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A linear control system with slow and fast modes IS considered. where the dif- 
ferent dynamics is represented by a small parameter in the derivatives of the fast 
states. The fast subsystem consists of an asymptotically stable and an unstable part, 
the interaction between which contains a factor proportional to the small parameter 
in the derivatives. The behaviour of the set of trajectories is investigated when the 
small parameter tends to zero. The continuity properties of the optimal value of 
three classical optrmal control problems with control constraints for systems of this 
type are studied. 1 1985 Academic Prw. Inc 

In this paper we consider the following control system 

i=A,,(t)x+ A,,(r).v+ A ,Af)Z + B,(fb, (la) 
pi= A,,(f)X + A,,(f)Y + 4B) A*3(f)Z + Mfb4 (lb) 

~ri=A,,(t).r+E(~)A32(1)).+ A33(fb + B,(f)% (ICI 

where x(t)~R”, .r(r)ERP, z(r)ER’, u(r)ER”‘, A,,(f) and Bi(t) are matrices 
with appropriate dimensions, r represents the time, t E [0, 7’1, /? is a 
positive (mathematically) small parameter, and E(B) is a scalar function. 
Throughout the paper we assume that: 

A 1. The matrices A,)(r), B,(f) are continuous on [0, T]; the eigen- 
values of the matrix A,,(r) have negative real parts and the eigenvalues of 
the matrix A,,(t) have positive real parts for all t E [0, r]; lim,, +. c(b) = 0, 
c(0) = 0. 

Differential equations containing small parameters in the derivatives are 
often used to describe processes consisting of interacting phenomena with 
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widely different speeds. Here the vector .s( r) designates the “slow” states 
and (j(r), Z( 1)) arc the “fast” states. The scalar /j may represent small 
physical parameters as time constants, masses, and parasitic inductances 
and capacitances. the suppression of which results in a reduction of the 
number of states. If we take p = 0 the order of the system (I ) reduces from 
n + p + 9 to n, that is, (I ) becomes 

i = A ,,(r)-~+A,,(f)?.+A,,(r)T+B,(f)U, (2a1 

O=A,,(t).~+A,*(f)?.+ R,( 1 )u, (2b) 

O=A,,(t)x+ A13(1): + 4(1)U. (2c) 

Clearly, this order reduction leads to an essential simplification of the 
original modes, at least because the differential equation (1) is “stiff’ for 
computations. The change of the state space, however, may be accom- 
panied by various pathological effects as boundary layers, discontinuity of 
the system performance, etc. Therefore, the perturbation represented by a 
small parameter in the derivative is called singular. 

Recently, a number of papers have developed a variety of asymptotic 
methods for solving singularly perturbed optimal control problems, see the 
surveys in Kokotovic it u/. [9] and Vasil’eva and Dmitriev [IO]. As 
collateral results, some of these methods give conditions under which the 
optimal solution (the optimal value) is a continuous function of the 
parameter 1 at /I = 0, i.e.. the problem considered is well posed with respect 
to singular perturbations. The asymptotic methods, however, use essen- 
tially the representation of the optimal control as an explicit function of the 
adjoint state. In general, such representation exists only for unconstrained 
optimal control problems. 

This paper presents a qualitative study of the order reduction for optimal 
control problems with control constraints. For such problems the con- 
tinuity properties of the multivalued mapping “singular parameter + set of 
trajectories” play a crucial role. In contrast to the case when the perturbed 
parameter is not in the derivative (regular perturbations) this mapping 
turns out to be really singular, namely, its pointwise Hausdorff limit is a 
larger set than the limit in the L,-weak topology. This effect was noted first 
in Dontchev and Veliov [4], for some extensions see Dontchcv 
[S, Chap. 33. Here we develop the approach of these works relaxing in the 
same time the assumption that the system which reduces is asymptotically 
stable. In our case the fast subsystem contains an asymptotically stable 
(1 b) and an unstable (Ic) part which are “weakly coupled” by the factor 
I:(/]). Such systems are often called condirionall~ sfahk. 

Section 2 studies the behavior of the trajectories of the system (I ) when 
the parameter fl tends to zero. We present four rather technical lemmas. 
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which, however, provide a basis for our principal results. The proofs of 
these lemmas are given in the Appendix. In the next three sections we con- 
sider three classical optimal control problems for the system (1): Mayer’s 
problem, a time-optimal control problem, and a Lagrange problem. Detin- 
ing properly the corresponding limit problems we develop conditions under 
which the optimal values of these problems are continuous with respect to 
the singular parameter /I at p = 0. 

We refer here to the earlier papers by Dmitriev [2] (linear Mayer’s 
problem), Binding [I ] (nonlinear Mayer’s problem independent of the fast 
states), Javid and Kokotovic [8] (a decomposition of time-optimal con- 
trol), GiEcv and Dontchev [6] (time-optimal problem), and Dontchev and 
G&v [3] (integral functional and terminal constraints). The technique 
from the last two papers was applied in GiEev [7] to a special class of con- 
ditionally stable systems without constraints. Here we extend and 
generalize the corresponding results of these papers. 

2. CONVERGENCE OF THE SET OF TRAJECTORIES 

Throughout the paper 1 . I denotes the euclidean norm. The norm of the 
space X will be denoted as il . II ,Y, and the L,-norm will be simply II . 11. 

Let pk be an arbitrary sequence, ljk > 0, lim, _ +, ljk =O, and z+( .) be a 
sequence of controls, k = I, 2 ,... . We denote by (xk( .)? J,k( .), zk( .)) the 
solution of the system (1) on [0, T] with fixed initial conditions 

x( 0) = x0, (3a) 

y(0) = ),‘I, z(O) = 2, (3b) 

corresponding to bk and uk(. ). 
The proofs of the lemmas in this section arc given in the Appendix. 

LEMMA I. Suppose that the sequence zk(. ) .sari.s@.s 

Cl. lim sup, * +,, 11~~11 < +E, 

where < + cc means houndedness. Let the sequence uk(. ) converge Lz- 
weakly to USE Li”“[O, T] and (x,,(.), yo(.), zJ.)) he the solution qf the 
reduced system (2) with initial condition (3a). Then 

.Yk(. ) + -ht. 1 strongfy in C’“‘[O, T], 

)‘k(.) -L'o(.) weakly in L:P)[O, T], 

=k(.)-+%(.) weakly in L’,y’[O, T], 

as k + +,x. 
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Thp jbllo~c~ing ussumption 

C2. lim sup, _ , , Izk( T)l < +x 

turns out IO he stronger than Cl, in contc.rr of Lemma 1 

LEMMA 2. Suppow that C2 holds. Let uk(. ) he a bounded sequenw in 
L$m’[O, Tl and (xk(. ), yk(. 1. zk(. )I h c as in Lemma 1. Then the sequences 
IIxkll(., IIY~II, and ‘11~11 are hounded when k -+ +x, i.c., Cl holds. 

