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We study rational actions of a linear algebraic group G on an algebra V, and the
induced actions on Rat(}), the spectrum of rational ideals of V' (a subset of
Spec (V) which often includes all primitive ideals). This work extends results of
Moeglin and Rentschler to prime characteristic, often also relaxing their finiteness
assumptions on V. In particular, we relate properties of a rational ideal J and its
orb, the ideal (J: G) = N, < gy(J). The rational ideals of 1/ containing the orb of
J are precisely those in the Zariski-closure X of the orbit of J in Rat(}'). The
G-stratum of J consists of all rational ideals in X whose orbit is dense in X (i.e.,
whose orb is equal to the orb of J). We show that the G-stratum of a rational ideal
consists of exactly one G-orbit, and that rational ideals are maximal in their strata
in a strong sense. These results are useful for studying prime and primitive spectra
of certain algebras, cf. recent work by Goodearl and Letzter. We further show that
the orbit of J is open in its closure in Rat(}/), provided that J is locally closed.
Among other results, we show that the semiprime ideal (J: G) is Goldie, and we
relate the uniform and Gelfand—Kirillov dimensions of V/J and V/(J:G).
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1. INTRODUCTION

In determining and classifying primitive ideals, rational actions of linear
algebraic groups have been quite useful. In the series of papers
[MR,-MR,], Moeglin and Rentschler developed a theory for such actions
dealing with rational ideals, which often include all primitive ideals (see
below). They applied it to the classification of primitive ideals in the
enveloping algebra of a finite-dimensional Lie algebra over an alge-
braically closed field of characteristic zero. Recently, actions of tori have
been used to describe prime and primitive spectra for certain function
algebras on quantum groups, see Joseph [J;, J,, J;] and Hodges, Levasseur,
and Toro [HLT]. Goodearl and E. Letzter [GL] considered iterated skew
polynomial algebras. Continuing our investigation in [V;], we study in this
paper rational actions of linear algebraic groups on the spectrum of
rational ideals of an algebra in general.

We follow the conventions, and use the definitions and the notation
introduced in [V,, 2.1-2.4] (which in turn is based on [MR,]); a summary
of the notation appears in Subsection 3.1. In particular, k is throughout an
algebraically closed field, G is a (not necessarily connected) linear alge-
braic group over k, and V' is an associative k-algebra on which G acts
rationally by k-algebra automorphisms. We sometimes denote the action
of GonV by B.

The main difference with the situation studied by Moeglin and
Rentschler is that we work over an algebraically closed field of arbitrary
characteristic, not characteristic zero, and that we are able to avoid certain
finiteness assumptions: many results in their work require that every
semiprime ideal of the algebra IV be Goldie, or even that IV be Noethe-
rian. In writing this paper, it seemed unavoidable for the sake of clarity
and intelligibility, to follow (at times quite literally) parts of their work. |
have tried to point this out in all important instances.

The remainder of the Introduction consists of a survey of the main
results, leaving detailed statements and comments (and in particular refer-
ences to the work of Moeglin and Rentschler) to the following section.

We begin with a few words about rational ideals. A prime left Goldie
ideal J of V' is called rational if the only central elements in the total ring
of fractions of V/J are the scalars in the field k£ (which we assume to be
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algebraically closed). We denote by Rat(7”) the set of all rational ideals of
V. A profusion of important examples shows that rational ideals are worth
studying. For example, if k is uncountable and 1V countably dimensional
over k, then every primitive left Goldie ideal is rational, see, e.g., [BGR, p.
25]. In characteristic zero, the rational and primitive ideals of the envelop-
ing algebra of a finite-dimensional Lie algebra coincide. This is part of the
Dixmier—Moeglin equivalence; see [Re, 1.9]. The Dixmier—Moeglin equiv-
alence has been generalized to other classes of algebras, see [GL]. Finally,
for affine (i.e., finitely generated) k-algebras satisfying a polynomial iden-
tity, the rational ideals are just the maximal ideals (see, e.g., [V;, 2.6)]).

Given a rational ideal J of V, our goal is to study the orbit of J, and the
relationship between J and (J: G) = N, < 5y(J), which we call, following
Farkas [Fa], the orb of J.

