On the Zariski-density of integral points on a complement of hyperplanes in \(\mathbb{P}^n \)

Aaron Levin

Department of Mathematics, Brown University, 151 Thayer street, Providence, RI, USA

Received 8 November 2005; revised 12 December 2006

Available online 25 May 2007

Communicated by David Goss

Abstract

We study the \(S \)-integral points on the complement of a union of hyperplanes in projective space, where \(S \) is a finite set of places of a number field \(k \). In the classical case where \(S \) consists of the set of archimedean places of \(k \), we completely characterize, in terms of the hyperplanes and the field \(k \), when the \((S-)integral points are not Zariski-dense.

© 2007 Elsevier Inc. All rights reserved.

1. Introduction

Let \(k \) be a number field and \(S \) a finite set of places of \(k \) containing the archimedean places. Let \(Z \) be a closed subset of \(\mathbb{P}^n \), defined over \(k \), that is a finite union of hyperplanes over \(\bar{k} \). We study the problem of determining when there exists a Zariski-dense set \(R \) of \(S \)-integral points on \(\mathbb{P}^n \setminus Z \). We give a complete answer to this problem when \(O_{k,S} = O_{\bar{k}} \), i.e., when \(S = S_\infty \) consists of the set of archimedean places of \(k \). For arbitrary \(S \) the problem does not appear to have a simple answer, but in the last section we discuss some partial results and reformulations of the problem.

The related problem of determining when \(R \) must be a finite set was solved by Evertse and Győry [3] once \(k \) is sufficiently large (e.g., the hyperplanes are all defined over \(k \)). In the connected topic of solutions to norm form equations, Schmidt [6,7] has given necessary and sufficient conditions for finiteness. The general problem of determining the possible dimensions of \(R \), for any \(k \), \(S \), and \(Z \), seems to be difficult.
2. Definitions

Let k be a number field and S a finite set of places of k containing the archimedean places. Let $\mathcal{O}_{k,S}$ denote the ring of S-integers of k.

Definition 1. If Z is a subset of \mathbb{P}^n defined over k, we call a set $R \subset \mathbb{P}^n \setminus Z(k)$ a set of S-integral points on $\mathbb{P}^n \setminus Z$ if for every regular function f on $\mathbb{P}^n \setminus Z$ defined over k there exists $a \in k^*$ such that $af(P) \in \mathcal{O}_{k,S}$ for all $P \in R$.

For example, let Z be a hypersurface in \mathbb{P}^n and let $U = \mathbb{P}^n \setminus Z$. Then R is a set of S-integral points on U if and only if there exists an embedding of U into an affine space such that each point of R has S-integral coordinates.

Recall that an archimedean place v of k corresponds to an embedding of k into the complex numbers $\sigma: k \to \mathbb{C}$. We define v to be real if $\sigma(k) \subset \mathbb{R}$ and define v to be complex otherwise.

With this terminology we can define the following types of fields.

Definition 2. Let k be a number field. Then

(a) We call k a totally real field if all of its archimedean places are real.
(b) We call k a totally imaginary field if all of its archimedean places are complex.
(c) We call k a complex multiplication (CM) field if it is a totally imaginary field that is a quadratic extension of a totally real field.
(d) We say that an extension M of k contains a CM subfield over k if there exists a CM field L with maximal real subfield L' (over \mathbb{Q}) such that $k \subset L' \subset L \subset M$.

Note that in our terminology, if M is a CM field then M does not contain a CM subfield over itself because of the condition on the maximal real subfield.

3. Main theorem

Our main theorem gives a complete characterization of when there exists a Zariski-dense set of (S_∞)-integral points on a complement of hyperplanes.

Theorem 3. Let $Z \subset \mathbb{P}^n$ be a closed subset defined over k that is a geometric finite union of hyperplanes, i.e., $Z = \bigcup_{i=1}^{m} H_i$ over \overline{k} where the H_i are distinct hyperplanes defined over \overline{k}. Let L_i be a linear form defining H_i over its minimal field of definition M_i over k. Let $S = S_\infty$, the set of archimedean places of k. Then the following are equivalent:

1. There does not exist a Zariski-dense set of S-integral points on $\mathbb{P}^n \setminus Z$.
2. One of the following conditions holds:
 (a) The linear forms L_1, \ldots, L_m are linearly dependent.
 (b) $\mathcal{O}_{k,S}^* = \mathcal{O}_k^*$ is finite and Z has more than one irreducible component over k.
 (c) Some M_i contains a CM subfield over k.

