A norm-reducing Jacobi-like algorithm for the eigenvalues of |

non-normal matrices

ABSTRACT

L. Kiessling and A. Paulik *

A new norm decreasing Jacobi-like method for reducing a non-normal matrix to a normal one is
described. The method is an improved version of the Huang-Gregory’s procedure [6], in' which cer-
tain norm reducing non-optimal steps are replaced by the optimal ones, which correspond no more
to regular matrix transformations. The method renders itself particularly effective in dealing with
defective matrices of special forms. Theory and experiments alike indicate that this algorithm is in
all computational aspects — accuracy, convergence rate, computing time, complexity of the com-
puter program — better or at least as good as the original one.

Both procedures, the original and the improved one, end in all of the authors computed examples
with the diagonal matrix containing the eigenvalues of the non-normal initial matrix.

1. INTRODUCTION

The aim of this paper is to present an improved version
of the norm-decreasing Jacobilike algorithm for reducing
a non-normal matrix to a normal one, which was intro-
duced by Huang and Gregory [6]. The above-mentioned
algorithm, like all norm-decreasing Jacobi-like algorithms,
cf. e.g.[1,2,3,10,11, 14, 15] originates in the following
well known facts :

Let A= (aj,klj,k=1,...,n), aj,ke ¢ be some n X n-matrix,

)\j (j=1,...,n) its — not necessary different — eigenvalues

and

n
A= 2 a2 (L)

its Euclidean norm. Then there holds not only the Schur-
inequality, cf. [13],

a 2 2
Z I IE<HAlS, 1.2

with equality only iff A is normal, but — since the spec-
trum of A does not change by a similarity transformation

A>ZAZ ! _alsoits generalisation

oo, 2 ~1;,2
k§1 I?\kl < |IZAZ™H|\°, for allZERn, (1.3)

where R denotes the set of all regular complex-valued
nX n-matrices. Mirski [9] has shown that there holds

(1.4)

& 2_ . -1,2
2 A\ J“= inf |zZzAZ |~
k=1 K zep

n

Let now (Zp) C R, be some sequence with

n 2 _ 1. 2 _ -1
T INIC=lim (A4, A :=Z AZ (1.5)
P—)oo P

k=1 p |
then it can be shown that this is the case then and only
then, if

A*A_ _A_A¥I=0.
I PP P P"

Lim
pooo

Hence, choosing p large enough, Ap can bemade arbit-

(1.6)

rarily close to a normal matrix with the same eigenvalues
as A. But for normal matrices there exists an extension
of the Jacobi algorithm [7, 12] for symmetric matrices,
cf. [4], so the following simple model algorithm for the
computation of the eigenvalues of a general matrix may
be proposed :
i) Find the minimizing sequence of regular matrices
(Zp) C R, so that (1.5) holds.

ii) Choose P large enough (or take some normal accu-
mulation point A_ =lim A_ )so that A is near-
®  kow Pk 14
ly normal.
ii) If ATj (or A_) is not diagonal, apply the sequence

(U_) of the unitary matrices of the extended Jacobi

algorithm [4] on A’P in order to obtain the eigen-
values Ay :
. . * . *
A=diag(A,...,A ) = lim UPA,P UP (lim UpAooUp)
As one can see, the crucial point in designing any
algorithm for the eigenvalue computation of non-normal
matrices is to find the sequence (Z_). The Jacobi-like

algorithms [1,2,3,6,10,11,14,15] differ mainly in the
way how one chooses the norm-minimizing sequence (Z_).
In each algorithm ii) and iii) are done simultaneously.

In the following we confine ourself to the description
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and analysis of the algorithm of Huang and Gregory [6].

2. HUANG-GREGORY’S ALGORITHM

The algorithm [6] uses three kinds of similarity matrix
transformation. Given a matrix A_ and the pivot pair

(k, m), it generates the matrix AP+1 by the rule :

p1lA D,ifk=m

A = ’ (2.1)
L1 FL and F=G*A,G, if k#m,
with
D=diag(1,...,1,d,1,...,1), d in the k-th row. (2.2)
1, W
1 ¢ _sel® — k-th row
1
G= T , c=cosb,
ia 1 s=sind,
se €1 — m-th row
1) (2.3)
k-th m-th column
and l I
1
lk,m — k-th row .
L= R lk m:pelﬁ’
1] (2.4)

The similarity transformations using matrices D and L
are norm reducing, the similarity transformation with the
unitary matrix G is diagonalising. The transformation
parameters d, 8, a, p, f are chosen in the following way :

Parameter d :

LetAp=(bj,k|]’k_1’ ,n) and
2 1 2 2 1 2
M= Z by =2 b
i J izl
7k Fk

22 2 2,2 2

If &) 0, set d:= (ukl’;’k)l/z, achieving the maxi-

mum possible norm reduction
A= 1A% - 1A 1% = (1 - )
If oy -§j = O and iy £y # 0, setd:= mk/ék)llz,

achieving the norm reduction

(2.6a)

(2.6b)
if ﬂksk =0, i.e. b_],k = bk,_] (j=1,...,n), deflate the
matrix and continue {2.6¢)

Parameters 0 and a :

Choose G so as to annihilate the element f | | in
F= (fi,k |i,j=1,...,n), i.e. the parameters 0 ,and a must
satisfy the equation

2bm’keia'

t t2
k,m  ‘km

with teom = bk,k - bm,m.

