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A linear control system with slow and fast modes is considercd, where the dif-
ferent dynamics is representcd by a small parameter in the derivatives of the fast
states. The fast subsystem consists of an asymptotically stable and an unstable part,
the interaction between which contains a factor proportional to the small parameter
in the derivatives. The behaviour of the set of trajectories is investigated when the
small parameter tends to zero. The continuity properties of the optimal value of
three classical optimal control problems with controi constraints for systems of this
type are studied. ¢ 1985 Academic Press, Inc

1. INTRODUCTION

In this paper we consider the following control system

x=A,(t)x+ Ay + An()z+ B (), (la)
By=Aylt)x+ Axn(t) y +e(B) Axalr)z + By(1)uy, (1b)
Bi=Ay(tx+e(B) Apn(t) y + Ass(t)z + By, (1c)

where x(t)e R", y(t)e R*, z(1)e RY, u(t)e R™, A,(t) and B,(t) are matrices
with appropriate dimensions, ¢ represents the time, te[0, 7], f is a
positive (mathematically) small parameter, and &(f) is a scalar function.
Throughout the paper we assume that:

Al. The matrices A,(r), B(t) are continuous on [0, T]; the eigen-
values of the matrix A4,,(7) have negative real parts and the eigenvalues of
the matrix A;,(¢) have positive real parts for all 1€ [0, T]; limy _,, ¢(f) =0,
£(0)=0.

Differential equations containing small parameters in the derivatives are
often used to describe processes consisting of interacting phenomena with
|
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2 DONTCHEV AND VELIOV

widely different speeds. Here the vector x(r) designates the “slow” states
and (y(r), z(1)) arc the “fast” states. The scalar f/ may represent small
physical parameters as time constants, masses, and parasitic inductances
and capacitances, the suppression of which results in a reduction of the
number of states. If we take =0 the order of the system (1) reduces from
n+ p+gq to n, that is, (1) becomes

S=A (X + Ay + A0z + B{iu, (2a)
O0=A,,(1)x+ Axn(f) v+ Bo(1)u, (2b)
0= A, (1)x + A1)z + Byt (2c)

Clearly, this order reduction leads to an essential simplification of the
original modes, at least because the differential equation (1} is “stift” for
computations. The change of the state space, however, may be accom-
panied by various pathological effects as boundary layers, discontinuity of
the system performance, etc. Therefore, the perturbation represented by a
small parameter in the derivative is called singular.

Recently, a number of papers have developed a variety of asymptotic
methods for solving singularly perturbed optimal control problems, see the
surveys in Kokotoviceral. [9] and Vasileva and Dmitriev [10]. As
collateral results, some of these methods give conditions under which the
optimal solution (the optimal value) is a continuous function of the
parameter f at f=0, i.e.. the problem considered is well posed with respect
to singular perturbations. The asymptotic mecthods, however, use essen-
tially the representation of the optimal control as an explicit function of the
adjoint state. In general, such representation exists only for unconstrained
optimal control problems.

This paper presents a qualitative study of the order reduction for optimal
control problems with control constraints. For such problems the con-
tinuity properties of the multivalued mapping “singular parameter — set of
trajectories” play a crucial role. In contrast to the case when the perturbed
parameter is not in the derivative (regular perturbations) this mapping
turns out to be really singular, namely, its pointwise Hausdorfl limit is a
larger set than the limit in the L,-weak topology. This effect was noted first
in Dontchev and Veliov [4], for some extensions see Dontchev
[5, Chap. 3]. Here we develop the approach of these works relaxing in the
same time the assumption that the system which reduces is asymptotically
stable. In our case the fast subsystem contains an asymptotically stable
(1b) and an unstable (Ic) part which are “weakly coupled” by the factor
£(f). Such systems are often called conditionally stable.

Section 2 studies the behavior of the trajectories of the system (1) when
the parameter f tends to zcro. We present four rather technical lemmas,
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which, however, provide a basis for our principal results. The proofs of
these lemmas are given in the Appendix. In the next three sections we con-
sider three classical optimal control problems for the system (1): Mayer’s
problem, a time-optimal control problem, and a Lagrange problem. Defin-
ing properly the corresponding limit problems we develop conditions under
which the optimal values of these problems are continuous with respect to
the singular parameter f§ at §=0.

We refer here to the earlier papers by Dmitriev [2] (linear Mayer’s
problem), Binding [1] (nonlinear Mayer’s problem independent of the fast
states), Javid and Kokotovic [8] (a decomposition of time-optimal con-
trol), Gicev and Dontchev [6] (time-optimal problem), and Dontchev and
Gicev [3] (integral functional and terminal constraints). The technique
from the last two papers was applied in Gicev [7] to a special class of con-
ditionally stable systems without constraints. Here we extend and
generalize the corresponding results of these papers.

2. CONVERGENCE OF THE SET OF TRAJECTORIES

Throughout the paper | ‘| denotes the euclidean norm. The norm of the
space X will be denoted as | - ||y, and the L,-norm will be simply | - ||.

Let B, be an arbitrary sequence, f, >0, lim, . ., 8,=0, and u,(-) be a
sequence of controls, k=1,2,... We denote by (x.(-), ye(-), z.(*)) the
solution of the system (1) on [0, 7] with fixed initial conditions

x(0)=x", (3a)
v(0)=", 2(0) =", (3b)
corresponding to f, and u,(-).
The proofs of the lemmas in this section are given in the Appendix.
LEMMA 1. Suppose that the sequence z,(-) satisfies
Cl. limsup, . .., |zl < +cc,

where < +oc means boundedness. Let the sequence u,(') converge L,-
weakly to uy(-)e LY[0, T] and (x4(-), yol-), zo(*)) be the solution of the
reduced system (2) with initial condition (3a). Then

X ()= xo() strongly in C'"[0, T,
¥ = yol-)  weaklyin LY'[0, T,
2,00 )= zo(*) weakly in L\W'[0, T],

as k= +oc.
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The following assumption
C2. limsup, . ,, [2,(T) < +x

turns out to be stronger than C1, in context of Lemma 1.