As a first result, we prove that (J:G) is always left Goldie; this is a
special case of Theorem 2.1, which allows us to avoid some of the
finiteness assumptions necessary in Moeglin and Rentschler’s work.

The rational ideals containing (J: G) are precisely those in the Zariski
closure X of the orbit of J in Rat(}). The G-stratum of J in Rat(})
consists of all rational ideals whose orb is equal to (J : G). Said differently,
the G-stratum of J in Rat(}") consists of all rational ideals whose orbit is
dense in X. One of the main results of this paper is that G acts transitively
on each stratum in Rat(}), see Theorem 2.2.

One way to think of this transitivity result is that the G-orbit of J is
uniquely determined by (J:G) (which a priori determined only the G-
stratum of J). This raises the question of which ideals can be orbs of
rational ideals. The answer is that an ideal is the orb of a rational ideal if
and only if it is “G-rational,” see Theorem 2.10. Thus the G-orbits in
Rat(}”) are in bijection with the G-rational ideals of V.

We show also that the rational ideals are maximal in their strata in the
following strong sense: If P 2 J is any ideal with (P:G) = (J: G), then
P =J, see Theorem 2.3.

A prime ideal J is called locally closed if the intersection of all prime
ideals strictly containing J contains J strictly, i.e., if the point {J} is open
in its closure in Spec(}). Such ideals are quite common; we will review
this in the next section. We prove that a rational ideal is locally closed if
and only if its orb is “G-locally closed,” see Theorem 2.6. As a corollary,
we show that if J is a locally closed rational ideal of 1/, then the orbit of J
in Rat(1”) is open in its closure, see Corollary 2.7.

Our investigations enable us to relate V/J and V/(J:G) through a
series of central ring extensions, see Diagrams 2.13 and 7.13. As an
application, we relate the Gelfand—Kirillov dimensions and the uniform
dimensions of ¥V/J and V/(J : G), see Theorem 2.8 and Proposition 2.9.
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Given a rational ideal J of V7, further results relate the center C of the
total ring of fractions of V/(J:G) to Q(G), the algebra of rational
functions defined on dense open subsets of G, see Theorems 2.11 and
2.12. These theorems, which extend our work in [V,], are important
ingredients in the proofs of some of the results mentioned before.

2. STATEMENTS OF MAIN RESULTS

Orbs of Rational Ideals Are Goldie. Let J be a rational ideal of V. Its
orb (J:G) is clearly a semiprime ideal. Moeglin and Rentschler’s tech-
niques depend heavily on the total ring of fractions of V/(J:G). They
ensure its existence in [MR,] by assuming that 1" is Noetherian. In their
later paper [MR,], they work under the more general hypothesis that
every semiprime ideal of V' is Goldie. Using results of Bell and Ferrero
(see Proposition 5.2), we are able to prove the following theorem.

2.1. THEOREM. A prime ideal J of V'is left Goldie if and only if its orb, the
semiprime ideal (J : G), is left Goldie.

This theorem will be proved in 5.4. Many results which follow are based
on it. Even in characteristic zero, it enables us to significantly strengthen
many of Moeglin and Rentschler’s results. In particular, Theorem 2.1
ensures that the total ring of fractions of V/(J:G) exists for every
rational ideal J of V. As a first indication of how this allows us to relate
V/J and V/(J:G), we remark that the total rings of fractions of both
algebras embed into the total ring of fractions of V/J ® O(G) (Lemma
7.3). Here Q(G) denotes the algebra of rational functions which are
defined on dense open subsets of G.

The Stratum of a Rational Ideal Is Its Orbit. Recall that the G-stratum
of J in Rat(1") consists of all rational ideals whose orb is equal to (J: G),
the orb of J. One of the main results of this paper is that G acts
transitively on each stratum in Rat(}):

2.2. THEOREM. FEach G-stratum in RatV consists of a single G-orbit.

This result follows from Theorem 7.10. It was proved in characteristic
zero in [MR,, Théoréme 2], under the assumption that every semiprime
ideal of 17 is Goldie.