Proof. We first prove that (2) implies (1). Suppose that (a) holds. Without loss of generality, we can extend k so that each L_i is defined over k. It suffices to prove our assertion in the case that $\{L_1, \ldots, L_m\}$ is a minimal linearly dependent set, that is no proper subset is linearly dependent.
In that case \(\sum_{i=1}^{m-1} c_i L_i = c_m L_m \) for some choice of \(c_i \in k^* \), \(i = 1, \ldots, m \). Let \(R \) be a set of \(S \)-integral points on \(\mathbb{P}^m \setminus Z \). If \(i \in \{1, \ldots, m\} \), then all of the poles of \(L_i/L_m \) lie in \(Z \) and so there exists \(a \in k^* \) such that \(af \) takes on integral values on \(R \). Since the poles of \(L_m/L_i \) also lie in \(Z \), the same reasoning applies to \(L_m/L_i \). Therefore \(L_i/L_m(R) \) is contained in the union of finitely many cosets of the group of units \(\mathcal{O}^*_k \). By enlarging \(S \) we can assume without loss of generality that \(c_i L_i (P) \) is an \(S \)-unit for all \(P \in R \) and \(i = 1, \ldots, m \). We now apply the \(S \)-unit lemma \([2, \text{Theorem 1}]\).

Lemma 4 (\(S \)-unit lemma). Let \(k \) be a number field and \(n \) a positive integer. Let \(\Gamma \) be a finitely generated subgroup of \(k^* \). Then all but finitely many solutions of the equation

\[
u_0 + u_1 + \cdots + u_n = 1, \quad u_i \in \Gamma,
\]
satisfy an equation of the form \(\sum_{i \in I} u_i = 0 \), where \(I \) is a proper subset of \(\{0, \ldots, n\} \).

We apply the lemma with \(\Gamma = \mathcal{O}^*_k \). Since \(\sum_{i=1}^{m-1} c_i L_i (P) = 1 \) for all \(P \in R \), by the \(S \)-unit lemma it follows that each \(P \in R \) either belongs to one of the hyperplanes defined by \(\sum_{i \in I} c_i L_i = 0 \) for some subset \(I \subset \{1, \ldots, m - 1\} \) (this equation is nontrivial by the minimality of the linear dependence relation) or it belongs to a hyperplane defined by \(c_i L_i = tc_m L_m \), for some \(t \in T \), where \(T \subset \mathcal{O}^*_k \) is a finite subset containing the elements that appear in the finite number of exceptional solutions to the \(S \)-unit equation \(\sum_{i=1}^{m-1} u_i = 1 \). Thus \(R \) is contained in a finite union of hyperplanes and, in particular, \(R \) is not Zariski-dense.

Suppose that (b) holds. Let \(R \) be a set of \(S \)-integral points on \(\mathbb{P}^m \setminus Z \). Let \(Z_1 \) and \(Z_2 \) be two distinct irreducible components of \(Z \) defined over \(k \), respectively, by homogeneous polynomials \(f \) and \(g \). Let \(h = f^{\deg g}/g^{\deg f} \). Since both \(h \) and \(1/h \) are regular on \(\mathbb{P}^m \setminus Z \), by our earlier argument \(h(R) \) is contained in the union of finitely many cosets of \(\mathcal{O}^*_k \). By our assumption on \(\mathcal{O}^*_k \), \(h(R) \) is a finite set. This implies that \(R \) is contained in the union of finitely many hypersurfaces of the form \(f^{\deg g} = a g^{\deg f} \), \(a \in k \), and so \(R \) is not Zariski-dense.

Suppose that (c) holds. It suffices to prove our assertion in the case that \(Z \) is irreducible over \(k \), \(H_1 \) has minimal field of definition \(M \) over \(k \), and \(M \) contains a CM subfield \(L \) over \(k \). From what we have already proven, we can assume that the linear forms defining the hyperplanes are linearly independent. It follows from the fact that \(Z \) is irreducible that \([M : k] = m \). Let \(\alpha_0, \ldots, \alpha_{m-1} \in \mathcal{O}_M \) be a basis for \(M \) over \(k \). Under our assumptions, after a \(k \)-linear change of variables (a projective \(k \)-automorphism of \(\mathbb{P}^m \)), we can take \(Z \) to be defined by \(N_k^M(x_0 \alpha_0 + \cdots + x_{m-1} \alpha_{m-1}) = 0 \), where \(N_k^M \) is the norm from \(M \) to \(k \), and the embeddings of \(M \) act on each \(x_i \) trivially. From the defining equation for \(Z \), it suffices to prove the case \(n = m - 1 \).