From Lemmas 1 and 2 we conclude that 

COROLLARY 1. Let C2 he fulfilled and the sequence uk(. ) converge L,- 
weakly to u(,(. ). Then Lemma 1 holds. 

COROLLARY 2. Suppo.w thar C2 holds and the sequence [Iuk I L, is houn- 
ded. Then rhe corresponding sequences I’~(. ) and zk(. ) are unifi,rmly houn- 
ded, that is, 

lim sup (Il~~ll~.+ IlzkIIc~)< +x. 
k .* t .‘ 

COROLLARY 3. Suppose that C2 holds and uk(. ) converges strongly in 
L$““[O, T] to uO(. ). Then 

lim (I,.r-.roJI + I,zk-Q)=O. 
k- +I 

Remark 1. Observe that all the above results hold when, instead of the 
initial conditions (3) one imposes fixed boundary conditions 

x( 0) = s”, y(0) = I”), z(T)==‘, 

for the system ( 1). Clearly. in this case C2, and hence Cl, is trivially 
satisfied. 

We continue the analysis of the perturbed system (1) on the assumption 
Al, supposing that the admissible set of controls is 

U(T)= (UC.), USE V for a.e. 1~ [0, T], u(.)EL\‘“)[O, T]}, 

where V is an arbitrary closed set in R”. 
Solving Eqs. (2b) and (2~) with respect to ?: and z and substituting in 

(2a) we obtain the following low-order system 

i=AA,,(l)x+ B,(t)u, x(0) =x0, (4) 
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In the sequel we shall denote by P,(T) the reachable set on [0, T] of the 
system (4) with controls from U(T), that is, the set of all points in R”, 
which can be achieved at the time I = T by means of feasible controls 
starting from the point x0 at the time r = 0. 

We introduce the set 

~(f)dt,.f(t)~exp(A,,(T)r) B,(T)V, 

This definition is related to the standard definition of a multivalued map- 
ping. One can easily show that the set P,.(T) can be defined equivalently as 

P,,(T) = { +v, V’E > 0 3,: Vf > I,. I!*, E K,( T, 1) such that jy - ~7~1 CC}, 

where K,.(T, r) is the reachable set at the time f of the system 

.P = A,?(T) J’ + Bz( T)u, y(O) = 0, (5) 

that is, 

K,( T, r) = *’ exp( Azz( T)s) Bz( T) u(s) ds, u(. ) E L\““[O, t], 
0 

or 

exp(A,,(T)t) B,(T) u(f) dr, u(~)E Vn B,, 

t E [0, + CC ), u(. )-measurable , 

where B, is the closed ball in R” centered at zero with radius r. In the 
second delinition P,(T) consists of all points being limits of sequences from 
K,.( T, I) when I + +CC. The last definition is most convenient for our 
further analysis. 

If 0 E B, V then P,.(T) is exactly the closure of the reachable set of (5), 
that is, the set of all points )’ for which there exist s 20 and a control 
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feasible on [0, s] driving the state of (5) from 0 at I = 0 to .r’ at I = s. If V is 
compact then P,(T) is compact and convex. 

Analogously we define a set P. for the system 

:= --A,,(O):- R,(O)u, z(O) = 0, (6) 

that is, 

p,= =,==-+ 
i J 

.I‘(f)dt,l'(f)Eexp(-A,,(O)f)B,(O)V,fE[O, +x.), n 

/‘(.)ELy[O, +*Ic) 
i 
. 

If int V# 0 and the pair (A,,(O). B,(O)) is controllable, i.e., 

rank[b(OL AdO) B,(O),..., AT, ‘(0) B,(O)1 = 9, 

then int P, # 0. 

LEMMA 3. Let /IA he an arbitrary sequence, pk > 0, lim, j + ,11 jk = 0, and 
uk(. ) he a sequence ,fiom U(T) such that limsup, . , .~ IIuk;I ,., < +x. 
Denote by (xk(. ), J*~(. ), z~(. )) the solution qf ( 1 ) corresponding to u~(. ) and 
,!lk with initial conditions x(0) = so, y(O) = J.“. z(O) = 2’. Let the sequence 
zk( T) he bounded. Then the initial conditions x0 and 2” .satis/j, 

?)E A,,‘(O) A,,(O) x0+ PC. 

Morcwcer, the sequence ( xp( T), J’~( 7’)) is hounded and coery condensation 
point q/ this sequence satisfies 

.YE P,(T), J’E -A,2’(T)A,,(T).~+ P,(T). 

Remark 2. Observe that ?’ 4 A,,‘(O) A,,(O) .Y” + P, implies that 
lim p .,I I=,,(T)1 = +=. 

In the next lemma we consider the perturbed system (I) on the 
assumption Al with controls from U(T) and with initial conditions (3) 
which satisfy the relation 

A2. 2 -A,,‘(O) A,,(O) PE int P,; 

LEMMA 4. Let ug(. ) E U(T) n L’,“‘[O, T] be gir;en and x0(. ) he the 
corresponding solution of the svstem (4). Let A” and Y’ he subsets of R” and 
RI’, respecfively, and x(,(. ) satisfies 

x,(T)EX’, x0(T) 4 ?P,( T) n CA”. 
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where 2X’ denotes the boundary of the set X’. Suppose that the point YE RF 
fu&m 

YE(--A’(T)Az,(T)Xo(T)+~~(T))n Y’, 

Y4(-A,,‘(T)A,,(T).r,(T)+ciP,.(T))ndY’, 

und let ; he an arhitrury point in Rq. 
Then for every sujficiently smuil /? > 0 there exists a control us( ‘) E 

LT [0, T], u,](t) E co V for a.e. t E [0, T] such that 

lim uP( t) = ug( t) 
Ii .o 

for a.e. t E [0, T] 

and the corresponding trajectory (x,,( . ), y,,( . ), za(. )) of‘ the perturbed system 
( I ) rcith initiul conditions (3) sutisfies 

und 

lim (.u,,( T), Y,,( 77) = b-d T), Y). /I .o 
z/J T) = .Y 

.r,,( T) E X’, y,d T) E Y’. 