LEMMA 2. Suppose that C2 holds. Let u (") be a bounded sequence in
LY0, T] and (x, (- ), ¥4(*), 2(*)) be as in Lemma 1. Then the sequences
IXell e el and Y|z, are bounded when k — + ¢, ie., Cl holds.

From Lemmas | and 2 we conclude that

COROLLARY 1. Let C2 be fulfilled and the sequence u,(') converge L,-
weakly to uy(+). Then Lemma 1 holds.

COROLLARY 2. Suppose that C2 holds and the sequence |u, 1|, is boun-
ded. Then the corresponding sequences y,(-) and z,(-) are uniformly boun-
ded, that is,

lim sup (| ville + llzell ) < +oc.

ko~ +u

COROLLARY 3. Suppose that C2 holds and u,(-) converges strongly in
L0, T] 10 uo-). Then

im  ([y— poll + [z —201) =0.

k— + 7

Remark 1. Observe that all the above results hold when, instead of the
initial conditions (3), one imposes fixed boundary conditions

x(0) = x", ¥(0)= »°, A==,

for the system (1). Clearly. in this case C2, and hence Cl, is trivially
satisfied.

We continue the analysis of the perturbed system (1) on the assumption
Al, supposing that the admissible set of controls is

UT)={u(-), u(t)e V for ae. te [0, T, u(-)e LI™[0, T},

where V is an arbitrary closed set in R™.
Solving Eqgs. (2b) and (2c) with respect to y and z and substituting in
(2a) we obtain the following low-order system

2=Ay()x+ By,  x(0) = x°, (4)
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where Ag=An—ApAy' Ay — A 13454y, B,=B,—-A,4;'B, -
A3 A5 By

In the sequel we shall denote by P, (T) the reachable set on [0, T] of the
system (4) with controls from U(T), that is, the set of all points in R",
which can be achieved at the time =T by means of feasible controls
starting from the point x° at the time ¢ =0.

We introduce the set

PT)= {L _V=J Sy e, f(r)eexp(Ax(T)) Bo(THV,
0
SOV L0, + o0
This definition 1s related to the standard definition of a multivalued map-
ping. One can easily show that the set P (T) can be defined equivalently as
P(T)=1{y,Ve>03r Vi>t 3y, e K(T, 1) such that |y — y | <c},
where K (T, ¢} is the reachable set at the time ¢ of the system

V=An(T) y+ By(Tu,  y(0)=0, (5)

that is,

K(T,1})= {L y= j" exp{ 4 (T)s) BATY ufs)ds, u(-Ye L0, 1],
0

u(syeV,se [0, 1]},

or

[ e

“exp(An(T)t) Bo(T) u(t) dr, u(t)e VA B,,

P(T)=cl | {‘ y=|

r>0 Y

te [0, + o), u(- )-measurable},

where B, is the closed ball in R™ centered at zcro with radius r. In the
second definition P (T) consists of all points being limits of sequences from
KT, t) when t— +oc. The last definition is most convenient for our
further analysis.

If 0e B,V then P (T) is exactly the closure of the reachable set of (5),
that is, the set of all points y for which there exist s> 0 and a control
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feasible on [0, s] driving the statc of (S)fromQatr=0toyatr=s lf Vis
compact then P (T) is compact and convex.
Analogously we define a set P. for the system

2= —A:;:(0)z — B;(0), 2(0y=0, (6)

that is,

P..={z.:= ~ [ Sy, f(1) € expl— A2 (00) B0V, 1€ [0, + )
0

1(-)e Lo, +m>}.

If int ¥V # & and the pair (4,5(0), B:(0)) is controllable, ie.,
rank [ B;(0), 4;3(0) B4(0)..... A4, '(0) B4(0)] =4,
then int P. # .

LeEMMA 3. Let B, be an arbitrary sequence, f, >0, lim, _, ,, B, =0, and
u () be a sequence from U(T) such that limsup, . . llu;l, < +oC.
Denote by (x,(*), yi(*). zc(+)) the solution of (1) corresponding to u,(*) and
B« with initial conditions x(0)=x°, p(0)= 3" z(0)=:° Let the sequence
2(T) be bounded. Then the initial conditions x° and =9 satisfy

e AN0) A4, (0) X" + P..

Moreover, the sequence (x (T), v {T)) is bounded and every condensation
point of this sequence satisfies

XEPUT),  ve ~Ay'(T) Ay(T)x+ P(T).

Remark 2. Observe that "¢ 4,,'(0) A45,(0)x°+ P, implies that
imy o [z4(T) = +oc.

In the next lemma we consider the perturbed system (l) on the
assumption Al with controls from U(T) and with initial conditions (3),
which satisfy the relation

A2, 2°—4;,50) 45,(0) x°€int P.;
LEMMA 4. Let uy(-)e U(T)nLY'[0, T] be given and x,(-) be the

corresponding solution of the system (4). Let X' and Y' be subsets of R" and
R?, respectively, and x( ) satisfies

xo(T)e X', xo(T)¢ P (T)N X',
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where 0X' denotes the boundary of the set X'. Suppose that the point y€ R?

fulfills
ye(—ARNT) Ay (T) xo(T) + P(T)) A Y,
v (—A,NT) Ay (T) xo(T) + 0P (T)) A &Y',

and let z be an arbitrary point in R,
Then for every sufficiently small >0 there exists a control uy(-)e
L7[0, T], ug(tyeco V for ae. te [0, T] such that

lim ug(1) = uo(t) for ae.1e[0,T]
ARY)

and the corresponding trajectory (x4(-), ys(-), 24(*)) of the perturbed system
(1) with initial conditions (3) satisfies

/}iljl() (xp(T) y(TY = (xo(T), ¥). (T ==z

and
xyT)e X', yu(MeY"
The above results can be restated in terms of convergence of the set of

trajectories as a multifunction of the parameter f. For simplicity, let us
consider only the stable fast subsystem

By = A1) vy + By, ¥(0)= ", te [0, T}, (7)

assuming that the control takes values from a compact set V in R™. For
fixed #> 0 denote by X, the sct of the trajectories of (7) on [0, T], that is,
the set of absolutely continuous functions y(-), every element of which is a
solution of (7) for some feasible control. Let £, be the set of “trajectories”
of the reduced system

0=An(1) y+ By(t)u,
that is,
Zo={rC) y(t)= —A3' (1) Bo(1) u(1), u(t)e V, 1€ [0, T,
u(-)-measurable }.
Let

~

Pt =] exp(Az(0)s) Bo(1)V ds
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and let the set of functions 2’| be defined as

2=t ) yitye Pe) te 0. T] .