Here a ischosen so that tan @ is real and € is chosen to
be the smaller (in absolute value) of the rotation angles.

tan 0 =

2

+(t.  +4b

1/2
k,mbm,k)
2.7)

Parameters p and § :

Let
n - -
om = 2y im0 fom T me
¥k, m

Te,m ™™ fk,k —fm,m’

=i 2+ 2 £ 12 +if (2 2.8
kom T Mem! T 2y (It 1™+ i 51 (2.8)
#k,m
Since

A= 1A% - 1AL 4117 = 20Re (v e ™) - 070y

choose B so as to satisfy the equations

Vk,me—iﬁ = IVk,mI (2.9)
and p according to

Vi m!

'u—k: N for 0< |Vk,m| < uk,m’ (2.103)
p= 11, for 0< up o < b (2.10b)

L0, for0= k.’ {2.10c)
achieving the norm reduction

lvk,ﬂl'z for 0< < 2.11

= , for lvk,ml < uk,m’ (2.11a)

k.m .

A= 2|Vk,m| -~ uk,m’ for 0< uk,m< |Vk’ml, (211b)

0,for 0=vy_ . (2.11¢c)

3. IMPROVED ALGORITHM

Let us now analyse the norm reducing transformations.
Looking closely at the choice of the parameters in the
non-optimal (not maximal) norm reduction transforma-
tions, one can see that letting drop the requirement that
the norm reduction should happen by the similarity trans-
formation there is a possibility to reach maximal norm
reduction, cf. e.g, [8]. Not to get lost in details, we
mention only the well known and in the following ex-
tensively used principle : in an upper or lower triangular
block matrix one may set all the off-diagonal blocks
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equal to zero, without changing eigenvalues and their
algebraic multiplicities.

We improve now the choice of the transformation para-
meters d and p in (2.6b) and (2.10c) in the following

way :
Proposition 1 (improves 2.6b).
If y) -£ =0 then form Ap+1 from AP by the rule : set

all off diagonal elements in the k-th row and the k-th
column of the matrix A_ equal to zero, achieving the

maximum possible norm reduction

A= 1A% - 1A, 417 = (-7 (3.1)
Proposition 2 (improves 2.10c)
Set p according to
l—:-k;,m;l, for 0< lvk,ml < Uy me (3.2a)
p= 11, for0<uy . <ly I, (3.2b)
0, foro=v andu  #ir 1% (3.2)

achieving, except for (3.2b), the maximum possible
norm reduction

2
| |
Fkin_, for 0< vy 1< wy s (3.3a)
k,m
A= q2lv |- uem for 0< uk,m< Ivk,ml’ (3.3b)
0,for0=v anduy  Fir mIz. (3.3¢)

It Vi =0 and U om= I‘rk’mfz, then form Ap+l from

F by setting all off-diagonal elements of the k-th and
m-th rows and columns equal to zero, achieving the maxi-
mum possible norm reduction

A=A - 1A, 412

n
- |fk’m|2 +Z |sz].|2 + |fjm|2. (3.4)
7k,m

Proof of the proposition 1
Let p.. &) = 0. Since this fact implies that AP has one of
the forms

s k-th colul:nn\

X ] 0
3 b

k-th row — |0...0a;_ 1 0...0}or [x...xa} | X...X|s (3.5)
x 0’

x 1_‘6

we may set all the remaining off-diagonal elements of the
k-th column or k-th row, respectively, equal to zero, with-
out changing the eigenvalues of AP. Hence (3.1) follows.

Proof of the proposition 2
Since we have chosen § according to (2.9) we obtain
for A the expression

— 2 2 _ 2
A= "AP” - ”Ap"‘l" =2p le,ml =PI e (3.6)

which is for u # 0 a quadratic function of p. If

Uk m # 0, it is positive for

2|,
0<p< el _

Yk,m

and achieves a maximum (3.3a) for p chosen according
to (3.2a). If > 1, then we choose for computational
purposes ¢ = 1 according to (3.2b) and obtain the (not
maximum possible) norm reduction (3.3b). If v =0,
then (3.6) reduces to ’

(3.7)

=_ pzuk’m, (3.8)

implying that the only possible regular transformation,
which does not increase the norm of Ap +1isto choose
p=0. However, there is an important exception for

LT % m|2. In this case we obtain from (2.8)

f:j,k = fm,j =0 (j=1,...,n;j%#k)

so that F has the form
0o x
0 x

X...X fk,k X...X fk,m Xo X
0 X

: : (3.9)
0 X
0..00 0..0 fm’mO...O
0 x
0 x

Hence, we 'may, setall the remaining off-diagonal elements
of the k-th and m-th rows and columns equal to zero,
without changing the eigenvalues of AP, obtaining the

maximum possible norm reduction (3.4).