The above results can be restated in terms of convergence of the set of 
trajectories as a multifunction of the parameter /?. For simplicity, let us 
consider only the stable fast subsystem 

/l.P=A,m(t)J+ B,(t)u, J(O) = I’(), tE CO, 7-1. (7) 

assuming that the control takes values from a compact set V in R”. For 
fixed /j > 0 denote by z‘,, the set of the trajectories of (7) on [0, T], that is, 
the set of absolutely continuous functions +v( .), every element of which is a 
solution of (7) for some feasible control. Let Z, be the set of “trajectories” 
of the reduced system 

O=A,,(t)y+B,(t)u, 

that is, 

Lo= iY(.)t Y(f)= -A,,‘(f) B,(f) u(t), u(~)E V, r~ [0, T], 

u( . )-measurable }. 

Let 

P,(t) = I)* -x exp(A,,(t)s) B,(t)Vds 
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and let the set of functions 2‘, bc defined as 

2‘, = ; )‘I ), j’( f ) E P, (t 1. t E LO. I’] ;. 

Observe that for each t E [0, T] the set of values of 2‘, contains, but may 
be essentially larger than, the set of values of 2‘,, (for an example see 
Dontchev and Veliov [4]). 

We say that the sequence of sets A, is M-convergent to A,, as k -+ +rr 
if: (1) for every u,, E A. there exists a sequence uk, a, E A, such that uk + u, 
asli++s:(2)ifu,~A~andu~+a~a~k-++~tfhenu,,~A,,. 

From the above lemmas we conclude that: 

(1) For every sequence bk + 0 the set Z,, is M-convergent to t’, in 
the L,-weak topology; 

(2) For every t>O the set ,?I,{ is pointwise convergent to z‘, when 
/I + 0 in the sense of Hausdorff. 

The proof of the first statement follows from Lemma 1. Let yk(. ) E z‘,r,, 
.rk( .) --+yo(. ) as k + + zc &-weakly. Since V is compact, from the 
corresponding sequence of controls one can extract a &-weakly convergent 
subsequence. Then, the corresponding subsequence of solutions of (7) will 
converge &-weakly to an element of Z,,. Conversely, if vO( .) EZ, then if 
uO(. ) is the corresponding control one can apply u”(. ) to the perturbed 
system (7) and get a sequence from 2‘,{, convergent even &-strongly to 
,r(,(. ), see Corollary 3. 

The second statement is a consequence of Lemmas 3 and 4, where T 
should be replaced by an arbitrary I > 0. 

3. SINGULAR PERTURBATIONS IN MAYER’S PROBLEM 

In this and in the next sections we apply the above lemmas to three 
classical optimal control problems. As a result we get conditions under 
which the optimal value of these problems is continuous with respect to the 
singular perturbation parameter. 

We consider the singularly perturbed linear system (I ) from the 
Introduction, assuming that the matrices A,, and B, and the function c( .) 
satisfy the conditions in Al, and the initial conditions .x0 and z” satisfy A2. 
The reduced system corresponding to /? = 0 is given in (4). 

Let the time interval [0, T] be fixed. Consider the problem 

d-4 77, .A T), 4 T)) + inf (M,,) 
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subject to (1) and 
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u( . ) E U(T) = { u(. ), U(I) E V for a.e. t E [0, 7J, u( . )-measurable}, 

x(T) E x’, Y(T) E y’, Z(T)EZ’, 

for given constrained sets VC R”, A” c R”, Y’ c RP, Z’ c Rq. 
Let P,(T) and P,.(T) be the reachable sets introduced in the previous 

section. We shall prove that the optimal value of the problem (M,) con- 
verges to the optimal value of the following problem 

subject to 

.Y E P,(T) n x’, ,,E(--A22’(T)Azl(T)x+P,.(T))n Y’, ZEZ’. 

This problem can be restated as 

so(.d 7-J 1 -+ inf 
subject to 

.t= A,,(r)x + B”(f)& x(0)=x0 

U(.)E O’(T), X(T)EX’, 

where 

~,,(.~)=~~~{R(~,)‘,~),I’E(--~~‘(T)A~~(T).Y+P,.(T))~Y’,ZEZ’}. 

THEOREM I. Suppose Ihat the .foilowing conditions hold: 

M I. The set V is compact, X’, Y’, Z’ are closed, and the function g(. ) 
is conlinuous. 

M2. The set Z’ is compact or 

inf{g(.r, 1’. z),.rEX’, J-E Y’.;cZ’, Iz] an) -+ +~0 as n+ +co. 

M3. The reduced problem (M,) has a solution a,( .), .?“, PO, 2, such 
that 

(i) .fO~~P~(T)nc~X’ (i.e., .to E int P,(T) n X’ or 
.i-,, E int X’ n P,(T)), 

(ii) ~‘,4(-.422’(T)A,l(T).G,,+C7p,(T))n(!Y’. 
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Proof: According to Lemma 4, for sufliciently small /j there exists a 
control u,~( .)E L’,“‘[O, T], u,,(r)~co V for a.e. t E [0, T] such that the 
corresponding solution (.r&. ), .I’,~(. ), z,,(. )) of ( 1) satisfies 

lim (.u,A 7’), y,,(T)) = (.G,, .?,,) 
/I -0 

and 

A,,( T) E A”, J*,,(T) E Y’. z,,(T) = Z,,. 

Hence, for small 11. the intersection of the reachable set of the perturbed 
system (I ) with X1 x Y’ x Z’ is nonempty. (Taking co V instead of V does 
not change the reachable set.) Since this intersection is compact, for small /I 
the perturbed problem (M,,) has a solution. Moreover. 

limsup i,, 6 lim R(s,{( T), J,$( T), -,A T)) = kc,. (8) [I +,I p . 0 

Let a,,(. ) be an optimal control for (M,,) and (.C-,J. ), .$,J. ), P,J. )) be the 
corresponding optimal trajectory. From M2 and (8) it follows that I:,{( r)l 
is bounded when /j + 0. Then one can apply Lemma 3 obtaining that every 
condensation point (.rO, .t.,)) of (.t,J T), .P,{( T)) satisfies 

.x,,EP,(T)~X’. ?‘~E(--~,,‘(T)A~,(T).u,,+P,(T))~ Y’ 

Let I(, be a condensation point of Z,J 7‘). Then, choosing properly 
(.G,, .)‘I)’ 20 ) WC obtain 

h 6 R(x,,, yor h) = lip$ R,(. 