Observe that for cach 1€ [0, T'] the set of values of X', contains, but may
be essentially larger than, the set of values of 2, (for an example sec
Dontchev and Veliov [4]).

We say that the sequence of sets 4, 1s M-convergent to 4, as kK = +x
if: (1) for every a,€ A, there exists a scquence «,, a, € A, such that ¢, = a,
as k —» +oc; (2)if a, € A, and a, - a, as k - +o0 then g € A4,.

From the above lemmas we conclude that:

(1) For every sequence f§, — 0 the set X, is M-convergent to 2 in
the L,-weak topology;

(2) For every 1>0 the set 2, is pointwise convergent to 2, when
B — 0 in the sense of Hausdorfl.

The proof of the first statement follows from Lemma 1. Let y,(-)e Xy,
ye()>volr) as k— +x L,-weakly. Since V is compact, from the
corresponding sequence of controls one can extract a L,-weakly convergent
subsequence. Then, the corresponding subsequence of solutions of (7) will
converge L,-weakly to an element of Z,. Conversely, if yo(-)e 2, then if
uo(+) is the corresponding control one can apply uy(-) to the perturbed
system (7) and get a sequence from 2’y convergent even L,-strongly to
vo(+), see Corollary 3.

The second statement is a consequence of Lemmas 3 and 4, where T
should be replaced by an arbitrary > 0.

3. SINGULAR PERTURBATIONS IN MAYER’S PROBLEM

In this and in the next sections we apply the above lemmas to three
classical optimal control problems. As a result we get conditions under
which the optimal value of these problems is continuous with respect to the
singular perturbation parameter.

We consider the singularly perturbed linear system (1) from the
Introduction, assuming that the matrices 4, and B, and the function &(-)
satisfy the conditions in A1, and the initial conditions x° and z° satisfy A2.
The reduced system corresponding to =0 is given in (4).

Let the time interval [0, T] be fixed. Consider the problem

g(x(T), y(T), z(T)) — inf (M)
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subject to (1) and

u(-)e U(T)= {u("), u(t)e Vforae. te [0, T], u(-)-measurable},
x(T)e X', WT)eY!, 2(TNeZ',
for given constrained sets V<= R™, X'< R", Y'c R”, Z' < R“.
Let P(T) and P.(T) be the reachable sets introduced in the previous

section. We shall prove that the optimal value of the problem (M) con-
verges to the optimal value of the following problem

g(x, v, z) = inf (M)
subject to

XePT)nX',  ye(—ARx (N AN(TIx+P(D)NY', zeZ'

This problem can be restated as

£o(x(T)) - inf
subject to
X=Ay(t)x + Bo()u, x(0)=x°
u(YeU(T), x(T)eX',
where

go(x)=inf{g(x, y,z), ye (— A" (T) A (T)x+ PAT)nY' zeZ'}.

THEOREM 1. Suppose that the following conditions hold:

M. The set Vis compact, X', Y', Z' are closed, and the function g(*)
is continuous.

M2. The set Z' is compact or
inf{g(x, v,z),xe X', yeY' zeZ' |z| 2n} > +0 as n— +oo.

M3. The reduced problem (M,) has a solution iy(-), Xy, Vo, 2o Such
that

(i) %o¢éPAT)neX! (ie., t,eint P (T)n X' or
toeint X' P (T)),

(i) Po¢(—A;,1(T) Ay (T) %o+ P (T)) N EY"
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Then for sufficiently small §§ the perturbed problem (M) has a solution and
if &, is the optimal value then

/];imo é/ﬁ =go=8(X0. Yu. Zo)

Proof. According to Lemma 4, for sufficiently small /8 there exists a
control uy(-)e LY[0, T], ug(t)eco V for ae.te [0, 7] such that the
corresponding solution (x(-), ¥4(-), z4(-)) of (1) satisfies

lim (xp T), yy(T))= (X0, To)

=0
and
xdTeX', ypuTey. ) T)=12,.
Hence, for small 8, the intersection of the reachable set of the perturbed
system (1) with X' x Y' x Z' is nonempty. (Taking co V instead of V" does

not change the reachable set.) Since this intersection is compact, for small f8
the perturbed problem (M) has a solution. Moreover,

limsup g/i < lim 8(xu(T), yul 7), Zul 7)) = g,. (8)
B s0 g0

Let @4(-) be an optimal control for (M) and (£4(- ), P4(+), 240+ )) be the
corresponding optimal trajectory. From M2 and (8) it follows that |z4(T)|
is bounded when f# —» 0. Then one can apply Lemma 3 obtaining that every
condensation point (xg, ¥y) of (Xx(T), 4(T)) satisfies

xoeP (TN X", Vo€ (—A»'"(T)Ap(Tyxg+ PUT)) N Y

Let z, be a condensation point of Z,(7). Then, choosing properly
(X0, ¥o» Zo) We obtain

o< 8(Xy, Yo, o) = li/gnif]lf Ié/f-

This inequality, combined with (8), gives us the desired result.
The following examples show that the assumptions of Theorem 1 are
essential for the obtained results:

ExaMpPLE 1 (M2 doesn’t hold).
x(1) - inf,
=z x(0)=0, u(t)eV=[-1,1],
i=z4u, z(0)=0, X'=R' Z'=R"
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The reduced system is
X=u

and g,= —1. For u(t)= —1 we have

xg(1) =1~ Bexp(1/B).
Hence

gp<glxyl)) > - as B0,
that 1s, the problem is not well posed.
ExaMpLE 2 (M3(1) doesn’t hold).
(x(1)= 1)+ ((1) = 1)’ — inf,
X=1y, x(0)=0,
Py=—-y+u  r(0)=0,
u(tyeV=-1,1}, X'=[1,2], Y'=R'
Here
P)=[-1,1], ay(t) =1, () ecX' naP (1)

For >0 we have

yult) <1 —exp(—1/f)
and

Xg()< 1.