Lemma 5. Let \(Z \subset \mathbb{P}^{m-1} \) be defined by \(N_k^M(x_0 \alpha_0 + \cdots + x_{m-1} \alpha_{m-1}) = 0 \). Let \(R \) be a set of \(S \)-integral points on \(\mathbb{P}^{m-1} \setminus Z \). Let \(S_M \) be the set of places of \(M \) lying above places of \(S \). There exist a finite number of elements \(\beta_1, \ldots, \beta_r \in M \) such that every \(P \in R \) has a representative \((x_0, \ldots, x_{m-1}) \in \mathcal{O}^m_{k,S_M} \) with \(\sum_{i=0}^{m-1} x_i \alpha_i \in \beta_j \mathcal{O}^*_M, S_M \) for some \(j \).

Proof. By the definition of \(R \) being an \(S \)-integral set of points on \(\mathbb{P}^{m-1} \setminus Z \), for any monomial \(p \) in \(x_0, \ldots, x_{m-1} \) of degree \(m \), there exists a constant \(c_p \in k^* \) such that \(c_p p / N_k^M(\sum_{i=0}^{m-1} x_i \alpha_i) \)
takes on \(S \)-integral values on \(R \). Therefore there exists a constant \(C \in k^* \) such that for all points \((x_0, \ldots, x_{m-1}) \in R,\)
\[
\left(N_k^M \left(\sum_{i=0}^{m-1} x_i \alpha_i \right) \right) | C (x_0, \ldots, x_{m-1})^m
\]
as fractional ideals of \(\mathcal{O}_{k,S} \). Since the class group of \(k \) is finite, there exists a finite set of integral ideals \(\mathfrak{A} \) such that for any point of \(R \) we can write
\[
(x_0, \ldots, x_{m-1}) = (\beta) a,
\]
where \(\beta \in k \) and \(a \in \mathfrak{A} \). So dividing (1) by \(\beta^m \) on both sides, we see that every point of \(R \) has a representative \((x_0, \ldots, x_{m-1}) \in \mathcal{O}_{k,S}^m \) such that (as \(\mathcal{O}_{k,S} \) ideals)
\[
\left(N_k^M \left(\sum_{i=0}^{m-1} x_i \alpha_i \right) \right) | b
\]
where \(b \) is some fixed ideal of \(\mathcal{O}_{k,S} \) independent of \(x_0, \ldots, x_{n-1} \). Modulo \(S_M \)-units, there are only finitely many solutions \(x = \beta_1, \ldots, \beta_r \) to
\[
\left(N_k^M (x) \right) | b, \quad x \in \mathcal{O}_{M,S_M}.
\]
The claim then follows. \(\square \)

Before continuing, we make the following convenient definition.

Definition 6. Let \(M \) be a finite extension of a field \(k \), \([M : k] = n\). Let \(R \) be a subset of \(M^* \). Let \(\alpha_0, \ldots, \alpha_{n-1} \) be a basis for \(M \) over \(k \). We define \(R \) to be a dense subset of \(M \) over \(k \) if the set \(\{(x_0, \ldots, x_{n-1}) \in \mathbb{P}^{n-1}(k): \sum_{j=0}^{n-1} x_j \alpha_j \in R \} \) is a Zariski-dense subset of \(\mathbb{P}^{n-1} \).

This definition is clearly independent of the basis \(\alpha_0, \ldots, \alpha_{n-1} \) that is chosen. If \(R \subset M^* \) is not a dense subset of \(M \) over \(k \) it is clear that \(\alpha R \) for \(\alpha \in M^* \) is also not a dense subset of \(M \) over \(k \), since the corresponding subsets of \(\mathbb{P}^n \) differ by a projective automorphism. Therefore, using Lemma 5, to finish our claim assuming (c) we need to show that \(\mathcal{O}_{M,S_M}^* \) is not a dense subset of \(M \) over \(k \), where \(M \) contains a CM subfield \(L \) over \(k \). Let \(L' \) be the maximal real subfield of \(L \). Since the totally imaginary field \(L \) is a quadratic extension of the totally real field \(L' \), by the Dirichlet unit theorem the unit groups of \(\mathcal{O}_L \) and \(\mathcal{O}_{L'} \) have the same free rank. It follows that there exists a positive integer \(m \) such that if \(u \in \mathcal{O}_L^* \) then \(u^m \in \mathcal{O}_{L'}^* \). Let \([L : k] = 2l\). Let \(\beta_0, \ldots, \beta_{2l-1} \) be a basis for \(L \) over \(k \) where \(\beta_0, \ldots, \beta_{l-1} \) are real (and are therefore a basis for \(L' \) over \(k \)). Let \([N_L^M (\sum_{i=0}^{n-1} x_i \alpha_i)]^m = \sum_{j=0}^{2l-1} f_i \beta_i \) where the \(f_i \) are homogeneous polynomials in \(x_0, \ldots, x_{n-1} \). Since for any \(u \in \mathcal{O}_M^* \), \(N_L^M u \in \mathcal{O}_{L'}^* \), we obtain \((N_L^M u)^m \in \mathcal{O}_{L'}^* \). Therefore the nontrivial polynomials \(f_i \) for \(l \leq i \leq 2l - 1 \) vanish on the set associated to \(\mathcal{O}_M^* \) in this basis. So \(\mathcal{O}_M^* \) is not a dense subset of \(M \) over \(k \).