We also prove that rational ideals are maximal in their strata, in the
following strong sense:

2.3. THEOREM. Let J be a rational ideal of V. If P D J is any ideal with
(P:G) = (J:G), then P =J. In other words, rational ideals are maximal in
their G-strata in Spec V.



220 NIKOLAUS VONESSEN

This result has no counterpart in the work of Moeglin and Rentschler. It
generalizes work by Goodearl and Letzter [GL] for certain classes of
Noetherian algebras. Theorem 2.3 is proved in 7.7. It immediately implies
the following result, which was obtained in [MR,] in characteristic zero,
under the (unstated) assumption that every prime ideal of V' is Goldie.

2.4. COROLLARY. Let J be a rational ideal of V which is G-stable. Then
the G-stratum of J in Spec V consists of only one element, namely J itself.

Note the difference with Theorem 2.2: that result deals with G-strata in
the smaller space Rat I

The G-stratum of a rational ideal J in Spec(77) will usually contain
many prime ideals not in the orbit of J. For example, any prime P with
(J:G) € P ¢ J belongs to the stratum of J but is not rational by Theo-
rem 2.3. A natural question is the following: If P is an ideal of IV maximal
with respect to (P:G) = (J:G), is then P necessarily rational? In gen-
eral, Theorem 2.1 implies easily that such a P is at least a prime ideal
which is left Goldie, see Corollary 5.5. Under suitable hypotheses, we can
give a positive answer. Recall that an algebra is called Jacobson if every
prime ideal is an intersection of primitive ideals.

2.5. THEOREM. Let J be a rational ideal of V. Assume that J is locally
closed, that V /(J : G) is Jacobson, and that every primitive ideal of V /(J : G)
is rational. If P is an ideal of V maximal with respect to (P :G) = (J:G),
then P is rational (and thus contained in the G-orbit of J).

This theorem depends on results on locally closed ideals, which we will
discuss in the next subsection. Theorem 2.5 is a special case of Theorem
8.15. The hypotheses of Theorem 2.5 are in particular satisfied if 17 is a
finitely generated k-algebra and V/J is a finite-dimensional k-vector
space, see Corollary 8.16. (Note that one could simplify the statement of
Theorem 2.5 by not requiring that J is rational, as this is implied by the
other hypotheses: a locally closed ideal in a Jacobson ring is trivially
primitive, and we assume that all primitive ideals containing (J: G) are
rational.)

Locally Closed Ideals. A prime ideal J is called locally closed if the
intersection of all prime ideals strictly containing J contains J strictly, i.e.,
if the point {J} is open in its closure in Spec(}). (One could define this
notion for semiprime ideals, but one easily sees that a semiprime locally
closed ideal is necessarily prime.) Maximal ideals are clearly locally closed.
Often, rational ideals are also locally closed. In particular, the already
mentioned Dixmier—Moeglin equivalence states that in characteristic zero,
the rational, primitive, and locally closed ideals of the enveloping algebra
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of a finite-dimensional Lie algebra all coincide. The same is true for
finitely generated Pl-algebras over k. (We already remarked that in such
an algebra V, the rational ideals coincide with the maximal ones, which are
locally closed for trivial reasons; conversely, since V' is Jacobson, locally
closed ideals are primitive and hence maximal by Kaplansky’s theorem.)

A closely related notion is the following. A G-stable semiprime ideal [
is called G-locally closed if the intersection of all G-stable semiprime ideals
strictly containing I contains I strictly. One checks easily that a G-locally
closed ideal I is G-prime.

2.6. THEOREM. Let J be a rational ideal of V. The following are equiva-
lent:

(@) Jis locally closed.
(b) (J:G) is G-locally closed.

This result was proved by Moeglin and Rentschler in characteristic zero
under additional finiteness assumptions. They proved (a) = (b) for
Noetherian IV [MR,, Théeoréme 3.8], and (b) = (a) in case that every
semiprime ideal of V' is Goldie [MR,, Théoréme 3]. Having established
that rational ideals are maximal in their strata in Spec(}”) (Theorem 2.3),
our proof of (b) = (a) is much easier, see 8.1. Preparation for the proof of
the other direction (given in 8.13) requires a large part of Section 8.