This means that the problem (M) has no solution.

ExampLE 3 (M3(ii) doesn’t hold). The system of Example2 with
X'=R' Y'=[1,2], V=[—1,1], and with the same functional. We have
Po€lP (1)n3Y", and for >0

yo(h)sT—exp(—1/p) <1,

that is, (M) has no solution.
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4. TiMe-OPTIMAL PROBLEM
Let X', Y', Z' be given sets in R". R”, and R, respectively, and let

U= ) U,

I'>0

where U(T) is defined as in the previous section. For fixed >0 we con-
sider the following problem (7): find a control i,(-) from U such that the
corresponding trajectory (£4(-), ¥(-), Z4(+)) of (1) starting from the point
(x° 10 z°) at +=0 rcaches the target sct X' x Y' x Z' in minimal time 7.
The reduced problem (T,) consists in finding a control #,(-) from U which
drives the state of (4) from x” at t=0 to X' in minimal time T,,.

For simplicity, we suppose that all the conditions in the general
assumption A1 hold on [0, + = ).

THEOREM 2. Suppose that the following conditions hold:
T1. The sets V and Z' are compact, X' is closed.
T2.  The reduced problem (T,) has a solution iio( ), Xo(*), T, such that
(int @~ YHu(Qnint YY) # g,
where Q = “Az_zl(f‘o) AZI(T()) %ol To) + P_\-( T())-
T3. There exists ¢,>0 such that for all ¢€ (0, &,]
2ol Ty)eint P (T, +¢).
Then for small B> 0 the perturbed problem (T;) has a solution and

lim T,,: T,.
B =0
Proof. Let e€(0,¢,]. Then %,=2%,(T,)eint P (T, +¢) implies that
there exists a control u,(-)e U(T, + ¢) such that the corresponding solution
x,(-) of the reduced system (4) satisfies x,(T,+¢)=2%,. Since A,,(7T),
A»(T), and P (T) depend continuously on T at T= T,. then for smail
€€ (0, ¢,) there exists y, such that

yo€ (= Ay (To+¢) Ay (To+¢) x, + int Pvr(To+e))r\ Y!
or
_v(,e(—AZZ'(T(,+8)A21(T()+8),?(,+P‘(T()+8))r\int Y.

Choosing an arbitrary ze Z' and applying Lemma 4 we conclude that
one can find a control wug(-)e L7 [0, To+el, ug(t)ecoV for ae.te
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[0, T, + ¢], which drives the perturbed system to a point from X' x Y' x Z'
in time [0, T, +¢]. Thus,

limsup T, < Ty +¢,
B—-0

and since ¢ could be arbitrary small, then

limsup T, < 7.
g -+0

Denote T, = liminfy _, o T,,. For some small ¢ >0 we extend the optimal
control #,(+) (for instance, by a constant) on [0, T, +¢]. Choosing a L,-
weakly convergent sequence of i4(-) and applying Lemmas | and 2 we
conclude that the corresponding sequence of the optimal trajectories X4(-)
converges uniformly to a trajectory x,(-) of the reduced system. Since X' is
closed, xo(T,) € X', hence T, < T,. This means that

To <liminf T,
B0
which completes the proof.

Remark 3. The condition T3 holds, for example, when X'= {0},
Oeint V and the pair (A T,), Bo(T,)) is controllable.

ExaMpPLE 4 (T2 doesn’t hold). The system of Example2 with V=
[-1, 1], X'=Y"'={1}. Here P,(1)=[—1,1], Ty=1. For $>0

y(t)=%j0'exp<— %) u(s)ds <1,

hence, the perturbed problem has no solution.

ExaMpPLE 5 (T3 doesn’t hold).
X, =u, u()e[-1,1],
X,=y+u, x,(0)=0, X'={(1,2)},
By=—y+u, »(0)=0, Y'={1}.

For some T < +oc one should have

409:110/1-2
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This means that some u(-) should satisfy

.--/ I o T
' cxp<— )u(l)dt=0, ‘ cxp(
Yo B Jo

[; ’) ult) di = p,

which is impossible. Hence, the perturbed problem has no solution.

5. LAGRANGE PROBLEM

For fixed >0 consider the problem (Lg): minimize the functional
a1

Tyu()) =] flx(n), y(0), 2(0), u(r), 1) d 9)

0

subject to (1) and

u(-)e U(T)={u("), u(t)e Viorae te [0, T], ul )e L™[0, T]},
x(T)e X", wWT)eY!, {(TeZ',
where X', Y', Z', and V are given sets in R", R”, R% and R™, respectively,
and the final time T is fixed. We will compare this problem with the follow-
ing reduced problem (L,): minimize (9) subject to (4), u(-)e U(T), and
W(T)e X!
THEOREM 3. Suppose that the following conditions hold.

L1, The set X' is closed, V is convex and closed; the function {(-, 1) is
continuous in R"*7 =" for all te [0, T]; the integral (9) is lower semicon-
tinuous in the uniform topology for x(-) and in the Ly-weak topology for
(y( ) zC ) u()).

L2, One of the following conditions holds:

(i) Z'and V are compuct;
(i1) Z'is compact and there exists ¢ >0 such that

flx, p oz ou )= lul?

Jorall xe R", ye R”, ze R*, ueV, 1[0, T];
(1) there exists ¢ >0 such that

S 2w 0 2 e(jul? + |21)

forall xeR", ye R?, ze RY, ueV, te[0, T].
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L3. The reduced problem (L,) has a solution i1y(-), Xo(*), Po(*)s Zo(*)
such that iy(-)e L™ [0, T and x,= %(T) satisfies

£,¢ X' P (T)
and
(int @ YHu(Qnint Y') &,

where Q = — A, (T) Ay (T) %o+ PuT).