To prove the other direction of the theorem, suppose that (a)–(c) are all not satisfied. Let \(Z_1, \ldots, Z_r \) be the irreducible components of \(Z \) over \(k \). For each \(i \), let \(M_i \) be the minimal field of definition over \(k \) of some hyperplane in \(Z_i \). Let \(d_i = [M_i : k] \) and let \(s(i) = \sum_{j=1}^{i-1} d_j \). Let
\(\alpha_{0,i}, \ldots, \alpha_{d_i-1,i}\) be a basis for \(M_i\) over \(k\). Since the linear forms \(L_i\) are linearly independent, it follows that after a \(k\)-linear change of coordinates, \(Z\) can be defined by

\[
\prod_{i=1}^{r} N_k^{M_i} \left(\sum_{j=0}^{d_i-1} x_{s(i)+j} \alpha_{j,i} \right) = 0.
\]

Additionally, by assumption, \(r = 1\) if \(O_k^*\) is finite. We claim that the set

\[
R = \left\{ (x_0, \ldots, x_n) \in \mathbb{P}^n(k) : \forall i, \sum_{j=0}^{d_i-1} x_{s(i)+j} \alpha_{j,i} \in O_{M_i}^*, \forall l \geq s(r+1), x_l \in O_k \right\}
\]

is a Zariski-dense set of \(S\)-integral points on \(\mathbb{P}^n \setminus Z\). That \(R\) is a set of \(S\)-integral points on \(\mathbb{P}^n \setminus Z\) is clear from our defining equation for \(Z\), the fact that norms of units are units, and that there exists some fixed \(N \in O_k\) such that if \((x_0, \ldots, x_n) \in R\) as above then for all \(i, x_i \in \frac{1}{N} O_k\).

When \(O_k^*\) is infinite, we first give an argument to reduce our claim to the case \(r = 1\), where \(Z\) is irreducible over \(k\). Suppose that \(R\) is not Zariski-dense. Let \(P\) be a nonzero homogeneous polynomial with a minimal number of terms vanishing on \(R\). We also choose such a \(P\) with minimal degree. Since for \((x_0, \ldots, x_n) \in R, x_l\) for \(l \geq s(r+1)\) can be chosen in the infinite set \(O_k\) independently of the other \(x_j\), it is clear that \(P\) does not contain any of the variables \(x_l, l \geq s(r+1)\). After reindexing, we can assume that \(x_0\) appears in \(P\). It follows from our minimality assumptions about \(P\) and the structure of \(R\) that one can specialize the variables \(x_{d_1}, \ldots, x_n\) to obtain a nonzero polynomial \(P'(x_0, \ldots, x_{d_1-1})\) (not necessarily homogeneous) that vanishes on the set

\[
R' = \left\{ (x_0, \ldots, x_{d_1-1}) \in \mathbb{A}^{d_1}(k) : \sum_{j=0}^{d_1-1} x_j \alpha_{j,1} \in O_{M_1}^* \right\}.
\]

Write \(P' = \sum_{i=0}^{q} P'_i\), where each \(P'_i\) is homogeneous of degree \(i\). If \(u \in O_k^*\) then \(P'_u = P'(ux_0, \ldots, ux_{d_1-1}) = \sum_{i=0}^{q} u^i P'_i\) gives another polynomial that vanishes on \(R'\). Since \(O_k^*\) is infinite, we can choose \(q + 1\) distinct units \(u_1, \ldots, u_{q+1}\) of \(O_k^*\), and by the invertibility of a Vandermonde matrix, we see that for each \(i\), \(P'_i \in \text{Span}\{P'_{u_1}, \ldots, P'_{u_{q+1}}\}\). Therefore if \(R\) is not Zariski-dense, we obtain a nonzero homogeneous polynomial that vanishes on \(R'\). Showing that such a homogeneous polynomial does not exist is equivalent to the \(r = 1\) case of our original claim. In other words, we have reduced the problem, whether or not \(O_k^*\) is finite, to showing that if \(M\) does not contain a CM subfield over \(k\), \([M : k] = n\), the set

\[
R = \left\{ (x_0, \ldots, x_{n-1}) \in \mathbb{P}^{n-1}(k) : \sum_{j=0}^{n-1} x_j \alpha_{j} \in O_M^* \right\}
\]

is Zariski-dense, where \(\alpha_0, \ldots, \alpha_{n-1}\) is a basis for \(M\) over \(k\). In our terminology, we need to show that \(O_M^*\) is a dense subset of \(M\) over \(k\).

