inner function affect the star-shapedness of the corresponding de Branges–Rovnyak space?

There is one simple case: if $\mathcal{H}(b)$ is star-shaped, then so is $\mathcal{H}(z^k b)$ for every k. Indeed, a calculation like (8) shows that

$$\|C_r\|_{\mathcal{H}(z^k b)\to \mathcal{H}(z^k b)} \leq r^k \|C_r\|_{\mathcal{H}(b)\to \mathcal{H}(b)} \quad (0 < r < 1).$$

For general inner factors, however, the situation is very different.

Theorem 5.8. If $\|b\|_\infty = 1$, then there is a Blaschke product u such that $\mathcal{H}(ub)$ is not star-shaped.

Remark. In the other case, namely when $\|b\|_\infty < 1$, the space $\mathcal{H}(ub)$ is star-shaped for every inner function u. Indeed, $\|T_{ub}\| < 1$, so $(I - T_{ub}^* T_{ub})^{1/2}$ is an invertible operator on H^2, and the inclusion $\mathcal{H}(ub) \subset H^2$ is a surjection.

To prove the theorem, we need a further lemma.

Lemma 5.9. Let $(\theta_n), (s_n)$ be sequences in $[0, 2\pi]$ and $(0, 1)$ respectively. Then there exist a sequence $r_n \in (s_n, 1)$ and Blaschke product u such that $u(r_n e^{i\theta_n}) = 0$ for all n and $\inf_n |u(r_n^2 e^{i\theta_n})| > 0$.

Proof. Let σ denote the pseudo-hyperbolic metric on \mathbb{D}, defined by

$$\sigma(z, w) := \frac{|z - w|}{1 - \bar{z}w} \quad (z, w \in \mathbb{D}).$$

For w fixed, we have $\sigma(z, w) \to 1$ as $|z| \to 1$. Thus, we may inductively choose a sequence $r_n \in (0, 1)$ so that, if $z_n := r_n e^{i\theta_n}$ and $w_n := r_n^2 e^{i\theta_n}$, then

$$\sigma(z_n, w_m) \geq \exp(-2^{-m}) \quad (m = 1, \ldots, n - 1),$$

$$\sigma(w_n, z_m) \geq \exp(-2^{-m}) \quad (m = 1, \ldots, n - 1).$$

We may further suppose that $r_n \in (s_n, 1)$ for all n, and that $\sum_n (1 - r_n) < \infty$. Let u be the Blaschke product defined by

$$u(z) := \prod_{m=1}^{\infty} \frac{|z_m|}{z_m} \frac{z_m - z}{1 - \bar{z}_m z}.$$
Clearly \(u(z_n) = 0 \) for all \(n \). Also, for each \(n \),
\[
|u(w_n)| = \prod_{m=1}^{\infty} \sigma(z_m, w_n)
= \sigma(z_n, w_n) \prod_{1 \leq m < n} \sigma(z_m, w_n) \prod_{m > n} \sigma(z_m, w_n)
\geq \frac{r_n - r_n^2}{1 - r_n^3} \prod_{1 \leq m < n} \exp(-2^{-m}) \prod_{m > n} \exp(-2^{-m})
\geq \frac{r_n - r_n^2}{1 - r_n^3} e^{-1} \rightarrow \frac{1}{3} e^{-1} \quad \text{as } n \rightarrow \infty.
\]

This completes the proof of the lemma. \(\square \)

Proof of Theorem 5.8. Since \(\|b\|_{\infty} = 1 \), it follows that \(\phi \) is unbounded (in fact the two conditions are equivalent). Choose \((\theta_n)\) such that the radial limit \(\phi(e^{i\theta_n}) \) exists and satisfies \(|\phi(e^{i\theta_n})| > n \) for all \(r \in (s_n, 1) \). Let \((r_n)\) and \(u \) be as given by Lemma 5.9. By Lemma 5.6 (applied with \(w = r_n e^{i\theta_n} \)), we have
\[
\|C_{r_n}\|_{\mathcal{H}(ub) \rightarrow \mathcal{H}(ub)}^2 \geq \frac{1 + |(u\phi)(r_n^2 e^{i\theta_n})|^2}{1 + |(u\phi)(r_n e^{i\theta_n})|^2} \frac{1 - r_n^2}{1 - r_n^4}
\geq \frac{1}{2} |u(r_n^2 e^{i\theta_n})|^2 |\phi(r_n^2 e^{i\theta_n})|^2 \rightarrow \infty \quad \text{as } n \rightarrow \infty.
\]

Now apply Proposition 5.1. \(\square \)

The counterexamples in this section still leave open the possibility that, given any \(b \) and any \(f \in \mathcal{H}(b) \), there exists a sequence \(r_n \rightarrow 1 \), depending on \(b, f \), such that \(\|f - f_{r_n}\|_b \rightarrow 0 \). Can this be ruled out?