Then for small B the perturbed problem (L) has a solution and if J p IS the
optimal value, then

lim J,=Jy=Jo(do(")).

f—0

Proof. Since (int 0N Y')u(Qnint Y')# ¥ one can apply Lemma 4
and find a control  uy(-), uu(t)eV for ae. te[0,T],
limsupy Lo lull,, < +o0o, and limy g upy(t)=d,(7) for ae. te [0, T] such
that the corresponding solution (xg(-), ys(*), z4(*)) of the perturbed
system satisfies x,(T)e X', yu(T)e Y', z4(T)=z for an arbitrary ze Z".
From Lemma | and Corollary 3 we deduce that

/Pmo (lxg = Xoll -+ 135 = Poll + 3= 20l) = 0.

Moreover, by Lemma 2

liglsgp (lyplle+1zp10) < +o.

Then, choosing a pointwise convergent sequence of (y,(*), z4(-)) in an
appropriate way and using the continuity of f(-, ¢)), we conclude that

limsup .7,,< lim Jﬂ(u,,(‘))=.7(,. (10)
B0 f-0

This relation, combined with L1 and L2, implies existence of an optimal
solution of the problem (L) for sufficiently small f5.

Now, let ii4(-) be an optimal control for (L) and (£4(-), $s(-), Z4(*)) be
the corresponding trajectory. From L2 and (10) it follows that
limsupg ¢ Il < +00, moreover ||Z4)l or [24(T)| are bounded when 8 — 0.
Choosing a L,-weakly convergent sequence of controls 4g(-) one can apply
Lemma 1 and get that the corresponding sequence (£4(-), P4(-), Z5(+)) of
the trajectories converges (uniformly for Xz(-) and L,-weakly for
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(Pp(+ ) 25(+))) to (xo(+), ¥ol-), 2o(*)), which solves (2) for the weak limit
uo( ). Since X' is closed, x,(7T)e X' and, therefore,

j()g-]o(u()(' )) < llmmfj,,
=0

This inequality, together with (10), completes the proof.

We note that the condition L1 is standard for existence of optimal con-
trols of both the reduced and the original problems. The requirements in
L2 give us boundedness of |24 or of |24(T)| when g — 0. Z! is not com-
pact or the grouth condition in L2(ii) does not hold, then, in general, the
remaining conditions do not imply continuity of the optimal value. For
such an example, see Example 1 with

-l
Ju() = | (¥ +u(0)) dr.

The assumption L3 is related to the reachability of the target set by the
perturbed system and, hence, to the existence of a solution of the perturbed
problem. This condition is also essential, see Examples 2 and 3 with a
functional

1
Ju( )= [ (x(1) = 1P+ (p(0) = 1)?) dr.

“0

APPENDIX

We start the presentation of the proofs of the lemmas with some
preliminary resuits.

In the sequel ¢ denotes a generic constant which does not depend on the
time ¢+ and on the parameter § but may change in different relations.
Denote by Y(1, 7, B), t =1, and by Z(¢, 7, ), t < 1, the fundamental matrix
solutions of the equations

By = Axl1) y, Bi= A1)z,

so that Y(z, 1, B)=1”, Z(¢,1, f)= I (the identity). From the assumption
Al it follows that there exist constants o, g, > 0 such that

[Y(s, 7, B)l < 0y exp(—oa(t —1)/B), (21, (A1)
|Z(1, 1, B)| < 04 expla(t —T)/B), t< (A2)
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We use further the following standard result: Let p(-)e L,[0, T], q(- )€
L,[0, T1, and the function r(-) be defined as

)= [ ple—s) qts)ds

Then

Il <l plie, ligll- (A3)

The same inequality holds when

r
r(?) ='[ p(s—t)q(s) ds.

Using (A1) and (A2) one can easily show that if f8(-)e L0, T] and
f8(-)e L0, T] then

<c e, (A4)

C

<cll . (AS)

C

HES O

Moreover, from (A1-3), if f#(-)e Ly”[0, T], f4(-)e LY¥'[0, T], then

i ,

“ﬁ [ Y( 1, B) Sy de <c i fEl, (A6)

AN y f

Gl Zenm o & <c i (A7)

In Dontchev [S, p. 64] it is proved that if ¢,(-)e L{?’[0, T] then
1

lim [ 2| Y, 0Bl e(t)di+ A5 () 0i( )} =0, (A8)
B—0 .ﬁ 0

Similarly, if @,(-)e L$’[0, T] then

lim
g—0

L7
5] 2 n B o) de— A 0al )] =0 (A9)

Let f#(-)e LY[0, T]. Consider the integral

1 At Pt 1 1 rt
’;‘(')=EJ0 J, Y@ B) fhts) ds dz=5j0 | Y5 prde fiGs) ds.
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Using the technique of the proof of Lemma 3.1 in Dontchev [5, p. 621.

one can get that for every 1€ (0, T]

Fii 0, 1/ 0.0

Hence, applying Hoelder inequality we have

Iy =8, 1 F1C)l + }| Ay (1) fHe) ds |,

where d;,— 0 as f — 0 uniformly in [0, 7).
Consider now the integral

ptoal

oyl

Z(t, s, B) fi(s)ds dr

ﬂ

lim |—| L Bydu+ Ay (- )“ =0.

(A10)

| Z(z, 5, B) du fi(s) ds +— j | Z(1, s, B) dt f(s) ds.

where f8(-)e LY[0, T}. For the first summand, using (A2), by simple

integration we get

7(r s, B) dt fh(s)ds| <

‘ B
NCAVH

for all 1€ [0, T] and for small 5. As before

=0.

R
LY7o

lim | Z(t,- By di— Ay'()]

f—0- -0

Finally, we obtain

|1/;(’)|<0/1 ”//f I|+ l An (g)[ﬂ(g ds|,

where 6, —» 0 as § — 0 uniformly in r€ [0, T].
Consider the operators

Cy: LE[0, T] - C7'[0, T,
D,: LY[0, T] - C'¥[0, T,

,J Iexp (x = s)iB) de | fH(s)] ds

(A1)
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defined as

(Cufdt) =73 [ Y0, 8) An(6) | 25,5, ) £i) ds i,

T

B
1 T T
(Puf0) =2 [ 207 B) Ase) [ V(5,58 fols) ds .

Using (A1) and (A2) one can get the estimates
ICs i< flL,, IDpfille<elflL. (A12)
Moreover, applying (A3) twice we obtain
IC <l IDgfEl <l fEl (A13)

In the sequel we shall designate by J, a generic sequence convergent to
zero as kK — +oc uniformly in [0, T].

