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A B S T R A C T  

A new n o r m  decreasing Jacobi- l ike m e t h o d  for reducing a non-normal  mat r ix  to a normal  one is 
described. The  m e t h o d  is an improved  version o f  the Huang-Gregory 's  p rocedure  [6], i n w h i c h  cer- 
tain n o r m  reduc ing  non-op t imal  steps are replaced by  the optimal  ones, which  cor respond no  m o r e  
to regular matriX t ransformat ions .  The m e t h o d  renders  i tself  part icularly effect ive in dealing wi th  
defective mat r ices  o f  special forms.  Theo ry  and exper iments  alike indicate that  this a lgori thm is in 
all c o m p u t a t i o n a l  aspects - accuracy,  convergence rate, comput ing  time, complex i ty  o f  the com-  
pu te r  p rogram - be t t e r  or at least as good as the original one. 
Both procedures ,  the original and  the improved one, end  in all o f  the authors  c o m p u t e d  examples  
with the diagonal  ma t r ix  conta in ing  the eigenvalues o f  the non-normal  initial matrix.  

1. INTRODUCTION 

The aim of this paper is to present an improved version 
of the norm-decreasing Jacobi-like algorithm for reducing 
a non-normal matrix to a normal one, which was intro- 
duced by Huang and Gregory [6]. The above-mentioned 
algorithm, like all norm-decreasing Jacobi-like algorithms, 
cf. e.g. [1, 2, 3, 10, 11, 14, 15] originates in the following 
well known facts : 
Let A = (aj, k [j,k= 1 ..... n), aj, k E ¢ be some n × n-matrix, 

Xj (j = 1 ..... n) its - not necessary different - eigenvalues 

and 

(J, n [aj,k 2,1/2 IIAII= ?=1 ) (1.1) 

its Euclidean norm. Then there holds not only the Schur- 
inequality, cf. [13], 

n 

]Xk 12 ~< (1.2) IIAll 2, 
k=l  

with equality only iff A is normal, but - since the spec- 
trum of A does not change by a similarity transformation 

A -+ ZAZ -1 - also its generalisation 

n 

E IXk 12 ~< IIZAZ-1112, for all Z E Rn, (1.3) 
k=l  

where R n denotes the set of all regular complex-valued 

nX n-matrices. Mirski [9] has shown that there holds 

k~=l IXk 12 ZEmRf IIZAZ-1112. (1.4) 
n 

Let now (Zp) C R n be some sequence with 

n IIApII2, IXk [2 = lira Ap := ZpAZ; 1, (1.5) 
k=l  p-~oo 

then it can be shown that this is the case then and only 
then, if 

lim [1A'A_ -ApA;II = 0. (1.6) 
r' P 

Hence, choosing p large enough, Ap can be ~nade arbit- 

rarily close to a normal matrix with the same eigenvalues 
as A. But for normal matrices there exists an extension 
of the Jacobi algorithm [7, 12] for symmetric matrices, 
cf. [4], so the following simple model algorithm for the 
computation of the eigenvalues of a general matrix may 
be proposed : 

i) Find the minimizing sequence of regular matrices 
(Zp) C R n so that (1.5) holds. 

ii) Choose ~" large enough (or take some normal accu- 
mulation point Aoo = ~m_~ Apk ) so that A~ is near- 

ly normal. 
iii) If AI5 (or Aoo ) is not diagonal, apply the sequence 

(Up) of the Unitary matrices of the extended Jacobi 

algorithm [4] on AI5 in order to obtain the eigen- 
values k k : 

A=diag(X 1 ..... Xn)=lim U*A..U (lim U*A U ) ~ p  p p ~  p oo p 

As one can see, the crucial point in designing any 
algorithm for the eigenvalue computation of non-normal 
matrices is to find the sequence (Zp). The Jacobi-like 

algorithms [ 1,2,3, 6,10,11,14,15 ] differ mainly in the 
way how one chooses the norm-minimizing sequence (Zp). 
In each algorithm ii) and iii) are done simultaneously. 
In the foUowing we confine ourself to the description 
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and analysis of the algorithm of Huang and Gregory [6]• 

2. HUANG-GREGORY'S ALGORITHM 

The algorithm [6] uses three kinds of similarity matrix 
transformation. Given a matrix Ap and the pivot pair 

(k, m), it generates the matrix Ap+ 1 by the rule : 

D-1ApD, if k=m 
= (2.1) Ap+I 

[L -1 FL and F=G*ApG, if kCm, 

with 
D = diag (1 ..... 1, d, 1 ..... 1), d in the k=th row. (2.2) 

G I 

1. 