This inequality, combined with (8) gives us the desired result. 
The following examples show that the assumptions of Theorem 1 are 

essential for the obtained results: 

EXAMPLE 1 (M2 doesn’t hold). 

.u( 1) + inf, 

f = :, x( 0) = 0, U(f)E v= [-I, I], 

i=z+u, z(O)=O, A” = R’, Z’ = R’. 
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The reduced system is 

and go= -1. For u(r)- -1 we have 

xp(l)= 1 -/exp(llB). 

Hence 

that is, the problem is not well posed. 

EXAMPLE 2 (M3(i) doesn’t hold). 

(A( I ) - 1)’ + ( J( 1) - 1)’ + inf, 

i = j’, x(0) = 0, 

/?j = - y + II, y(0) = 0, 

U(/)E V=[-1, 11, x’ = [I, 21, Y’ = R’. 

Here 

P,(l)= [-I, 11, do(!)= 1, a,,( I ) E ZX’ n dP,( 1 ). 

For /j>O WC have 

and 

J,‘(l)< 1 -exp(-t//I) 

“,‘( I ) < 1. 

This means that the problem (MB) has no solution. 

EXAMPLE 3 (M3(ii) doesn’t hold). The system of Example 2 with 
X1 = R’, Y’ = [I, 23, V= [ -. 1, I], and with the same functional. We have 
j,, E ?P, (I ) n d Y’, and for /I > 0 

.~~(l)< 1 -exp(-l/B)< I, 

that is, (MB) has no solution. 
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4. TIME~PTIMAL PROBLEM 

Let X’. Y’, Z’ be given sets in R”. R”, and R’. respectively, and let 

C,‘= IJ I;(T). 

I io 

where U(T) is defined as in the previous section. For fixed /j > 0 we con- 
sider the following problem (T,,): find a control Ij,J .) from L: such that the 
corresponding trajectory (a,(. ), f(. ), :,‘(. )) of ( I ) starting from the point 
(s”, JO, z”) at t = 0 reaches the target set X’ x Y’ x Z’ in minimal time T,‘. 
The reduced problem ( T,,) consists in finding a control a,(. ) from C; which 
drives the state of (4) from .v” at t = 0 to X’ in minimal time F’,. 

For simplicity, we suppose that all the conditions in the general 
assumption Al hold on [0, + z ). 

THEOREM 2. Suppose rhat the following conditions hold: 

T I. The sets V and Z’ are compact, A” is closed. 

T2. The reduced problem (T’,) has a solution lio(. ), .?,,(. ), PO such that 

(int Qn Y’)u(Qnint Y’)#@. 

rvhere Q = -A,‘( To) A,,( To) a,( ?‘,) + P,( To). 

T3. There exists co > 0 such that for all c E (0. q,] 

.t,,( T’,) E int P,( T’, + r:). 

Then for small fl> 0 Ihe perturbed problem ( T,{) has a solution and 

Proof: Let E E (0, co]. Then z’. = a,,( To) E int P,( To + E) implies that 
there exists a control u,( .) E U( p’) + c) such that the corresponding solution 
.u,(.) of the reduced system (4) satisfies x,.(FO+ c)=i,. Since A,,(T), 
A*,(T), and P.,(T) depend continuously on T at T= PO, then for small 
E E (0, c,,) there exists JJ’~ such that 

.)~OE(-A22’(~~++)Azl(~~,+c)x,,+intP,.(~o++))n Y’ 

or 

.“oE(--Ar,‘(~~,+F:)Az,(~,;,+E)-~o+P,(~~;,+&))nint Y’ 

Choosing an arbitrary ZEZ’ and applying Lemma 4 we conclude that 
one can find a control u,J .)E L:;,[O, PC;,+ F], u,,(~)Eco V for a.e. IE 
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[0, p0 + E], which drives the perturbed system to a point from X1 x Y’ x Z’ 
in time [0, ?,,+&I. Thus, 

and since E could be arbitrary small, then 

limsup Ffi < PO,. 
P -0 

Denote To = liminf,, ~ o ?’ @. For some small E > 0 we extend the optimal 
control I;,J .) (for instance, by a constant) on [0, To + E]. Choosing a L2- 
weakly convergent sequence of a,(. ) and applying Lemmas 1 and 2 we 
conclude that the corresponding sequence of the optimal trajectories a,(. ) 
converges uniformly to a trajectory x0(. ) of the reduced system. Since X1 is 
closed, x0( To) E A”, hence To < To. This means that 

To < liminf ?,j, 
P-0 

which completes the proof. 

Remark 3. The condition T3 holds, for example, when A” = {0}, 
OE int V and the pair (A,( PO), B,( PO)) is controllable. 

EXAMPLE 4 (T2 doesn’t hold). The system of Example 2 with V= 
[-I, 11, A”= Y’=(l). H ere P,.(l)= r-1, I], To= 1. For /?>O 

Y(*)=i[‘exp( - y)u(.s)A<l, 
0 

hence, the perturbed problem has no solution. 

EXAMPLE 5 (T3 doesn’t hold). 

i, =u, U(1)E c-1, 11, 
i’z=y+u, x,(O) = 0, x1= ((1, I)}, 
pj= -y t 4 y(O) = 0, Y’ = { 1). 

For some T-c t cc one should have 

I 
T  

u(r) df = 1, 
0 

$JoTexp( - y)u(l)dl= 1, 

JTU(t)&+i{rJiexp( - y) u(s)ds&=2. 
0 
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This means that some u(. ) should satisfy 

.* / 
u(t)dr=O. U(I) dr = p, 

-0 

which is impossible. Hence, the perturbed problem has no solution. 

5. LAGRANGE PROBLEM 

For fixed fl> 0 consider the problem (~5,): minimize the functional 

4du(~ )) = j’ .f.(x(t)7 dl), z(r), u(l), 0 d 
0 

(9) 

subject to (I ) and 

u(.)ef.I(T)= {u(.),u(~)E Vf0ra.e. r~[0, T],u(.)EL”“‘[O, r]}, 

X(T)EX’, J(T) E Y’, Z(T)EZ’, 

where A”. Y’, Z’, and V are given sets in R”, RP, R”, and R”‘, respectively, 
and the linal time T is fixed. We will compare this problem with the follow- 
ing reduced problem (L,): minimize (9) subject to (4), u(. ) E U(T), and 
x(T) E x’. 