Theorem 7. Let \(M\) be a finite extension of a number field \(k\). The set of units \(O_M^*\) of \(O_M\) is a dense subset of \(M\) over \(k\) if and only if \(M\) does not contain a CM subfield over \(k\).
We will need the following lemma.

Lemma 8. Let M be a finite extension of a number field k, $[M : k] = n$. Let $\sigma_1, \ldots, \sigma_n$ be the embeddings of M into \mathbb{C} fixing k. Let G be a multiplicative subgroup of M^*. Then G is not a dense subset of M over k if and only if there exist nonidentical sequences of nonnegative integers a_1, \ldots, a_n and b_1, \ldots, b_n with $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i$ such that

$$\prod_{i=1}^{n} \sigma_i(x)^{a_i} = \prod_{i=1}^{n} \sigma_i(x)^{b_i} \tag{3}$$

for all $x \in G$.

Proof. Let $\alpha_0, \ldots, \alpha_{n-1}$ be a basis for M over k. Let R be the subset of \mathbb{P}^{n-1} associated to G in this basis. Suppose that there exist nonidentical sequences of nonnegative integers a_1, \ldots, a_n and b_1, \ldots, b_n with $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i$ such that $\prod_{i=1}^{n} \sigma_i(x)^{a_i} = \prod_{i=1}^{n} \sigma_i(x)^{b_i}$ for all $x \in G$. Substituting $x = \sum_{i=0}^{n-1} x_i \alpha_i$ into this equation gives a homogeneous polynomial that vanishes on R. It remains to show that this polynomial is nonzero, or equivalently, that for some $x \in M^*$, $\prod_{i=1}^{n} \sigma_i(x)^{a_i} \neq \prod_{i=1}^{n} \sigma_i(x)^{b_i}$.

To see this, we can take for example $x = p^q$ for some q, where p lies above a prime of k that splits completely in \tilde{M}, the Galois closure of M over k. Looking at the prime ideal factorization (in \mathcal{O}_M) of both sides shows that they are unequal. Therefore G is not a dense subset of M over k.

Suppose now that there exists a nonzero homogeneous polynomial vanishing on R. If $x \in G$ and $x = \sum_{i=0}^{n-1} x_i \alpha_i$, $x_i \in k$, then it follows from the fact that $\text{Tr}^M_k(xy)$ is a nondegenerate bilinear form over k that each x_i is a linear form, independent of x_i in $\sigma_1(x), \ldots, \sigma_n(x)$. Thus, any nonzero homogeneous polynomial vanishing on R gives rise to a nonzero homogeneous polynomial $P(x_0, \ldots, x_{n-1})$ such that $P(\sigma_1(x), \ldots, \sigma_n(x)) = 0$ for all $x \in G$. Let P be such a polynomial with a minimal number of terms. Let $c_1 \prod_{i=1}^{n} \sigma_i(x)^{a_i} = c_1 \phi_1(x)$ and $c_2 \prod_{i=1}^{n} \sigma_i(x)^{b_i} = c_2 \phi_2(x)$ be two distinct monomials appearing in $P(\sigma_1(x), \ldots, \sigma_n(x))$. Note that $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i$. Suppose that there exists $a \in G$ such that $\phi_1(a) \neq \phi_2(a)$. Let $Q = P(\sigma_1(a)x_0, \ldots, \sigma_n(a)x_{n-1})$. Since $\phi_1(a) \neq \phi_2(a)$, Q is not a scalar multiple of P. Since G is a group, we have

$$P(\sigma_1(a)\sigma_1(x), \ldots, \sigma_n(a)\sigma_n(x)) = P(\sigma_1(ax), \ldots, \sigma_n(ax)) = 0$$

for all $x \in G$. Taking a linear combination of P and Q, we can find a nonzero polynomial with fewer terms than P that vanishes on $\sigma_1(x), \ldots, \sigma_n(x)$, giving a contradiction. □

Proof of Theorem 7. Let $[M : k] = n$ and let $\sigma_1, \ldots, \sigma_n$ be the embeddings of M into \mathbb{C} fixing k. Let $\alpha_0, \ldots, \alpha_{n-1}$ be a basis for M over k. Let R be as in (2).