1 c 
1 

seia 1 c 1 

I 
k-th 

I and 
1 

L =  

1 
-seia 7 k-th row 

[ m-th row 

• 1]--  
I 

m-th column 

I 

, C~--- COS0,  

S = sinO, 

(2.3) 

lk, m - -  k-th row 

• . . . .  , lk, m=Pe i3, 

1 (2.4) 

The similarity transformations using matrices D and L 
are norm reducing, the similarity transformation with the 
unitary matrix G is diagonalising. The transformation 
parameters d, 0, a, p,/3 are chosen in the following way : 

Parameter  d : 

Let Ap = (bj,k I j ,k = 1 ..... n) and 

2 = ~  2 n 2 
= ~ Ib, . I ,  

/~k j=/=kJ=l[bk'j[2'~k ]~=~ J,K 

i2 2 [bk~k{2, ^2 ~2+lbk,kl2. (2.5) 
k = P k  + ~k = k 

If/~k.~k 4= 0, set d := (/ak/~k)1/2, achieving the maxi- 

mum possible norm reduction 

A = IIApII 2 - IIAp+lll 2 = ~ k  - ~k )2" (2.6a) 

If pk.~k = 0 and ak.~k :/= O, set d := (ok/gk)1/2, 

achieving the norm reduction 

A = IIApll 2 -IIAp+ 1 II 2 = (O k-  ~k)2+ Ibk, k 12 (d-  ~_)2. 

(2.6b) 

If/2k.~ k = O, i.e. bj, k = bk, j ( j= l  ..... n), deflate the 

matrix and continue (2.6c) 

Parameters  0 a n d  a : 

Choose G so as to annihilate the element fm,k in 

F = (fi,k l i,j -- 1 ..... n), i.e. the parameters 0 and a must 

satisfy the equation 

2bm, k eia 
tan 0 -  

tk, m + (t~,m +4bk,m-bm,k ) 1/2 '  

with tk, m = bk, k - bin, m. (2.7) 

Here aischosen so that tan 0 is real and 0 is chosen to 
be the smaller (in absolute value) of the rotation angles. 

Parameters  p a n d  3 : 

Le t  

Vk,m 
n 

.= ~ ( f , . f  .-f.  L . ) -  " j = l  K,j m,j j , m j i g  fk, mrk,m ' 
j ek ,  m 

rk,m := fk,k-  fm,m , 

Uk, m := Irk,m 12 + ~ (l~,k 12 + Ifm,j[2 ). (2.8) 
j = l  
j=/=k,m 

Since 

A = [IApII2 _ IjAp+I ll2 = 2p Re (Vk, m e-i3) - p2 Uk,m ' 

choose/~ so as to satisfy the equations 

Vk,m e-i~ = IVk,ml (2.9) 

and p according to 

I 'l vk'ml , for 0 < IVk,ml ~< Uk, m, (2.10a) 
Uk,m 

p = 1, for O< Uk,m< IVk,mh (2.lOb) 

[ O, for 0 = Vk, m, (2.10c) 

achieving the norm reduction 

Ivk'ml2 for O< IVk,ml ~< Uk, m, (2.11a) 
Uk,m 

A =  121Vk,ml-Uk,m, for0<Uk,m<JVk,m[,  (2.11b) 

[0,  for  0 = Vk, m. ( 2 . n c )  

3. IMPROVED ALGORITHM 

Let us now analyse the norm reducing transformations. 
Looking dosely at the choice of the parameters in the 
non-optimal (not maximal) norm reduction transforma- 
tions, one can see that letting drop the requirement that 
the norm reduction should happen by the similarity trans- 
formation there is a possibility to reach maximal norm 
reduction, cf. e.g. [8]. Not to get lost in details, we 
mention only the well known and in the following ex- 
tensively used principle : in an upper or lower triangular 
block matrix one may set ali the off-diagonal blocks 
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equal to zero, without changing eigenvalues and their 
algebraic multiplicities. 
We improve now the choice of the transformation para- 
meters d and p in (2.6b) and (2.10c) in the following 
w a y  " 

Proposition 1 (improves 2.6b). 