THEOREM 3. Suppose [hat the following conditions hold: 

Ll. The set X’ is closed, V is convex and closed; thefimction/‘( ., I) is 
continuous in R” ’ r + ‘I - nr .for all I E [0, T]; the inregral (9) is lower semicon- 
rinuous in the un$orm ropologj, .fbr .u(. ) and in the L-,-weak ropology ,for 
(?‘( . 1, -( . 1. u( . ) 1. 

L2. One qJ‘ the follon*ing conditions holds: 

(i ) Z’ and V are compwr; 

(ii) Z’ is compact and there exists c > 0 such that 

.f(K J’. -‘, u, 1)3c lu12 

fbr all x E R”, y E R”, 2 E Rq, u E V, t E [0, T]; 

(iii) there exists c > 0 such that 

f (-T L’* =, u, /)~c(lu12+ Iz12) 

for all x E R”, y E RP, z E Rq, u E V, t E [0, T]. 
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L3. The reduced problem (L,) has a sofution a,(. ), a,(. ), jO(. ), .&,(. ) 
such thut riO(. ) E Ly [0, T] and +c, = a,(T) satisfies 

1” $2X’ n 2P,(T) 

and 

(int Q n Y’) u (Q n int Y’) # @, 

where Q = -A??‘(T) A,,(T) .fO + PC(T). 

Then for small fl the perturbed problem (L,) hus a solution and if.?, is the 
optimul calue, then 

lim .7,{ = 9,) = QO( a,(. )). 
Ii - 0 

ProqjI Since (int Qn Y’)u (Q n int Y’) # Qr one can apply Lemma 4 
and tind a control u,A . )3 U,{(f) E v for a.e. t E [0, r], 
limsupp - o IIuiI L, < +co, and lim,, .. us(t) = &(t) for a.e. t E [0, T] such 
that the corresponding solution (x,(. ), va(. ), z,J. )) of the perturbed 
system satisfies .~,](T)E X’, y,,( T)E Y’, z,](T) =z for an arbitrary ZEZ’. 
From Lemma 1 and Corollary 3 we deduce that 

lim (Ils,~-&ll(.+ lI~~-~~,ll + IIz,~--Z,ll)=O. 
R .n 

Moreover, by Lemma 2 

Then, choosing a pointwise convergent sequence of ( J,~( * ), za(. )) in an 
appropriate way and using the continuity off( ., t)), we conclude that 

limsup .I,{ d lim JB( u,](. )) = 9,‘. 
[I .o p - 0 

(10) 

This relation, combined with LI and L2, implies existence of an optimal 
solution of the problem (LB) for sufficiently small /j. 

Now, let tis(. ) be an optimal control for (L,{) and (a,(. ), gs(. ), ia(. )) be 
the corresponding trajectory. From L2 and (10) it follows that 
limsupa,, I)ti,,ll < +c~j, moreover 111,ll or 12p(T)I are bounded when /I -0. 
Choosing a L,-weakly convergent sequence of controls ti,( . ) one can apply 
Lemma 1 and get that the corresponding sequence (-Q,(. ), fP(. ), ip(. )) of 
the trajectories converges (uniformly for a,(. ) and Lz-weakly for 
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(j,)(. ), -S,J. ))) to (.rO(. ), yO(. ), zO(. )), which solves (2) for the weak limit 
uO(. ). Since X’ is closed, X,,(T) E X’ and, therefore, 

This inequality, together with (lo), completes the proof. 
We note that the condition Ll is standard for existence of optimal con- 

trols of both the reduced and the original problems. The requirements in 
L2 give us boundedness of llf,J or of I?,( T)I when ,4 + 0. Z’ is not com- 
pact or the grouth condition in L2(ii) does not hold, then, in general, the 
remaining conditions do not imply continuity of the optimal value. For 
such an example, see Example 1 with 

J(u(.))= f’ (x2(r)+u’(t))dt. 
-0 

The assumption L3 is related to the reachability of the target set by the 
perturbed system and, hence, to the existence of a solution of the perturbed 
problem. This condition is also essential, see Examples 2 and 3 with a 
functional 

J(u(.))= [‘((x(r)- l)z+(Jjf)- I)“)& 
00 

APPENDIX 

We start the presentation of the proofs of the lemmas with some 
preliminary results. 

In the sequel c denotes a generic constant which does not depend on the 
time r and on the parameter /? but may change in different relations. 
Denote by Y(t, T, ,!I), t > r, and by Z(r, r, /I), I < T, the fundamental matrix 
solutions of the equations 

so that Y(r, T, 8) = Ip, Z(r, f, 8) = I4 (the identity). From the assumption 
Al it follows that there exist constants 6, 6” > 0 such that 

IY(f,T,D)I~<a,exp(-a(t--))/8), l 2 T, (AlI 

MC 7, B)I < co exp(a(r - ?)//I), t<r. (AI) 
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We use further the following standard result: Let p(. ) E L, [0, T], q(. ) E 
L,[O, r], and the function r( .) be defined as 

r(t) = 1; p(t -s) q(s) ds. 

Then 

!I4 G II PIi., liqll. (A3) 

The same inequality holds when 

r(f) = jJ p(s - I) q(s) ds. 
I 

Using (A I ) and (A2) one can easily show that if Sf(. ) E L’,p’[O, T] and 
J$(. ) E L%‘[O, T] then 

i; I f’ Y(., ~9 P,fll’(t) dT’ ” o 1 G c II .rflI L, 9 (A4) 
c 

1 J 

II 1 /3 
‘(., ‘,lI).r4(‘) dri (,Qc IIf!lll~.,. (A5) 

Moreover, from (Al-3), ifff(.)E Li”‘[O, T], ff(.)~ Lp’[O, T], then 

Y(., T /l)j’“( )dri <c IIffll, 
’ IT :’ 

/I J 
c 

ij- 

Z(., T, /W{(r) dr 

(A61 

(A7) 

In Dontchev [S, p. 641 it is proved that if (POE L\P)[O, r] then 

lim ‘i * 
I J P-0 ;B 

Y(.,5,p)cp,(r)dr+A,‘(.)cp,(.) (A81 
0 

Similarly, if VIE Ly’[O, r] then 

Z(.,r,p)cp,(r)dr-A,‘(.)cp,(.) 