6. A transfer principle

The preceding sections demonstrate that the local Dirichlet spaces \(\mathcal{D}_\lambda \) are not typical de Branges–Rovnyak spaces. In this section we shall prove a result that points in the other direction, to the effect that de Branges–Rovnyak spaces can always be represented inside local Dirichlet spaces.

Theorem 6.1. Let \((b, a)\) be a pair. Set \(\psi(z) := (1 - z)b(z)/a(z) \), and define \(W : \mathcal{H}(b) \rightarrow H^2 \) by
\[
W(f) := zT_\psi f \quad (f \in \mathcal{H}(b)).
\]

Then:

(i) \(W \) is well defined on \(\mathcal{H}(b) \);
(ii) the kernel of \(W \) equals \((b_i H^2)^\perp\), where \(b_i \) is the inner factor of \(b \);
(iii) the image of W is contained in the local Dirichlet space \mathcal{D}_1, and

$$f^+(z) = \frac{Wf(z) - Wf(1)}{z - 1} \quad (f \in \mathcal{H}(b)).$$

(9)

A great deal is known about the local Dirichlet spaces \mathcal{D}_λ. For example, there is a remarkable formula due to Richter and Sundberg (generalizing an earlier formula of Carleson in the classical Dirichlet space) expressing $\mathcal{D}_\lambda(f)$ in terms of the factorization $f = OSB$ (outer function, singular inner function, Blaschke product). For more on this see [5, Theorem 3.1]. In principle, at least, Theorem 6.1 allows us to exploit this knowledge to obtain information about general $\mathcal{H}(b)$-spaces. In practice, the success of this endeavor depends on being able to identify the operator W, which means understanding the Toeplitz operator T_Ψ.

We shall deduce Theorem 6.1 from an abstract transfer principle. To be able to state this principle, we need an alternative notation for the function f^+, one that indicates the dependence on b. Accordingly, we shall write $[f]_b := f^+$.

Theorem 6.2. Let (b, a) and (B, A) be pairs. Let $B = B_iB_o$ be the inner-outer factorization of B, and suppose that $1/B_o$ is bounded. Set $\psi := bA/aB_o$, and define $W : \mathcal{H}(b) \to H^2$ by

$$W(f) := B_iT_\psi f \quad (f \in \mathcal{H}(b)).$$

Then:

(i) W is well defined on $\mathcal{H}(b);
(ii) the kernel of W equals $(b_1H^2)\perp$, where b_1 is the inner factor of b;
(iii) the image of W is contained in $\mathcal{H}(B)$, and

$$[Wf]_B = [f]_b \quad (f \in \mathcal{H}(b)).$$

Proof. (i) Let us begin by noting that $\psi \in N^+$, so the Toeplitz operator T_ψ is defined at least on polynomials. Also, using Theorem 2.3, we have $T_\psi = T_\Lambda B_o T_{b/a}$, so the domain of T_ψ includes the domain of $T_{b/a}$, which equals $\mathcal{H}(b)$. Thus W is well defined on $\mathcal{H}(b)$.

(ii) Let $b = b_1b_o$ be the inner-outer factorization of b. By [7, II-6, p. 10], we have $\mathcal{H}(b) = \mathcal{H}(b_1) \oplus b_1\mathcal{H}(b_o)$, where the direct sum is orthogonal with respect to the inner product in $\mathcal{H}(b)$.

The first summand $\mathcal{H}(b_1)$ is just the model space $(b_1H^2)\perp$, and we shall now show that it is exactly the kernel of W.

Let $f \in \mathcal{H}(b)$. Then using the fact that outer functions are cyclic in H^2, we have

$$f \in \ker W \iff T_\psi f = 0$$

$$\iff \langle T_\psi f, aB_o h \rangle_2 = 0 \quad (h \in H^2)$$

$$\iff \langle f, bAh \rangle_2 = 0 \quad (h \in H^2)$$

$$\iff f \in (bAH^2)\perp = (b_1H^2)\perp.$$
(iii) Let \(f \in \mathcal{H}(b) \). Then, in the notation introduced just before the statement of the theorem, we have \([f]_b = T_{B/\alpha} f \in H^2\). Therefore,

\[
T_B(Wf) = T_B(B_i T_{\bar{\psi}} f) = T_B(T_{\bar{\psi}} f) = T_{\bar{\psi} B/a} f = T_{\bar{\psi} A}([f]_b).
\]