Proof of Lemma 1. We show first that the sequences ||x,!|~ and | y,|!
are bounded. To this end we use the following relations: From (A1) we get

IY(, 0, Bi) ¥l = 6. (A14)
Furthermore, by (A4)

) <e(Belzd,  (ALS)

Bx

Yot Be) Al (0) |

and

T i) B (1) dr|| <c llugll. (Al6)

=
AN
Similarly as in (A10) one has

1 ¢t T
ol AR | ¥ b0 400 xus) ds e
k0 Yo

(Al17)

<O llxell e + ’JO A (1) Ay (1) Ay (1) x4 (T) dr|.
Using (A14-17) in the Cauchy formula
vty =Y(1,0, ) 3" +—J (4,7, B (A (1) X, (1)
0

B«
+ e(fi) A2lT) 2,(1) + By(t) uy (1)) dt
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we obtain that
l | All(r),l'k(r)dflgok+(' | 1xe(1)] dr.
Y0 )

This inequality, applied to

sl <+ ([ e de+ | [ dte) uter e

+hzell + uukn),

gives us uniform boundedness of the sequence x,(-), on the basis of the
Gronwall lemma. Then, the boundedness of || y,| follows from (A14-16)
and from the assumption Cl1.

Consider Eq. (Ic). Since |x.li, llyll, and |u.l are bounded, using
Hoelder inequality and (A2) we get

A |v°|+ﬂk(f |k(z)idr+6k)<3—k (A18)

Denote dx, = x; — Xg, AYx = ¥i — Vo» 42, = 2, — 24, AUty =1, — uy. In the
sequel we use the following relations:

Ay(1)=Y(1,0, B,) ¥° — (BN Cp, A3, Ayi)1)

1 ot
o [ YUt B Ax(©) 5,0 dr = (B(C Ay Ax (1)

Be do
|
+ [7( (1, 7, B) Bo() Aug(t) dt — (B )(Cp, By Au)(1)
¢
# B8 [ Yt ) ds6) 205, T ) 20T
- —J' (1, 7, Be) Ana(t) yolt) dr — yol1), (A19)
B

Az ()=Z(1, T, B} 2 T) = 2 (B )(D, Azz A2,)(1)

~T
— | ZUt v, Bo) An(r) Ax,(1) de— e(B)(Dp, Az A1)

— 7 20,7 B Byte) du(x) de — c(B)(Dy, By Aue)(0)

_ t:([fk) ‘FT Z(1, 1, i) Asx(t) Y(1,0, B,) y° dt
kot

| o7
+ [3_ Z(I, T, Bi) A33(7) 2o(T) dt — 24(2). (A20)
kv
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We will prove that

JHAlz(r)Ayk(r)dr <ak+cj' | dx,(1)] &, (A21)

0 0

U A1) A2,(2) de| By + ¢ [ 1dx, (1)l . (A22)
0 {4}

Having this done, the uniform convergence of 4x,(-) to zero will follow
from the inequality

() <c | 1ax o) de+ Uo (A,a(1) Avi(2) + A1) 42,(0)

+ B,(t) du (1)) dr

and from the Gronwall lemma.
Clearly,

U A,(1) (1,0, ) y° de| = 6, (A23)

Since |4y,| is bounded, then, from (A13)

Cz(ﬂk) S"Ez(ﬁk) [dyeli =9,. (A24)

J: A 12(f)(CﬁkA32 Ay )t) de

In view of (A10) we have
1
B

| Aul®) [ ¥(5,5.B4) Au(s) Axils) ds de

<6, Ix] + U(:A,z(r)Az—zl(r)Axk(t)dr . (A25)

By (A12) and the boundedness of |4x,{ - we obtain

[ (o) Asy Ax,)(2) e

~0

e(By) <ce(B) llxile =0, (A26)

Furthermore, by (A10)

1 rt t
o | A [ V(5B Buls) duts) de
k

at

<O lluel +| | A1a(x) A3'(3) Bylr) dulr) de| =6, (A7)

since du,(-) is L,-weakly convergent to zero.
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As in (A24) we obtain

B

W) dr| < celf) il = 0, (A28)

Using (A1), (A2), and (A18), an integration gives us

(B | ¢ ft
I‘(lﬁ:) J()AIZ(T)J” (1, 5. B) A Z(s, T, B,) 2 (T) ds dr| < ce(fy).
(A29)
From (A8) we get immediately
At 1 -
‘J /4 ( <‘/{—J Y(T S, ﬁ/\)Aaz ‘(,(S)db+_}0(1)>df —Ok (A30)

Thus, applying (A23-30) to (A19) we obtain (A21). The inequality
(A22) can be obtained in the same manner from (A2). (A9), (All 13)
applied to (A20).

In order to prove L,-weak convergence of Ay () and 4z,(-) to zero, it is
sufficient to observe that the sequence of norms || Ay, | is bounded (|;4z,} is
bounded by assumption) and to prove that
ydt

lim =0,
k o or

and

lim ’J"A;k(z)dr\zo
koo ox 0

for almost all 1€ [0, T]. We have already obtained these two relations in
(A21) and (A22), where 4x,(-) converges uniformly to zero (the presence
of the matrices 4,,(t) and A,,(¢) is not essential). The proof of Lemma 1 is
complete.

Proof of Lemma 2. The fast trajectories y,{-) and z,(-) satisfy the
equations

yilt)=Y(1,0, B,) v - *lz(ﬁk)(CmAsz Ye)(2)

I
+_| Yt 1, ﬁk)AZI(T)xk{r)dr_E(p’k)((‘[]‘.Aﬂxk)([)

kY0

1 »t
+ —J Y(¢4, t, ) Bolt) u(t) dr - e(B)(Cp Biug )(1)
Bicdo
elBe) 1
+
B Jn

Y(1, 1, B) Ans(7) Z(1, T, B) 24 T) dh. (A31)
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2 ()=2Z(, T, By) 2,(T)— sz(ﬁk)(DﬂkAsz)(t)

[ 205 ) A (0) 520 de — o(BDy A x)(0)

T
- —J Z(t, 7, Bi) Ba(t) u (1) de — e(B)(Dy, Bou )(1)

B
_ S(If*’ J' Z(1, 1, B} A7) Y(z,0, B,) )" dr. (A32)
% !