Combining the previous result with the fact that G acts transitively on
each stratum in Rat(}”), one obtains the following nice corollary, whose
importance comes from the fact that rational ideals are often locally
closed.

2.7. COROLLARY. Let J be a rational ideal of V which is locally closed.
Then the orbit of J in Rat(V') is open in its closure.

We will prove this result in 8.14. It is crucial in proving Theorem 2.5
above.

Relating Dimensions of V/J and V/(J : G). Given a rational ideal J of
V, we now consider the Gelfand—Kirillov dimension and the uniform
dimension (Goldie rank) of the algebras V/J and V/(J:G). We denote
these dimensions by GKdim and udim, respectively.

2.8. THEOREM. Let J be a rational ideal of V, and denote by H the
stabilizer of J in G. Then

GKdim(V/(J:G)) = GKdim(V/J) + dim(G/H).
In particular, if V /] has finite dimension over k, then

GKdim(V/(J:G)) = dim(G/H).
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Here dim(G/H) = dim G — dim H denotes the dimension of the ho-
mogeneous space G /H. This result is proved in 9.5. It extends [MR, 3.12],
which deals with enveloping algebras of finite-dimensional Lie algebras in
characteristic zero.

2.9. PROPOSITION.  Let J be a rational ideal of V. Then
udim(V/(J:G)) <IG/G° - udim(V /T).

We will prove this result in 9.3; it extends the inequality in [MR,,
Proposition 4]. Example 9.4 shows that the inequality can be strict, even
for connected groups both in characteristic zero and in prime characteris-
tic (see also Example 9.1). Moeglin and Rentschler give in [MR,] two
necessary conditions for equality. We will discuss them in Section 9,
following 9.3. (Note that in [MR,], the inequality udim(V/(J:G)) <
udim(V/J) is proved (in characteristic zero) without mentioning the addi-
tional necessary assumption that G be connected. To give an example of
the necessity of this assumption, let G be an affine algebraic group.
Denote by T the action of G on its coordinate ring IV = A(G) induced by
left multiplication. Then for every maximal ideal J of V, (J:G) =0 so
that V' =V /(J : G). But udim(V'/J) = 1 while udimV = |G /G"|.)

G-Rational Ideals. A G-stable, semiprime left Goldie ideal I is called
G-rational if the only G-stable elements in the center of the total ring of
fractions of V /I are the scalars in k, i.e., if (Z(Q(V /D) =k. One
verifies easily that G-rational ideals are G-prime, see Lemma 3.4(b). The
next result relates rational and G-rational ideals.

2.10. THEOREM. The assignment J — (J: G) defines a surjection from
Rat(V') onto the set of G-rational ideals of V; the fibers of this surjection are
the G-orbits in Rat(}V'). Thus the G-orbits in Rat(V) are in one-to-one
correspondence with the set of G-rational ideals of V. In particular:

(@) Let J be a rational ideal of V. Then I = (J : G) is G-rational.

(b) Let I be a G-rational ideal of V. Then there is a rational ideal J of V
with (J:G) = I.

The statement that the fibers of this surjection are the G-orbits in
Rat(V/) is the content of Theorem 2.2. Theorem 2.10 extends [MR,,
Théoréme 2; V,, Theorem 5.1]. New here is that we do not have to assume
that every semiprime ideal of V' is left Goldie.

Using Theorem 2.1 (which ensures that I is left Goldie), part (a) follows
immediately from a result of Braun (see [V;, Lemma 4.1]). We will prove
part (b) in 6.7; the argument in the proof of [V,, Theorem 5.1] goes
through, if one uses at a crucial point the main result of Section 6, which
asserts that certain semiprime ideals are left Goldie (see Theorem 6.6).
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Relating the Center of V/(J:G) to Q(G). We now turn to some more
technical, but very important results which are used in proving several of
the above theorems. The first theorem is an improvement of [V, 3.1]; it
generalizes characteristic zero results of Moeglin and Rentschler, in partic-
ular [MR,, 1.29]. Concerning the terminology: the precise definition of a
purely inseparable extension of commutative semisimple algebras is given in
Definition 4.1. If H is a closed subgroup of G, we denote by Q(G) and
O(G /H) the rational functions defined on dense open subsets of G and
G /H, respectively. Left multiplication of G on itself induces actions on
Q(G) and Q(G/H), which we denote by T'. The actions induced by right
multiplication are denoted by A.