Let fC(. ) E ,!$‘)[O, T]. Consider the integral 

(A9) 
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Using the technique of the proof of Lemma 3.1 in Dontchev [5, p. 621. 
one can get that for every t E (0. T] 

/ml i$ i’ Y( 
’ I - 

Hence, applying Hoelder inequality we have 

where 6,, -+ 0 as /I + 0 uniformly in [0, T]. 
Consider now the integral 

where .f{(. )E Lkq’[O, T]. For the first summand, using (A2), by simple 
integration we get 

d (’ /j II .r‘$ 

for all t E [0, T] and for small 0. As before 

Z( r;J)dr-A,,‘(.)‘i = 0. 
I ;+lrl 

Finally, we obtain 

where 6,{ + 0 as /j -+ 0 uniformly in f E [0, T]. 
Consider the operators 

c,,: L$‘[O, 7-I + CP’[O, 7-I. 

D,,: L$“[O, 7-l + (““‘[O, 7-1, 

(All) 
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defined as 

Using (Al) and (A2) one can get the estimates 

IlC,lfll’ll C‘ G c !I ff II L, , lD/Jfllc~c Ilf~ll,.. 

Moreover. applying (A3) twice we obtain 

IIqJfll 6 c llfl;lL Il&f!lll 6 c Ilfllll L - . 

(A121 

(A13) 

In the sequel we shall designate by 6, a generic sequence convergent to 
zero as k -+ +m uniformly in [0, T]. 

Proof of Ltmma 1. We show first that the sequences Ilxk!l c and 11~~ I/ 
are bounded. To this end we use the following relations: From (Al ) we get 

II Y(., 0, lIk)?:Oli =6/,. (A14) 

and 

k -0 I 

(Al5 

11 r 

I J 
,- 
ipk 0 

y(., T ,  /3,) R,(T) uk(T) dT 
II 

6 c IIukl,. (Al6 

Similarly as in (AlO) one has 

~~i:Acl: 
Y(T, S, fik) A,,(s) -r/,(.7) ds dr 

dbk llxkIIc.+ j'&b) A,,'(~)Az,(T)xk(s)d~ . 
0 

Using (Al417) in the Cauchy formula 

?-k(f)= Y(t.O.fikv+~j' Y(~,T,B~)(AzI(T)X~(T) 
k 1) 

+ C(Pk)A23(5)=k(7)+B2(5)Uk(7))d7 

(Al7) 
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we obtain that 

D0NTCHF.V AND VELIOV 

gives us uniform boundedness of the sequence xk( .), on the basis of the 
Gronwall lemma. Then, the boundedness of II.vkll follows from (A14-16) 
and from the assumption C I. 

Consider Eq. ( lc). Since 11,~~ 11, II JJ, and IIu/, II are bounded, using 
Hoelder inequality and (A2) we get 

Denote Ax, = xk - x0, Ayk = yk - yo, AZ, = zk - zo, Au, = uk - uo. In the 
sequel we use the following relations: 

AYk(l)= y(f,O,Bk)L'"-E'(Bk)(C,lrA~znYk)(f) 

1 
-' +r, 0 ! y(b '5, bk) A,,(7) A-x,(7) d7 -@k)(C&Am AXk)(f) 

+ f [' y(f, 5, flk) B,(7) Auk(r) d7 - '@k)(C&& Auk)(f) 
j .  -0 

+ mk) ' 
- 

I Pk 0 
y(f, T ,  Bk) A,,(T) z(T, T  /Ilk) zk(T) dT 

I -I 
-- 

B J Ycf, 5, /I,) A,,(7)h(7) d7 -l'o(f), (A191 
k 0 

1 . ‘7‘ 
-- 

J Pk 1 
z(f. T t  bk) A,,(r) AX,(T) d7 - E(bk)(D&A2, AX,)(f) 

- jjy,' 
z(f, T ,  bk) b(7) AU,(r) d7 - c(bk)(DflkB2 AU,)(f) 

E(Bk) -7 
- +, z(ft7,pk)A32(7) y(7d,ljk)Y"d7 

1 
s 

I 
+- 

B 
z(f, 7, fi,, AD(~) 47) d7 - Zo(f). 

k 1 

(A201 
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1 j; A,*(T) AYk(T) dT I< 6, + c j; IAX,(T)l dT, (A211 

lj 
’ r‘i ,3(T) h,(T) d? < bk + C [’ IdX,(T)l dT. (A22) 
0 -0 

Having this done, the uniform convergence of dx,(. ) to zero will follow 
from the inequality 

+ B,(T) h(T)) dT 

and from the Gronwall lemma. 
Clearly, 

II 
‘A,,(T) y(T,o,/-$h’“dT =b/c. 
0 

Since Ildy,II is bounded, then, from (A13) 

c’(h) j; A,,(T)(C pk A 32 dYk)(T) dT G CE2@d IldY,II = 6,. 

In view of (AlO) we have 

By (A12) and the boundedness of Ildxl,II c we obtain 

Furthermore, by (A 10) 

l;j;&(T)j; y(T, .& Bk) B,(s) Au/c(s) dT 

&bk ii~~li -t j’ A,,(T) A;‘(t) h(T) L&(T) ds =bk, w7) 
0 

since du,( .) is L,-weakly convergent to zero. 
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As in (A24) we obtain 

Using (A ). (AZ). and (AIS), an integration gives us 

j’A,?(T) [’ Y(T,.s.~k)~23b)Zb, T.~k)zk(T)d.sdT G(.~(Bk). 
0 -0 

(A291 
From (AX) we get immediately 

Thus, applying (A23-30) to (A19) WC obtain (A21). The inequality 
(A22) can be obtained in the same manner from (A2). (AY), (Al I 13) 
applied to (AZO). 

In order to prove Lz-weak convergence of IIJ,(.) and AZ,(.) to zero, it is 
sufficient to observe that the sequence of norms )ln~*~ll is bounded ( I;nzcll is 
bounded by assumption) and to prove that 

and 

lim 
L .I 

lim 
t r, 

for almost all TV [0, T]. We have already obtained these two relations in 
(A2 1) and (A22), where d.u,(. ) converges uniformly to zero (the presence 
of the matrices A,,(1) and A,,(r) is not essential). The proof of Lemma I is 
complete. 

Proof of- Lrmmu 2. The fast trajectories ,)*k(. ) and zI( .) satisfy the 
equations 
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1 -- /jk “,’ J z(f, T ,  flk, B,(T) Uk(f) dT - @k)(D,&Uk)(f) 

dbk) ‘I’ 

-,J, 
z(f, 5, ilk) A J?(T) Y(T,  0, Pk) .YO c’h. 