By repeating the arguments in (A23-29) we get

~l

A (1) yilt) dr

Soi+e ( [ Lo de + 2B 1yl + ||uk||).

v0 0

Similarly

“ A0 2 o) e
Q

SO +c U( () +2(Bi) Izl + IIukII>-
)
These two inequalities, applied to

[x (1M < X + ": (A ((T) X, (T) + A12(7) Y1) + A 3(T) 24(1)

+ B(t)u,(t)) dt

k]

give us
lxelle < (1 + (B yell + Hzell) + ug 1) (A33)
Consider again Eq. (A31). Using consequently (A14), (A13) (for y.(-)),
(A6), (A12) (for x,(-)), again (A6), again (Al13) (for u,(-)), and (A1-2)
(z,(T) is bounded), we have

el S e(l+e2(B) hyicl + Nl + [ xill ). (A34)
For z,(-), using (A32), (A1-2), (A7), (All), (A13) we obtain that

Izall S (1 +e2(Bie) Nzell + Fanall + Nl ) (A35)
Combining (A31 35) we complete the proof.

Corollary 2 follows immediately from the above proof if we replace (A6),
(A7) by (A4) and (AS).
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If we use additionally (A8), (A9) to Egs. (A19) and (A20) for the dif-
ferences 4x,, Ay, 4z, Au, one can obtain Corollary 3.

Proof of Lemma 3. Since C2 holds, the uniform boundedness of (x,{-)
¥il- ) zx(-)) follows from Lemma 2 and Corollary 2. Denote by Z,(-) the
solution of the equation

Bii=A(0)x°+ A,5(0)z + By(0) u, (1), =(T)=0

Then, if 4z, =z, — z,, we have

Bi 42 =AA5 (1) x, (1) + A3y (1) dx, (0) + €( i) A1) yelt)
+ AA34(1) Z,(8) + A1) Az + ABy(1) u, (), Az, (T)=z,(T),

where AA;,(1) = A35,(1) — A3,(0), Ax (1) =x,(1) ~x°, AA55(1) = Ay3(1) —
A33(0), 4B;(r)= B;,(t) — B33(0). This means that the difference 4z,(0)
satisfies

l '\,’If;
4z,(0)=Z(0, T, B,) 2,(T) _[f_ Jo Z(0, 7, B )4 A5, (1) x,(1)
k
+ Ay (t) dx ) +e(Bi) Azal(t) yilT)
+ AA435(1) 2(1) + AB(7) u, (1)) dt
T

B EJH
£(Bi) Asa(1) yilt) + AA (1) Z,(1) + 4B, (1) 1, (1)) dr.

Z(0, 7, B NAA3 (1) X, (1) + A5 (1) dx,(7)

Since z,(T) is bounded, by (A2) we get that the first summand tends to
zero as k — +oc. The first integral can be estimated by the expression

”\f—ﬂk
) exp(=ot/B,) dr vraisup (|4A5(1)] Ixe(0)] + [ A (1) 14x,1)

B (PN

+e(Bi) [A3(1) il )] + [AA33(D] 1Z()] + [4Bs(2)] {ue()]),

which tends to zero as k — +oc since A4,,(1), A3,(t), B,(t) are continuous,
x,() is continuous uniformly in k, and x,(-), y.(*), Z.(-), wu.(-) are
uniformly bounded.

From the uniform boundedness of x,(-), y.(-), Z,(*), and u,(-) we get
that the expression

R
/%J. exp(—at/B,)dt -+ O as k— +o,
kU B
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estimates the second integral. Hence

lim A4z,(0)=0. (A36)

k— +x

Therefore, it is sufficient to prove that a subsequence of z,(0) tends to a
point from A3;'(0) 45,(0) x° + P..
We have

1
20)= — - [ exp(— Au (OB (4:,(0) X+ B(0) 1))
k

= A3'(0) 4;,(0) x° + g, + 84,
where, as before, 5, — 0 as k - +o0, and, denoting

(1) = u By 1), te [0, T/B,),
=v, t2T/B,,

for some ve V, then

Go= — jo* " exp(— A35(0)1) Bs(0) v, (1) dt.

The sequence v,(') is uniformly bounded, hence there exists a ball
B, <= R™ such that v,(t)e Vn B, for ae. te [0, +c0). Let us denote by P.
the closure of the reachable set of the system (6) with feasible controls
being locally integrable functions with values from V'~ B,. Clearly, P.< P,
and g, € P.. Moreover, P, is compact. Let ¢* be a condensation point of
the sequence g¢,. Then a subsequence of Z,(0) converges to
A,,'(0) 45,(0) x°+¢*. This, combined with (A36), means that z°e
A(0) A4, (0)x°+ P..

Denote by P’ (T) the reachable set of the system (4) for controls with
values from V' B,. If we take co(V n B,) instead of V'~ B,, the set P'(T)
does not change. This implies that, from the sequence u,(-), one can
extract a L,-weakly convergent subsequence which tends to some wu(-),
u(tyeco(Vn B,) for ae.te [0, T]. The corresponding sequence of states
x,(+) will converge uniformly to the solution of (4) with the control u(-)
(see Corollary 1), hence all condensation points of x,(7T) will lie in P'(T).
Since P'(T)<= P (T), we have xe P (7).

In order to prove the second inclusion, it is sufficient to repeat the
argument in the first part of the proof, but for the state y. Denoting by
¥«(+) the solution of the equation

By =A3(T) x (T)+ Apn(T) y+ Bx(T) u, (1), »(0)=0,
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one can prove that

lim (P (T)— v (T) =0.

k v oo

On the other hand, if x,(T) converges to x then a subsequence of y,(7)
will converge to —A4,,'(T) A5, (T)x + p*. where p* e P (T). This completes
the proof of Lemma 3.

Proof of Lemma 4. We first prove our lemma on the additional
assumption that X'=R" and Y'=R"

For simplicity. denote D= — A4,,'(T} 4,,(T). Let ¢ >0 be fixed. The con-
dition

veDxy(T)+ P (T)

implies that there exist y, and a sufficiently large number r(¢) such that
[v—v.l<e

and

t s

Vo= Dxo(T)+ | explAss(TH) Bo(T) (1) db.