2.11. THEOREM. Assume that V is semiprime and left Goldie, with total
ring of fractions Q(V). Let L be a commutative semisimple subalgebra of
Q(V') which is stable under the action of G. Suppose that L° =k - 1, . Then
there is a closed subgroup H of G and an injective, G-equivariant homomor-
phism v from L into Q(G /H) such that Q(G /H) is a finite purely insepara-
ble extension of v(L). Moreover:

(@) The group H is unique up to conjugation, and the embedding v is
unique up to automorphisms of Q(G) induced by A. That is, if K is a closed
subgroup of G, and v a G-equivariant embedding of L into Q(G /K) such
that Q(G /K) is purely inseparable over V(L), then there is some z € G such
that

K=zHz' and T=A(z)ov.

(b) The group H is uniquely determined by the G-equivariant embedding
v of L into Q(G). In fact,

H={y<eGIA(y)f=fforallf € v(L)}.

That v is G-equivariant means that v intertwines the action on IV with
the action T" on Q(G) induced by left multiplication of G on itself. The
existence of H and v, and the uniqueness of H up to conjugation, was
shown in [V,, 3.1]. Parts (a) and (b) are proved in Section 4; they follow
from Propositions 4.2 and 4.5, respectively.

Now let J be a rational ideal of V. Then (J:G) is G-rational by
Theorem 2.10(a). That is, if we denote by C the center of Q(V/(J: G)),
the total ring of fractions of V/(J : G), then C¢ = k. Hence Theorem 2.11
applies to the semisimple commutative subalgebra C of the algebra
Q(V/(J:G)). Thus there is a closed subgroup H of G, and a G-equi-
variant homomorphism »: C - Q(G/H) such that Q(G/H) is a finite
purely inseparable extension of v(C). Moreover, H is unique up to
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conjugation. Our next result tells us how closely v, H, and J are related. In
particular, H turns out to be a conjugate of the stabilizer of J in G. In
Section 7, the technical heart of this paper, we will—using techniques of
Moeglin and Rentschler—explicitly construct such an equivariant embed-
ding v. We call it »,, and our next result is phrased in terms of that map.
Note that by Theorem 2.11(a), v = A(y)~ v, for some y € G.

2.12. THEOREM. Let J be a rational ideal of V, and set I = (J:G).
Denote by C the center of the total ring of fractions QW /I) of V/I. Let v, be
the G-equivariant map C — Q(G) defined in Subsection 7.5. Then the
stabilizer of J in G is the unique closed subgroup H of G such that Q(G/H) is
a finite purely inseparable extension of v,(C). Explicitly,

H={yeGIA(y)f=fforallf € v,(C)}.

Regarding Q(G /H) as a C-module via v,, denote by m the natural function
from Vo QWW/I) & O(G/H). Then

J = 7T_l(7T(V)m(H)),

where m;, denotes the set of those rational functions in O(G /H) defined on
a dense open subset of G /H containing the coset H, and vanishing at H.

So J (and its stabilizer H), are uniquely determined by, and can be
recovered from, the equivariant embedding »; (provided I = (J:G) is
known). In characteristic zero, this result is due to Moeglin and Rentschler,
see [MR;, 1.19; MR,, Théoréme 2]. Our characteristic-free version is
proved in 7.11.

