

NOTE

Enumeration of Lozenge Tilings of Punctured Hexagons

Mihai Ciucu

Institute for Advanced Study, School of Mathematics, Princeton, New Jersey 08540

Communicated by the Managing Editors

Received October 22, 1997

We present a combinatorial solution to the problem of determining the number of lozenge tilings of a hexagon with sides a, $b+1$, b, $a+1$, b, $b+1$, with the central unit triangle removed. For $a=b$, this settles an open problem posed by Propp [7].

Let a, b, c be positive integers, and denote by H the hexagon whose side-lengths are (in cyclic order) a, b, c, a, b, c and all whose angles have 120 degrees. The lozenge tilings (i.e., tilings by unit rhombi) of H can be regarded as plane partitions contained in an $a \times b \times c$ box (cf. [2]), and therefore their number is given by the simple product formula [5]

$$
\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}.
$$

Motivated by this, Propp [7] considered the problem of enumerating the lozenge tilings of a hexagon whose sides are alternately a and $a+1$, from which the central unit triangle has been removed (removal of a suitable unit triangle is necessary for the remaining region to have lozenge tilings). Based on numerical evidence, he conjectured that there exists a simple product formula for the number of tilings of these regions.

The more general question of finding the number of lozenge tilings of a hexagon with sides a, $b+1$, c, $a+1$, b, $c+1$, with the central unit triangle removed—denote it by $N(a, b, c)$—appeared in work of Kuperberg [4] concerning certain weighted enumerations of plane partitions. This general question has been recently settled by Okada and Krattenthaler [6], who proved that $N(a, b, c)$ is equal to the product of four factors of type (1) (their proof relies on a new Schur function identity they prove using the minor summation formula of Ishikawa and Wakayama [3]).
The purpose of this paper is to give a simple product formula (with a simple combinatorial proof) for \(N(a, b, b) \) (this settles in particular Propp’s original question; Fig. 1 shows the region corresponding to \(a = 2, b = 4 \)).

Let \(SC(a, b, c) \) be the number of self-complementary pane partitions that fit in an \(a \times b \times c \) box (see [8] for the definition). In [8] it is given a simple product formula for \(SC(a, b, c) \).

Theorem 1.

\[
N(a, b, b) = SC(a + 1, b, b) SC(a, b + 1, b + 1).
\]

Proof. Let \(G \) be the graph dual to the region of the triangular lattice obtained from a hexagon of size \(a \times (b + 1) \times b \times (a + 1) \times b \times (b + 1) \) by removing the central unit triangle (Fig. 2(a) illustrates this for \(a = 2, b = 4 \)). Any lozenge tiling of our region can be identified with a perfect matching of \(G \). Therefore, \(N(a, b, b) \) is just the number \(M(G) \) of perfect matchings of \(G \).

The graph \(G \) has a symmetry axis; let \(v_1, v_2, \ldots, v_{2b} \) be the vertices of \(G \) on this axis, as they occur from left to right. It is immediate to check that all the conditions in the hypothesis of the Factorization Theorem of [1] are met. Applying this to \(G \) we obtain that

\[
M(G) = 2^b M(G^+) M(G^-),
\]

where \(G^+ \) (resp., \(G^- \)) is the top (resp., bottom) connected component of the subgraph of \(G \) obtained by removing the edges incident to the \(v_i \)'s from above, for \(1 \leq i \leq b \), the edges incident to the \(v_i \)'s from below, for \(b + 1 \leq i \leq 2b \), and finally by weighting by \(1/2 \) the edges of these two subgraphs along the symmetry axis of \(G \) (see Fig. 2(b)).

Consider now the \(a \times (b + 1) \times (b + 1) \) honeycomb graph \(H \) (the case \(a = 2, b = 4 \) is pictured in Fig. 3(a)); the matchings of this graph are in

FIGURE 1
bijection with the plane partitions fitting in an $a \times (b + 1) \times (b + 1)$ box. According to this bijection, $SC(a, b + 1, b + 1)$ is equal to the number of matchings of H that are invariant under rotation by 180 degrees.

Let H_1 be the subgraph of H induced by the vertices on or above its horizontal symmetry axis ℓ (the boundary of H_1 is shown in thick solid lines in Fig. 3(a)). Label the vertices of H_1 on ℓ according to their distance to the center of H (the two closest vertices are labeled 1, the next two closest 2, and so on). Denote by H_2 the graph obtained from H_1 by identifying vertices with the same label (if two edges have both endpoints identified they are considered identical; note that the edge whose endpoints are labeled 1 gives rise to a loop). The matchings of H invariant under rotation by 180 degrees can be identified with the matchings of H_2. Therefore,

$$M(H_2) = SC(a, b + 1, b + 1).$$

The graph H_2 can be symmetrically embedded in the plane. The symmetry axis contains precisely $b + 1$ of its vertices. Therefore, if b is even, all perfect matchings of H_2 contain the loop at the vertex labeled 1 (henceforth referred to simply as the loop), while for odd b none of them contains it.
Suppose \(b \) is even (the case \(b \) odd is treated similarly). Since all matchings of \(H_2 \) contain the loop, we may remove it (together with the vertex labeled 1) without changing the number of matchings of our graph; for the sake of notational simplicity, denote the resulting graph still by \(H_2 \).

Even though \(H_3 \) is not “separated” by its symmetry axis in the sense of [1], the variant of the Factorization Theorem in [1, Section 7] is applicable and yields

\[
M(H_3) = 2^{b/2} M(H_1),
\]

(4)

where \(H_1 \) is the graph obtained from \(H_1 \) by removing the edges incident from above to the leftmost \(b + 2 \) vertices on \(\ell \) and then weighting the edges along \(\ell \) of the remaining subgraph by \(1/2 \). However, remarkably, the graph obtained from \(H_3 \) by removing the vertices matched by forced edges is isomorphic to \(G^+ \) (see Fig. 3(b)). We obtain therefore from (3) and (4) that

\[
M(G^+) = 2^{-b/2} SC(a, b + 1, b + 1).
\]

(5)

To determine \(M(G^-) \), take \(H \) to be the \((a + 1) \times b \times b\) honeycomb graph. Construct the graphs \(H_1 \) and \(H_2 \) as before (see Fig. 4(a)). Since the symmetry axis of \(H_2 \) contains now \(b \) vertices (and \(b \) is even), no perfect matching of \(H_2 \) contains the loop, and therefore we may replace \(H_2 \) by its subgraph obtained by removing this loop (and keeping the vertex labeled 1). Applying the variant of the Factorization Theorem in [1, Section 7] we obtain

\[
M(H_2) = 2^{b/2} M(H_1),
\]

(6)

where \(H_3 \) is the graph obtained from \(H_1 \) by removing the edges incident from above to the leftmost \(b \) vertices on \(\ell \) and then weighting the edges along \(\ell \) of the remaining subgraph by \(1/2 \). However, again, the graph obtained from \(H_3 \) by removing the vertices matched by forced edges is

![Figure 4](image-url)
isomorphic to the subgraph of G^- left after removing its vertices matched by forced edges (see Fig. 4(b)). Since now $M(H_2) = SC(a + 1, b, b)$, (6) implies

$$M(G^-) = 2^{-b/2}SC(a + 1, b, b).$$

(7)

The statement of the theorem follows from (2), (5) and (7).

REFERENCES