By repeating the arguments in (A23-29) we get 

(~32) 

1I:l,,(T)?‘k(r)drlQhk+l’(j’ bk(T)i h + &‘(Pk) iil’kii + ilukll . 
0 > 

Similarly 

A,,(r)r,(T)drl65k+~(j~: Ixk(T)t +&‘(/jk) Il=kll + IId 

These two inequalities, applied to 

b,(f)i 6 h”l + *[(A,,(T) Xk(f)+A,2(5)-vk(5)+ A,,(T)?,(T) 

+ B,(T) uk(T)) dT 1 

give us 

IxkliC.~c(l +fz2(fik)(.l:kIi + Il;kl,)+ tiuk 1). (A33) 

Consider again Eq. (A31). Using consequently (A14), (A13) (for yk(.)), 
(A6), (A12) (for xk(.)), again (A6), again (Al3) (for Us), and (Al-2) 
(zk( T) is bounded), we have 

11 l’k 11 d d 1 + r’(/3, ) II ?:k I + IIuk II + I -yk II (-1. (A34) 

For zk(.), using (A32), (AI-2) (A7), (All), (Al3) we obtain that 

il--kII G d1 + cz(ljk) IIzkll + IiukII + ibkll(‘). (A35) 

Combining (A31 35) we complete the proof. 
Corollary 2 follows immediately from the above proof if we replace (A6), 

(A7) by (A4) and (A5). 
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if we use additionally (Ag), (A9) to Eqs. (A19) and (A20) for the dif- 
ferences Ax,, ~JI,, AZ,, Auk one can obtain Corollary 3. 

Proof qf Lemma 3. Since C2 holds, the uniform boundedness of (.vJ. ). 
yk(. ), zk(. )) follows from Lemma 2 and Corollary 2. Denote by ?k(. ) the 
solution of the equation 

~k~=A~,(O)x”+A,,(O)z+ B,(O) u,(r), z( T) = 0. 

Then, if AZ, = zh - Z,, we have 

bk AE, = AA,,(f) -r,(f) + A,,(f) Ax/c(f) + dBk) A,z(f)yk(f) 

+ AA,,(f) j,df) + Aj,(f) A=, + A&(f) u,Jf), Az,( T) = z,J 0, 

where AA3,(r)=A~,(t)-A3,(0), A.qJf)=xJf) ---x0, AA3Jf)=A3)(f)- 
A,,(O), AB,(f) = B33(f) - B,,(O). This means that the difference Azk(0) 
satisfies 

A=,(O)=Z(O, T,/&)z,(T)-$ j“%(O, ~,/?~)(AA,,(r)x,(r) 
k 0 

+ A,,(T) A-~,(T)+C(/~k) A,,(T)yk(T) 

+ h‘i3j(T)~k(T)+~Bk(T)Uk(T))dT 

- ii,: 
z(o, 5, Pk)(AAj,(T) .yk(T) + A,,(T) A-r,(T) 

+ @k) A,,(T)l'k(T)+AA,,(~)fk(~)fnBk(T)uk(T))dT. 

Since zk( T) is bounded, by (A2) we get that the first summand tends to 
zero as k --t +x,. The first integral can be estimated by the expression 

exp(-af/flk)dr vraisuP WA,,(t)1 ixktf)i + iA3,tf)i IAxk(f)l 
O<,S-,,L 

+&(bk) iA,,(f)yk(f)i + IAA,,(t)l Izktf)l + lABdl)l luk(f)l), 

which tends to zero as k -+ +cx; since A,,(t), A32(t), B,(r) are continuous, 
xk(. ) iS COntinUOUS UnifOrIdy in k, and xk(. ), yk(. ), Zk( .), uk(. ) are 
uniformly bounded. 

From the uniform boundedness of xk(. ), I*~(. ), Zk(. ), and uk(. ) we get 
that the expression 

eXp( -at/b,) dt -+ 0 as k+ +z, 
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estimates the second integral. Hence 

lim dzk(0) = 0. (A36) k- +z 

Therefore, it is sufhcient to prove that a subsequence of Z,(O) tends to a 
point from A,‘(O) A3,(0) x0+ P,. 

We have 

TAO)= -~liexp(-A,,(0)ri8,)(A,,(0)xo+B,(O)u,0 
k 0 

=A,‘(0)A,,(O)xo+q,+61,, 

where, as before, 6, + 0 as k + +co, and, denoting 

for some t’~ V, then 

qk= - 
I 

’ a eXp( -AJ3(o)t) B,(o) L’k(f) dt. 
0 

The sequence uk(. ) is uniformly bounded, hence there exists a ball 
B,c R” such that ~J~([)E Vn B, for a.e. I E [0, + co). Let us denote by Pi 
the closure of the reachable set of the system (6) with feasible controls 
being locally integrable functions with values from Vn B,. Clearly, PI c Pz 
and qk E PL. Moreover, Pi is compact. Let q+ be a condensation point of 
the sequence qk. Then a subsequence of .?k(O) converges to 
&,‘m‘f31(0)x0+Y+. This, combined with (A36), means that Z’E 
A,‘(O) A,,(O) x0 + P;. 

Denote by P:(T) the reachable set of the system (4) for controls with 
values from Vn B,. If we take co( V n B,) instead of Vn B,, the set P:(T) 
does not change. This implies that, from the sequence uk(. ), one can 
extract a L,-weakly convergent subsequence which tends to some u(. ), 
u(r) E co( Vn B,) for a.e. I E [0, T]. The corresponding sequence of states 
xk( .) will converge uniformly to the solution of (4) with the control u( .) 
(see Corollary l), hence all condensation points of xk( T) will lie in P’J T). 
Since P’J T) c P.,(T), we have x E P,(T). 

In order to prove the second inclusion, it is sufficient to repeat the 
argument in the first part of the proof, but for the state y. Denoting by 
jk(. ) the solution of the equation 

Pkjl=A*,(T)X,(T)+A,,(T)y+B,(T)u,(f), Y(O) = 0, 
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one can prove that 
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On the other hand, if .uk( 7) converges to s then a subsequence of yk( 7‘) 
will converge to - A>?'( 7) A?,( 7).x + p*. where p* E P,( 7’). This completes 
the proof of Lemma 3. 

Prooj' oj’ Lmmu 4. We lirst prove our lemma on the additional 
assumption that X’ = R” and Y’ = RP. 