I fPk .~k=0  then form Ap+ 1 from Ap by the rule : set 

all off diagonal elements in the k-th row and the k-th 
column of the matrix Ap equal to zero, achieving the 

maximum possible norm reduction 

A = [IApI[ 2 -[lAp+Ill2 = ~ k - ~ k  )2" (3.1) 

Proposition 2 (improves 2.10c) 

Set p according to 

]Vk,m[, for 0 <  IVk,m[ ~< Uk, m, (3.2a) 
Uk,m 

p = 1, for 0 < Uk,m< IVk,m[, (3.2b) 

0, for 0 = Vk, m and Uk, m :/= Irk,m 12, (3.2c) 

achieving, except for (3.2b), the maximum possible 
norm reduction 

-[v---k'mlZ,~ for 0 < IVk,m[ ~< Uk, m, (3.3a) 
Uk,m 

A =  2Nk,ml-Uk,m, for0<Uk,m<lVk,ml,  (3.3b) 

for 0 = Vk, m and Uk, m 4: [rk,m 12. 0, (3.3c) 

If Vk, m = 0 and Uk, m = Irk,m 1"2, then form Ap+ 1 from 

F by setting all off-diagonal elements of the k-th and 
m-th rows and columns equal to zero, achieving the maxi- 
mum possible norm reduction 

A = [[ApII 2 -IIAp+III 2 

= . i f k j t 2 + l ~ n t 2 "  "k (3.4) 

Proof of the proposition 1 

Let Pk" ~k = 0. Since this fact implies that Ap has one of 

the forms 

/ k-th co lumn\o  
x 

k-th row 
X 

0...0ak,k0...0 
X 

X" 

6 
or g...xa k kX...~ , 

0 '  

6 

(3.5) 

we may set all the remaining off-diagonal elements of the 
k-th column or k-th row, respectively, equal to zero, with- 
out changing the eigenvalues of Ap. Hence (3.1) follows. 

Proof of the proposition 2 

Since we have chosen ~ according to (2.9) we obtain 
for A the expression 

A = [[ApI[ 2 -[IAp+ll[ 2 = 2p [Vk,m[ - p2uk, m, (3.6) 

which is for Uk, m 4:0 a quadratic function ofp. If 

Uk, m :/: 0, it is positive for 

0 < p <  2[Vk'ml =: ~ (3.7) 
Uk,m 

and achieves a maximum (3.3a) for p chosen according 
to (3.2a). If/~ > 1, then we choose for computational 
purposes p = 1 according to (3.2b) and obtain the (not 
maximum possible) norm reduction (3.3b). If Vk, m = 0, 
then (3.6) reduces to 

A = _p2 Uk,m' (3.8) 

implying that the only possible regular transformation, 
whidt does not increase the norm of Ap+ 1 is to choose 

p=0.  However, there is an important exception for 

= trk,m 12. In this case we obtain from Uk,m (2.8) 

L,k = fmj  = 0 (j=l ..... n;j=/=k) 

so that F has the form 

X 

X 

x...x fk,m x...x 
x 

: (3.9) 
x 

0...0 fm,m0...0 
x 

0 

0 

f0k,k x...x 

6 
0 0...0 
0 

0 x 

Hence, we may. set all the remaining off-diagonal elements 
of the k-th and m-th rows and columns equal to zero, 
without changing the eigenvalues of Ap, obtaining the 

maximum possible norm reduction (3.4). 

Remark I 

The norm reduction in proposition 2 occurs also in the 
important case of the defective eigenvalues : the differ- 
ence between the algebraic and the geometric multiplicity 
of the eigenvalues fk,k' fm,m in the case fk,k = fm,m 
is at least 1, if A >  0. 