The only if direction has already been proven in the first half of our proof of Theorem 3. So suppose that there exists a nonzero homogeneous polynomial vanishing on R. We need to show that M contains a CM subfield over k. By Lemma 8, there exist nonidentical sequences of nonnegative integers a_1, \ldots, a_n and b_1, \ldots, b_n with $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i$ such that

$$\prod_{i=1}^{n} \sigma_i(u)^{a_i} = \prod_{i=1}^{n} \sigma_i(u)^{b_i}, \quad \forall u \in \mathcal{O}_M^*.$$
By canceling terms, we can clearly assume that either \(a_i = 0\) or \(b_i = 0\) for \(i = 1, \ldots, n\). Let \(T\) be the set of \(\sigma_i\)'s such that \(a_i \neq 0\) and let \(T'\) be the set of \(\sigma_i\)'s such that \(b_i \neq 0\). By our assumption, \(T\) and \(T'\) are disjoint. By composing both sides of (4) with some \(\sigma_j\) we can assume that the identity embedding, \(id\), is in \(T\) (having fixed an identification of \(M \subset \mathbb{C}\)). Let \(\tau\) denote complex conjugation. Let \(\sigma_i \in T\). We claim that \(\sigma_j = \tau \sigma_i\) for some \(\sigma_j \in T'\) and that \(a_i = b_j\). By the Dirichlet unit theorem, we can find a unit \(u \in \mathcal{O}_M^*\) such that \(|\sigma_i(u)|\) is very large and \(|\sigma_j(u)|\) is very small and approximately the same size for all \(\sigma_i \neq \sigma_j\). Using that \(\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i\), this would clearly contradict (4) unless \(\tau \sigma_i \in T'\) and \(a_i = b_j\), where \(\sigma_j = \tau \sigma_i\). Applying the same argument to \(T'\), we find that if \(\sigma \in T'\) then \(\tau \sigma \in T\). Therefore \(T' = \{\tau \sigma : \sigma \in T\}\). In particular, \(\tau \in T'\) and so \(k\) must be real. Since \(T\) and \(T'\) are disjoint, \(T\) must consist only of complex embeddings.

Let \(\bar{M}\) denote the Galois closure of \(M\) over \(k\). Let \(G = \text{Gal}(\bar{M}/k)\) and \(H = \text{Gal}(\bar{M}/M)\). Lift each \(\sigma_i\) to an element \(\tilde{\sigma}_i \in G\) such that \(\tilde{\sigma}_i|_M = \sigma_i\). Let \(\tilde{T} = TH = \{\tilde{\sigma}_i h : h \in H, \ i = 1, \ldots, n\}\). Similarly, let \(\tilde{T}' = T'H\). These definitions clearly do not depend on the liftings \(\tilde{\sigma}_i\). Note that \(\text{id}_M \in \tilde{T}\), \(\tau \in \tilde{T}'\), and \(\tilde{T}\) and \(\tilde{T}'\) are disjoint. Let \(\Sigma_{\bar{M}}\) be the embeddings of \(\bar{M}\) into \(\mathbb{C}\) (not necessarily fixing \(k\)). Let \(\phi \in \Sigma_{\bar{M}}\). Conjugating (4) by \(\phi\), we obtain

\[
\prod_{\tilde{\sigma}_i \in \tilde{T}} \left[\phi \sigma_i \phi^{-1}(u) \right]^{a_i} = \prod_{\tilde{\sigma}_i \in \tilde{T}'} \left[\phi \sigma_i \phi^{-1}(u) \right]^{b_i} = \prod_{\sigma_i \in T} \left[\phi \tau \sigma_i \phi^{-1}(u) \right]^{a_i}, \quad \forall u \in \mathcal{O}_\phi^*(M),
\]

where the second equality follows from our earlier observations. Note that each \(\phi \sigma_i \phi^{-1}\) and \(\phi \tau \sigma_i \phi^{-1}\) is an embedding of \(\phi(M)\) into \(\mathbb{C}\) over \(\phi(k)\). Therefore, applying our previous reasoning to \(\phi(M)\) and \(\phi(k)\), we find that \(\phi(k)\) is real (so \(k\) is totally real) and that if \(\sigma_i \in T\), then

\[
\phi \sigma_i \phi^{-1} = \tau \phi \sigma_j \phi^{-1}
\]

on \(\phi(M)\) for some \(\sigma_j \in T\). Since \(\phi(\bar{M})\) is Galois over \(\phi(k)\) and \(\phi(k)\) is real, \(\tau \phi \bar{M} = \phi(\bar{M})\). It then makes sense to apply \(\tau \phi^{-1}\) to the left of each side of (5) to obtain \(\tau \phi^{-1} \tau \phi \tilde{\sigma}_i \in \tilde{\sigma}_j H \subset \tilde{T}\).