For simplicity. denote D = -A,,‘(T) A>,(T). Let I: > 0 be fixed. The con- 
dition 

implies that there exist .I‘, and a sufficiently large number r(c) such that 

J, = Ds,( T) + ) cxp( A,?( T)f) B,(T) u,.(f) dr. 
-‘(I 

where U,(I)E Vn B,,,,,, r E [0, + 3~ ), u,,(. )E L\"')[O, + cc ). 
For every point :E int P, there exists a feasible control driving the 

system (6) from 0 to z with values contained in a certain ball in R”. From 
A2 we conclude that there exist 2’ E A 33’(O) A,,(O) .x0 + int P,, i = I ,..., i(,, 
such that z0 E intco(z’I. Then there exist I’ > 0 and functions rr’( . ) E 
Ly’[O. +,x), M”(I)E VnB, for a.e. t E [0, + XI) such that 

z’= A,,‘(O) A,,(O) .Y”- I,,’ ’ exp( - A,,‘(O)t) BJO) d(t) dr. 

Introduce the control 

zq(f) = d(f/fq, r E co3 &,, 

= u,(t), f~ [,/is, T- ,h 

= u,.((T- f)lPL tE [T-&i 7-l. 

For every I: > 0 we have u?(f) E V for a.e. t E [0, T]. Moreover 

IiFs;p vraisup lu;(f)l < fr! 
* OGr$7 
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and for every r E (0, T) 

ii-m0 u?(r) = u,,(t). 
+ 

Denote by ( x;(. ), y;ic(. ), z;i”( . )) the solution of the perturbed system ( 1) 
corresponding to u;,“( . ) with boundary conditions 

x( 0 ) = x0, v(O) = .v(), z(T)=:. 

By repeating the argument in the proof of Lemma I, see Remark 1, one 
can obtain that 

lim Il.~;i’: - .r;l (. = 0. 
/l - 0 

We will prove that for every E>O 

!irn, y;iE( T) = yc (A37) 

i)ir+nr z;(O) = z’. (A38) 

and 

If this is so, then, for small ,4 thcrc exist “;I >, 0, 1:. , $ = 1, such that 

f q&jy)) = ;“. 

,=I 

Define 

Obviously, for every t E (0, T) 

Furthermore, if (,$( .), y;( .), z;( .)) is the solution of (1) with boundary 
conditions x(0) =x0, ~(0) = y”, z(T) = 2, then 

$imO x;,( T) = x0(T), lim u;(T) = )18, 
B -0 

z;{(o) = z”. 

In order to complete the proof of the first part of the lemma it is suf- 
ficient to choose a diagonal sequence of controls for p + 0 and c + 0. 

It remains to prove that (A37) and (A38) hold. Clearly, IIy;i”(. )I[ (. is 
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bounded when /j -+ 0, see Corollary 2 and Remark 1. Using the preliminary 
results one can show that the expression 

Y(7-,o.p)y”+~jof-‘i VT, f, y)(A,,(f) .x;(r)+ B,(r) q(l)) dr 

r-L’> I &(/I) 
i P’ 0 

- 

‘@) “-.“’ - E(B) A,,(s) y)$)) ds dr + B ( Y(T, 1, /Y) Azl(r) Z(t, 7’, jl)z dr 
‘0 

tends to zero as /.I + 0. Furthermore, an integration by parts gives us 

We have 

M+$V)dt= -A,‘(T)A,,(T)x,(T). 

u;ic(t)dt- +* 
5 exp(A22(T)t) B,(T) u,(f) dr 

0 

dc 
I 

\y:,<I (bf22(f)-A22(U + l~2(t)-B,(T)I)f(&)+68. 
. . 

where 6,j -+ 0 as fi + 0. The last three observations, applied to the Cauchy 
formula for J$(.) (see (A31)), give us (A37). The relation (A38) can be 
obtained analogously. 

Let us take now arbitrary sets X’ and Y’ from R” and RP, respectively, 
such that q,(T), I: and z satisfy the statement of Lemma 4. 

Obviously .rO( T) E X’ n P,(T). Suppose first that 

x,,(T) E int P,,(T) n X’ and .r E ( Dx,( T) + int P,.(T)) n Y’. 

Clearly, there exists en >O such that if IX- x0( T)I <co then JE 
Dx + int P,(T). Furthermore, there exist c, > 0 and x’ E P,,(T), i = I ,..., in, 
such that Ix’ - .x,,( 7) < co and if I.?’ - xi1 <E, then x0(T) E co{ 9). Next, 
there exist e2 > 0 and .y’, j = 1 ,..., jO, such that J’ - Dx’ E P,,.(T), i = l,..., i,, 
j= l,..., jo, and if IJ’- v’l < c2 then y~co{ j?,}. 

According to the first part of the proof, for sufliciently small ,!I there 
exists a control z$(. ) E L’,“‘[O, r], u$(t) E V for a.e. t E [0, r], such that 

lim us(r) = uO(t) 
/I - 0 

for a.e. f E [0, r] 
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and if (x$( . ), J$(. ), z;:(. )) is the corresponding trajectory of the perturbed 
system, then 

lim (x;:(T), J$( T)) = (s’, J!‘), 
/j -0 

z;:(T) = ‘7. 

Hence, for small /I we shall have 

Ix;( 7-) - X’I < c, ) I y;I( T) - ,l”I < c2 

for i = l,..., i,,. j= ! ,... ~ .j,). This implies that there exist xz 3 0, xy. , r$ = 1 
such that 

10 
c a~x;(T)=x,,(T), j= l,...) j,. 

1-I 

Obviously 

Then there exist :;;I 3 0, Cy= , 7; = 1, such that 

Moreover 

,$, f, ‘lb”jqg T) = X”( T) 

and 

The control 

u,,(t)= f 2 ygr;:u;:(f) E co v 
,--I ,=I 

gives us a trajectory, for which 

X,f( T) = X”( 7-) E x’, y,,(T)= J’E Y’, 

This proves the lemma in the case considered. 

Z,‘(T) = z. 
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Suppose now that 

x,,( 7‘) E int X’, J’ E int Y’ n (Ds,,( 7‘) + P, ( T)). 

The first part of the proof implies that there exists a control u,~(. ) E 
L.(T’[O. r], u,{(t) E V for a.e. t E [0, 7-1 such that 

ii:, u,,(r) = u,,(f) for a.e. r E [0, T], 

and the corresponding trajectory (x-,~. ), J,J. ), z,J. )) of the perturbed 
system satisfies 

Then for ,4 sufficiently small we shall have 

“p(T) E x’, .vp(~) E Y’, 

and the statement of the lemma holds as well. The remaining two cases are 
combinations of the considered cases. 
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