4. NUMERICAL RESULTS 

All calculations were performed with a UNIVAC Series 
1100 computer using 60 bits for mantissa. The authors 
of [6] performed their calculations with an IBM 360/65 
using 56 bits for mantissa. Our implementation of the 
Huang-Gregory's algorithm reproduced therefore the 
results for the matrices given in [6] with little higher 
accuracy. 
Let us now consider the conditions which must be saris- 
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TABLE 1 

ex. 4 o f [6 ]  

Ap - diag (Ap)II 

[{A A * - A * A  11 
V P P P 

A-ApII 

IIAII 

Number of  

sweeps p 

stopping 
criterion 

i) 

ii) 

ii) 

u) 

A 

ii) 

.90.10 -21 

.40.10 -7 

e = 0  

.20.10 -35 

.66.10 -144 

.23.10 -38 

.4.10 -144 

.41.10 -8 

.41.10 -8 

B 

e =  10 -12 

.17.10 -3 

.45.10 -7 

.23.10 -4 

i) 9 9 

ii) 30 30 

CPU [s] i) .650 

1.899 2.139 

e = O  

.20.10 -35 

C 

e = 10 -12 

0 

0 0 

.23::10 -88 0 

0 0 

.41.10 -8 .41.10 -8  

.41.10 -8 .41.10 -8 

9 8 

11 8 

• 697 .542 

.799 .542 

fled applying the improved algorithm. Consider ~k.Pk = 0 

and ~k.flk ~ 0 (cf. (2.6b)).This case occurs for instance, 

if ~k = 0; Pk '  ~k' Ok 4= 0. Due to the rounding errors the 

evaluation of  Sk may give a small value > 0 instead of  

zero. Then proposition 1 giving maximal norm reduction 
would not be applied. To suppress this influence of round- 
ing errors we def'me a parameter e > 0 and evaluate the 
relational expression ~k > e instead of ~ = 0. If  a matrix 

occurs having the form (3.9) we proceed in an analogous 
way. 
The numerous examples computed by us can be divided 
into three classes. 
1. General class, containing examples 2 to 7 from [6] for 
instance. The improved algorithm is at least as good as 
the original one. 
2. Special matrices having essentially triangular or Jordan's  
normal form. These structures are recognized by the im- 
proved algorithm giving the eigenvalues after the first 
sweep (17. Curiously, the Huang-Gregory's algorithm 
needs a multiple number of  sweeps or it fails. 
3. In exceptional cases, see ex. 1 [6], both algorithms give 
a normal, but  not a diagonal matrix. Performing the al- 
gorithms in such a way that small perturbations of the 
matrices Ap due to the rounding errors are admitted does 

not change the eigenvalues. However, the computation 
algorithms are instable in that sense that after slightly 
disturbing the matrices Ap converging against some 

normal matrix, convergence occurs against a diagonal 
matrix. So we obtain in ex. 1 [6] the eigenvalues with 
high accuracy after 6 sweeps. 
To give a numerical example of  the 1-st class we select 
ex. 4 of  [6]. This is a defective 5*5-matrix. In the follow- 
ing table 1 column A contains values taken from [6], 

(1) A sweep is by defmition a sequence of2(n+l ) transformations 
(2.1), in which no pivot pair appears more than once. 

column B values of  the Huang-Gregory's algorithm im- 
plemented by us, column C values of  the improved al- 

gorithm, both for e = 0 and e = 10 -12,  respectively. 
All rows marked by i) contain the data obtained by 

that sweep after which condition i) I IAp- diag(Ap)[I < 10 -8 

was satisfied for the first time. An empty  field in a row 
marked by i) means that condition i) was not satisfied 
after the 30-th sweep. All rows marked by ii) contain 
data obtained by that sweep after which [lAp- diag(Ap)l[ 

or [tA A* - A_*A_[[ became zero for the first time or 
P P F e 

those computed by the 30-th sweep. An empty field in 
a row marked by ii) means that condition i) was satisfied 
for the first time by [lAp - diag(Ap)[I = 0. One can see 

that for e -- 0 the two algorithms do not differ remark- 
ably. This behaviour is not  surprising since the non- 
regular transformations do not  occurin the first 9 sweeps 
due to the fact that under the influence of  the rounding 
errors generally Pk'  ~k' Uk,m ¢ 0. 

For e = 10 -12 the number  of  sweeps p of  the improved 
algorithm needed to satisfy stopping criterion i) de- 
creases to p = 8 whereas the Huang-Gregory's algorithm 
cannot satisfy this condition. 
We set in the table A := diag(k I ..... Xn) with exact eigen- 

values X k of  the matrix A. 
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