Remark 1

The norm reduction in proposition 2 occurs also in the
important case of the defective eigenvalues : the differ-
ence between the algebraic and the geometric multiplicity
of the eigenvalues fk,k’ f o in the case fk,k = fm,m

m,
is at least 1,if A> 0.

4. NUMERICAL RESULTS

All calculations were performed with a UNIVAC Series
1100 computer using 60 bits for mantissa. The authors
of [6] performed their calculations with an IBM 360/65
using 56 bits for mantissa. Our implementation of the
Huang-Gregory’s algorithm reproduced therefore the
results for the matrices given in [6] with little higher
accuracy.

Let us now consider the conditions which must be satis-
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TABLE 1

ex. 4 of [6] stopping A B C
criterion
e=0 e=10"12 €=0 e=10"12
i) .90.10721 20.10733 20.10735 0
||Ap -diag (Ap)"
i) 66.107144 | 171073 0 0
i) 23.10738 23:10788 0
(L -Aphpl
i) 4107144 | 451077 0 0
A-A -7 -8 1078 41.10-8
I ”A”EII i) .40.10 41.10 41.10 41.10
i) 41.1078 23.1074 41.1078 41.1078
Number of i) 9 9 9 8
sweeps p ii) 30 30 11 8
i . ) 542
CPU 5] i) 650 697
ii) 1.899 2.139 799 542

fied applying the improved algorithm. Consider &} .u) =0
and ék'ﬂk # 0 (cf. (2.6b)).This case occurs for instance,
if & =05 g, Ek’ ) # 0. Due to the rounding errors the
evaluation of £ may give a small value > 0 instead of

zero. Then proposition 1 giving maximal norm reduction
would not be applied. To suppress this influence of round-
ing errors we define a parameter €2 0 and evaluate the
relational expression & > € instead of £ = 0. If a matrix

occurs having the form (3.9) we proceed in an analogous
way.

The numerous examples computed by us can be divided
into three classes.

1. General class, containing examples 2 to 7 from [6] for
instance. The improved algorithm is at least as good as
the original one.

2. Special matrices having essentially triangular or Jordan’s
normal form. These structures are recognized by the im-
proved algorithm giving the eigenvalues after the first
sweep (1). Curiously, the Huang-Gregory’s algorithm
needs a multiple number of sweeps or it fails.

3. In exceptional cases, see ex. 1 [6], both algorithms give
a normal, but not a diagonal matrix. Performing the al-
gorithms in such a way that small perturbations of the
matrices A due to the rounding errors are admitted does

not change the eigenvalues. However, the computation
algorithms are instable in that sense that after slightly
disturbing the matrices AP converging against some

normal matrix, convergence occurs against a diagonal
matrix. So we obtain in ex. 1 [6] the eigenvalues with
high accuracy after 6 sweeps.

To give a numerical example of the 1-st class we select
ex. 4 of [6]. This is a defective 5*5-matrix. In the follow-
ing table 1 column A contains values taken from [6],

(1) A sweep is by definition a sequence of %(n+1) transformations

(2.1), in which no pivot pair appears more than once.

column B values of the Huang-Gregory’s algorithm im-
plemented by us, column C values of the improved al-

gorithm, both fore =0 and ¢ = 10712, respectively.
All rows marked by i) contain the data obtained by

that sweep after which condition i) IIAp —diag(Ap)ll <1078

was satisfied for the first time. An empty field in a row
marked by i) means that condition i) was not satisfied
after the 30-th sweep. All rows marked by ii) contain
data obtained by that sweep after which IIAp dlag(A I

or ”APAP AT A_|| became zero for the first time or

those computed by the 30-th sweep. An empty field in
a row marked by ii) means that condition i) was satisfied
for the first time by IIAp - diag(Ap)II = 0. One can see

that for € = 0 the two algorithms do not differ remark-
ably. This behaviour is not surprising since the non-
regular transformations do not occurin the first 9 sweeps
due to the fact that under the influence of the rounding
errors generally u, 1 Y m * 0.

For € = 10712 the number of sweeps p of the improved
algorithm needed to satisfy stopping criterion i) de-
creases to p = 8 whereas the Huang-Gregory’s algorithm
cannot satisfy this condition.

We set in the table A := diag(A;,...

values )\k of the matrix A.

»A,,) with exact eigen-
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