So we see that

\[
\tau \phi^{-1} \tau \phi \tilde{T} = \tilde{T}, \quad \forall \phi \in \Sigma_{\bar{M}}.
\]

Let \(N = \langle \tau \phi^{-1} \tau \phi : \phi \in \Sigma_{\bar{M}} \rangle\) be the subgroup of \(G\) generated by the \(\tau \phi^{-1} \tau \phi\)'s. Since \(H\) is in \(\tilde{T}\), we have in particular that \(NH \subset \tilde{T}\). Let \(N' = \langle \tau \rangle \cdot N\).

Lemma 9. \(N\) and \(N'\) are normal subgroups of \(G\).

Proof. Let \(g \in G\) and \(\phi \in \Sigma_{\bar{M}}\). By the definition of \(N\) we see that

\[
\tau \left(g^{-1} \tau \right)^{-1} \tau g^{-1} \tau = g \tau g^{-1} \tau \in N \quad \text{and} \quad \tau \left(\phi \tau^{-1} \right)^{-1} \tau \phi \tau^{-1} \in N.
\]

Multiplying these two elements gives \(g (\tau \phi^{-1} \tau \phi) g^{-1} \in N\) and therefore \(N\) is a normal subgroup of \(G\). This implies \(N'\) is actually a group, and as it is generated by \(N\) and elements of the form \(\phi^{-1} \tau \phi\), it is clearly a normal subgroup of \(G\). \(\square\)

Therefore \(NH \subset \tilde{T}\) and \(N' H\) are subgroups of \(G\). Let \(L = \bar{M}^{NH}\) be the fixed field of \(NH\) and \(L' = \bar{M}^{N'H}\). Since \(M\) is the fixed field of \(H\), we get inclusions \(k \subset L' \subset L \subset M\).
Lemma 10. L is a CM field and L' is its maximal real subfield.

Proof. Showing that L is totally imaginary is equivalent to showing that for all $\phi \in \Sigma_M$, $\phi^{-1}\tau\phi \notin NH$. If $\phi^{-1}\tau\phi \in NH$, then $\tau \in NH \subset \tilde{T}$, but since $\tau \notin \tilde{T}$, and \tilde{T} and \tilde{T}' are disjoint, we would have a contradiction. Therefore L is totally imaginary. We now show that L' is totally real. This is equivalent to showing that $\phi^{-1}\tau\phi \in N'H$, $\forall \phi \in \Sigma_M$, which is trivial from the definition of N'. Since we clearly have $[N'H : NH] = 2$, we see that L is a quadratic extension of L'. Therefore L is a CM field and L' is its maximal real subfield.

So we see that if O^*_M is not a dense subset of M over k then M contains a CM subfield over k, and so the proofs of Theorems 3 and 7 are complete.

In fact, the field L in Lemma 10 is the maximal CM subfield of M over k.

Lemma 11. Let M be a finite extension of a number field k. Suppose that M contains a CM subfield over k. Then there exists a (unique) maximal CM subfield L of M over k, i.e., for any CM subfield K of M over k, $K \subset L$.

Proof. Let \tilde{M} be the Galois closure of M over k. Let $G = \text{Gal}(\tilde{M}/k)$ and let $H = \text{Gal}(\tilde{M}/M)$. Let Σ_M be the embeddings of M into \mathbb{C}. Let K be a CM subfield of M over k with maximal real subfield K'. Let $\phi \in \Sigma_M$. Let τ denote complex conjugation. Then $\phi^{-1}\tau\phi$ gives an automorphism of K over K' since K is a CM field. Since K is totally imaginary, this automorphism cannot be the identity on K. Therefore it is complex conjugation, and so $\tau\phi^{-1}\tau\phi$ fixes K, that is $\tau\phi^{-1}\tau\phi \in \text{Gal}(\tilde{M}/K)$. Let $N \subset G$ be the group generated by the $\tau\phi^{-1}\tau\phi$'s. Since $H \subset \text{Gal}(\tilde{M}/K)$, we have $NH \subset \text{Gal}(\tilde{M}/K)$. Since K is complex, $\tau \notin NH$. But then the proof of Lemma 10 shows that the fixed field of NH, L, is a CM subfield of M over k, and by Galois theory $K \subset L$. So L is the maximal CM subfield of M over k.