By Theorem 2.1, it follows that \(Wf \in \mathcal{H}(B) \) and that \([Wf]_B = [f]_b\). \(\square\)

Proof of Theorem 6.1. Let \((B, A)\) be the pair for which \(B/A = z/(1 - z)\). As we have seen in Section 3, \(\mathcal{H}(B)\) is then just the local Dirichlet space \(\mathcal{D}_1\). Thus all of Theorem 6.1 follows immediately from Theorem 6.2, except for the final formula (9). For this, we need to identify \([Wf]_B\).

Given \(g \in \mathcal{D}_1 \), we have \([g]_B = T_{B/A} g\). Hence, for \(h \in A H^2 \),

\[
\langle [g]_B, h \rangle_2 = \left(g, \frac{B}{A} h \right)_2 = \left(g, \frac{zh}{1 - z} \right)_2 = \left(\frac{g - g(1)}{z - 1}, h \right)_2.
\]

As \((g - g(1))/(z - 1) \in H^2 \) and \(A H^2 \) is dense in \(H^2 \), it follows that

\[
[g]_B = \frac{g(z) - g(1)}{z - 1}.
\]

Taking \(g = Wf \), we obtain (9). This completes the proof. \(\square\)

7. Some open problems

(1) Do there exist measures \(\mu \) on \(T \), other than point masses, such that \(D(\mu) = \mathcal{H}(b) \) for some \(b \)? We do not assume equality of norms, though, as observed earlier, the norms must be equivalent. In these circumstances, we can no longer expect \(b \) to be determined by \(\mu \). For example, if \(\mu = 0 \), then \(D(\mu) = H^2 \), and there are many \(b \) for which the inclusion of \(\mathcal{H}(b) \) in \(H^2 \) is surjective—indeed any \(b \in H^\infty \) with \(\|b\|_\infty < 1 \) will do.

(2) A simple weak compactness argument shows that, if \(f \) is holomorphic on \(D \) and \(\lim_{r \to 1} \|f_r\|_b < \infty \), then \(f \in \mathcal{H}(b) \) and \(\|f\|_b \leq \lim_{r \to 1} \|f_r\|_b \). In the other direction, does \(f \in \mathcal{H}(b) \) imply that \(\lim_{r \to 1} \|f_r\|_b < \infty \)? If so, then do we also have \(\lim_{r \to 1} \|f_r - f\|_b = 0 \)? We have seen that the answer to both questions is ‘no’ if ‘lim inf’ is replaced by ‘lim sup’.

(3) Is it possible to characterize those \(b \) (or those \(\phi \)) for which \(\mathcal{H}(b) \) is star-shaped? As the inequality (8) makes clear, the problem boils down to being able to estimate \(|\langle f, \phi f_r g_r \rangle|_2 \) in terms of \(\|g\|_2 \) and \(\|f\|_b \).

(4) Another possible approach to problem (3) is via the \(H^2 \)-reproducing kernels \(k_w(z) := 1/(1 - \bar{w}z) \). Recall that \(T_{\bar{w}} k_w = \phi(w) k_w \) and \(C_r k_w = k_{r w} \) for all \(w \in D \) and \(r \in (0, 1) \). This remark was used in Lemma 3.6 to obtain a lower bound for \(\|C_r\|_{\mathcal{H}(b) \to \mathcal{H}(b)} \), and hence a necessary condition for \(\mathcal{H}(b) \) to be star-shaped. Since the family \(\{k_w : w \in D\} \) spans a dense subspace of \(H^2 \), it could in principle be used to determine \(\|C_r\|_{\mathcal{H}(b) \to \mathcal{H}(b)} \) exactly. However, this gives rise to a Pick-type problem which we have been unable to solve up to now.

(5) Let \(f \in \mathcal{H}(b) \). Although \(f_r \not\to f \) in \(\mathcal{H}(b) \), in general, it is always true that \(f \) can be approximated by functions holomorphic on a neighborhood of \(\overline{D} \), indeed even by polynomials. This is proved in [7, IV-3]. However, the proof given there is by duality and is not constructive. Is there a constructive scheme by which \(f \) may be approximated in \(\mathcal{H}(b) \) by functions holomorphic in a neighborhood of \(\overline{D} \)?
Acknowledgment

The authors thank the anonymous referee for several helpful suggestions which greatly improved the paper.

References