Y0

where u(t)e VN B,,,. te [0, + x), u(-)e LY"[0, + o).

For every point -eint P. there exists a feasible control driving the
system (6) from O to z with values contained in a certain ball in R™. From
A2 we concludc that there exist z'€ 4,,'(0) A4;,(0) x’ +int P, i=1,.., iy,
such that :z%eintco{z’}. Then there exist r>0 and functions w'(-)e
LU0, + ), wi(t)e Vr\ B, for a.e. 1€ [0, + x) such that

2= 4,,(0) 45,(0) x° — J " exp(— 4,,1(0)1) Bs(0) wi() dr

0

Introduce the control

Wi (1) = w'(1/B), 1€ [0, /B),
= uo(t), re [B. T—/B),

=u((T=1)p),  te[T- /B T1.
For every ¢ >0 we have uj(t)e V for ac. te [0, T]. Moreover

limsup vraisup ()] < +oc
Y [VESr xSy
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and for every re (0, T)
lim uj (1) = uy(t).
g0

Denote by (xj°(+), y5°(*), z4°(+)) the solution of the perturbed system (1)
corresponding to u*(-) with boundary conditions

x(0)=x"%  y0)=y" AT)=-.

By repeating the argument in the proof of Lemma 1, see Remark 1, one
can obtain that

lim |xf = xo]¢=0.
B—0

We will prove that for every ¢>0

lim y}f(T) =y, (A37)
B0
and
lim z45(0)==z". (A38)
-0

If this is so, then, for small § there exist 25>0, % | a, =1, such that

i A
Y apzi(0)=2"

i=1

Define

in
ui(t) =3, ahui(r).

i=1

Obviously, for every re(0, T)

lim uj(1) = ue(1).
B =0

Furthermore, if (x4(-), y5(-), zy(+)) is the solution of (1) with boundary
conditions x(0) = x° y(0)= y° z(T) =z, then

3 £ — H £ — > _ 50
151310 xy(T) = xo(T), /!".no Yp(T)=yg, z3(0) =2z
In order to complete the proof of the first part of the lemma it is suf-

ficient to choose a diagonal sequence of controls for -0 and ¢ - 0.
It remains to prove that (A37) and (A38) hold. Clearly, [ys( e is
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bounded when f§ — 0, see Corollary 2 and Remark 1. Using thc preliminary
results one can show that the expression

1 f—\'ﬁ
V(L0050 45 | V(T4 B (0 51(0) + Bote) iy (0))

ﬂ[j)'[r_ Y(T, 1. ) Az(1) J{ Z(1, s, PU A (s) xj(s)
—e(B) Ayy(s) pii(s)) ds d,+ﬂ|

; 7 Y(T, t, B) Ayy(t) Z(t, T, B)z di

tends to zero as § — 0. Furthermore, an integration by parts gives us

oT
lim—JT E Y(T, t, B) Ao (1) xi(1) dt = = AN (T) Ayy(T) xo(T).

We have

‘/3 Y(T, 1, ) Bylt) ui(t) dt — j exp(Aso( T)) By(T) u,(1) dt
- VB

<S¢ max  ([An(0) = Ap(TH + 1By(1) — Bo(T)) rle) + 4.

o UB=igr

where 0, — 0 as f — 0. The last three observations, applied to the Cauchy
formula for yj°(-) (see (A31)), give us (A37). The relation (A38) can be
obtained analogously.

Let us take now arbitrary sets X' and Y' from R” and R”, respectively,
such that x,(T), y, and = satisfy the statement of Lemma 4.

Obviously xo(T)e X'~ P (T). Suppose first that

xo(T)eint P(T)n X' and ye(Dxo(T)+int P (T))n Y

Clearly, therc cxists &,>0 such that if |x—xoT) <e, then ye
Dx+int P (T). Furthermore, there exist ¢, >0 and x'e P (T), i=1i,..., iy,
such that |x'— x,(T)| <&, and if |¥' — x| <g, then xo(T)eco{%}. Next,
there exist £, >0 and y/, j=1,.., jo, such that y/— Dx'e P (T), i=1,..,i
Jj=1... jo, and if |/ — v/| <¢, then yeco{y,}. '

According to the first part of the proof, for sufficiently small § there
exists a control uj(-)e LV[0, T], uj(t)e V for ae. 1€ [0, T], such that

0>

/}nno uj(t) = uo(t) for ae.te[0, T]
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and if (x4(-), yj(-), zj(+)) is the corresponding trajectory of the perturbed
system, then

11m (x%(T) yUT)) = (x', 3), U Ty=z.

Hence, for small § we shall have

IXUT) = x| <y, IpHT) =27 <&,

for i=1,., iy, j=1,., jo. This implies that there exist 24>0, 3 , 1;4':1
such that

iy
Z 1/1"/1 =x(T), j=1.. jo.
=1
Obviously
) )
) agy(T) — y’! <&,.

i—1

Then there exist >0, 3/ 74 =1, such that

Moreover

Jo o
Y Y vhoixi(T) = xo(T)

j=1i=1
and
Jo 10

Y Y vhakiT) =z

j=1i=1

The control

ugt) = Z Z jhasuit)eco V

J—1i=1
gives us a trajectory, for which
(T =xoThe X',  y(T=yeY', z)(T)=:

This proves the lemma in the case considered.

409 110 1-3
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Suppose now that
xolT)eint X', veint Y'n(Dxy(T)y+ PAT)).

The first part of the proof implies that there exists a control wuy(-)e
LGY[0.T], uy(t)e V for ae. te [0, T] such that

lim wy(1) = uy(t) for ac.re[0, T],
f=0

and the corresponding trajectory (x4(-), y4(*), z4(-)) of the perturbed
system satisfies

/!iino (xg(T), ¥p(T))=(xo(T), y), z(T)=1=z.

Then for § sufficiently small we shall have
X/;(T)EXI, ,V,,(T]e Y],

and the statement of the lemma holds as well. The remaining two cases are
combinations of the considered cases.
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