4. Non-archimedean places

We now consider the general case, where S may contain non-archimedean places. It is trivial that the implication $(1) \Rightarrow (2)$ of Theorem 3 extends from $S = S_\infty$ to arbitrary S (containing S_∞). Furthermore, the proof that (a) implies (1) works for arbitrary S, and condition (b) does not occur if S contains non-archimedean places. The real difficulty arises when condition (c) of Theorem 3 occurs and S is larger than S_∞.

Assuming that neither (a) nor (b) of Theorem 3 holds and that (c) is satisfied, we easily reduce, as before, to considering the case where $Z \subset \mathbb{P}^{m-1}$ is irreducible over k defined by $N^M_k(x_0\alpha_0 + \cdots + x_m-1\alpha_{m-1}) = 0$, where M contains L, the maximal CM subfield of M over k. Using Lemma 5, determining if (1) of Theorem 3 holds in this situation is equivalent to determining if $O^*_{M,SM}$ is a dense subset of M over k, where SM is the set of places of M lying over places of S. Thus, we are in a position to apply Lemma 8. Paying careful attention to the proof of Theorem 3, we see that if (3) holds for all $x \in O^*_{M,SM}$, then the identity must be of the form

$$\prod_{i=1}^{l} \tau \sigma_i N^M_L(x)^{a_i} = \prod_{i=1}^{l} \tau \sigma_i N^M_L(x)^{a_i}, \quad \forall x \in O^*_{M,SM}.$$
where τ denotes complex conjugation and $\sigma_1, \ldots, \sigma_l$ are the embeddings of L into \mathbb{C} fixing k. Since $N^M_L(\mathcal{O}^*_M, \mathcal{S}_M)$ is a finite index subgroup of $\mathcal{O}^*_{L, \mathcal{S}_L}$, we can reduce to the problem of determining whether there is a nontrivial identity

$$\prod_{i=1}^l (\sigma_i x)^{a_i} = \prod_{i=1}^l (\tau \sigma_i x)^{a_i} \quad (6)$$

for all $x \in \mathcal{O}^*_{L, \mathcal{S}_L}$. Without loss of generality, by raising both sides of (6) to an appropriate power, we can assume that a_i is divisible by $[\mathcal{O}^*_{L, \mathcal{S}_L} : \mathcal{O}^*_{L, \mathcal{S}_L}']$ for all i, where L' is the maximal real subfield of L. In that case, (6) is true for all $x \in \mathcal{O}^*_{L, \mathcal{S}_L}$ and any appropriate choice of the a_i. So we can essentially reduce to studying $\mathcal{O}^*_{L, \mathcal{S}_L}/\mathcal{O}^*_L$. Assume now that L/k is Galois with Galois group $G = \text{Gal}(L/k)$. If one can compute a minimal set of generators for the free abelian group $\mathcal{O}^*_{L, \mathcal{S}_L}/\mathcal{O}^*_L$ and the action of G on it in terms of those generators, then determining the existence of a solution to (6) becomes elementary linear algebra. So, at least in the case the appropriate field extensions are Galois, the problem of determining whether there exists a Zariski-dense set of \mathcal{S}-integral points on a complement of hyperplanes is reduced to being able to do certain computations with the non-archimedean part of the \mathcal{S}-unit group in particular CM fields.

Of course, the action of G on $\mathcal{O}^*_{L, \mathcal{S}_L}/\mathcal{O}^*_L$ is closely related to how the non-archimedean places in \mathcal{S} split in L. For instance (still assuming L/k Galois), if some place of \mathcal{S} splits completely in L, then $\mathcal{O}^*_{L, \mathcal{S}_L}$ is a dense subset of L over k (see the proof of Lemma 8). On the other hand, if no place of \mathcal{S}_L' splits in L, then $\mathcal{O}^*_{L, \mathcal{S}_L}$ is not a dense subset of L over k. More generally, let D be the set of decomposition fields of the non-archimedean places of \mathcal{S}_L. Then it is easily shown that if $L'^* \prod_{F \in D} F^*$ is not a dense subset of L over k, then $\mathcal{O}^*_{L, \mathcal{S}_L}$ is not a dense subset of L over k. This leads to the following natural question.

Question 12. Let L be a finite extension of a number field k. Let \mathcal{F} be a set of subfields of L over k. Can one simply characterize when $\prod_{F \in \mathcal{F}} F^*$ is a dense subset of L over k?

While this question does not seem to have been studied before, the related problems of determining when $\prod_{F \in \mathcal{F}} F^* = L^*$ and, more generally, determining the group structure of $L^*/\prod_{F \in \mathcal{F}} F^*$ have been studied in [1,4,5]. It would be interesting to connect this work to Question 12.

References