Relating V /] and V /(J : G) by Central Extensions. Let J be a rational
ideal of V. Using the map v, just introduced, one can relate V/J and
V/(J: G) by a series of central extensions. This relationship, which is very
useful for applications, was discovered and heavily exploited by Moeglin
and Rentschler (though extension (3) did not occur in their work in
characteristic zero). To simplify notation, assume that (J:G) = 0. As
before, denote by C the center of the total ring of fractions of IV =
V/(J:G), and by VC the subalgebra generated by 7 and C. If H is the
stabilizer of J, then Q(G/H) is a C-module via ;. Here is an abbreviated
diagram of the central ring extensions relating 1V/J and V/(J : G); details
will be given in Subsection 7.12 and Diagram 7.13.
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V/7) ® Q(G) = T B /1) 0(G)
)

W T=VC & Q(G/H)
v/ V‘f 2.13)
‘(4)
V=v/J:G)

Using this diagram gives a powerful technique to relate VV/J and VV/(J : G).
As a simple illustration of this, we refer to Proof 9.5 of Theorem 2.8, which
asserts that GKdim()'/(J : G)) = GKdim(V /J) + dim(G /H).

3. PRELIMINARIES

In this section, we introduce our notation and present some preliminary
results. The highlight is a short new proof of a result of Chin, see
Proposition 3.6.

3.1. The following table summarizes our notation and conventions.

GO
J:G

A

O(G/H)

The algebraically closed base field. All algebras are k-algebras,
and all tensor products are over k, unless otherwise indicated.
A k-algebra.

A linear algebraic group acting rationally on V.

The connected component of G.

= N, ccy(J)isthe orb of a k-subspace J of V.

Denotes (where necessary) the action of G on V.

The rationality of the action of G on V' is equivalent to the
existence of a certain Q(G)-linear automorphism u of

V' ® Q(G), see [MR,, 0.4] or [V,, 2.2, 2.3]; in particular, recall
the intertwining properties of u stated there. See also
Subsection 3.2 below.

All actions of G (e.g., those on G and Q(G)) induced by left
(resp., right) multiplication of G on itself are denoted by T
(resp., A), see [V,, 2.1].

For a closed subgroup H of G, we identify Q(G /H) with
Q(G)A(H).

Given a closed subgroup H of G, h is the one-to-one corres-
pondence between the H-stable subspaces J of 1V and the
(B ® I')(G)-stable subspaces of V' ® Q(G/H), see

MR, 1.4] or [V,, 2.4]. By definition,ﬁ sends J to J° =

w I e Q(G) N (Ve O(G/H)).

The correspondence inverse to .
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For an algebra R:

Q(R) The total ring of fractions of R (if it exists).
Z(R) The center of R.

For a variety X, and a point x on X:

A(X)  The algebra of regular functions on X.

Q(X) The algebra of rational functions defined on dense open subsets

of X.

The algebra of rational functions defined on open neighborhoods

of x, sometimes also denoted by &, .

Gy The algebra of rational functions defined on dense open
neighborhoods of x, sometimes also denoted by &, .

a

X

3.2. A few additional remarks about . One can see as follows that the
map w defined in [V,, 2.2] is an automorphism of IV ® Q(G). In analogy to
the map po: V=V ® A(G) in [V, 2.2], define a map wy: V = V ® A(G)
as follows. Given x € V, o(x) = Lx; ® f; iff Xx,f(y) = B(y)x for all
vy G. Both u, and u, extend A(G)-linearly to endomorphisms of
V' ® A(G). A straightforward calculation shows that these two endomor-
phisms are inverse to each other. It follows that w is an automorphism.

In this context, it is worth noting (although this observation will not be
used in the sequel) that ,, the restriction of = toamap V' — V ® A(G),
makes V" into an A(G)-comodule algebra, see [M] (cf. also [W, Sect. 3.2)).

We next recall a basic result of Moeglin and Rentschler (see [MRj, 1.5]),
which will be important in the sequel. Its proof goes through in prime
characteristic.

3.3. PROPOSITION.  Let J be an ideal of V', and let H be a closed subgroup
of V stabilizing J. Then (J:G) = J* N V.

We now discuss some elementary results which will be useful in later
sections.

3.4. LEMMA.

(@ Let I be a G-prime ideal of V, and P an ideal of V such that
(P:G) = I. Then there is an ideal J] D P maximal with respect to the property
(J:G) =1, and any such J is a prime ideal.

(b) Let I be a G-rational ideal of V. Then I is G-prime.
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Proof. (a) Since the action of G on I/ is rational, a Zorn’s lemma
argument shows the existence of such a maximal J (see [V,, 2.18]. It is
easy to show that any such J is prime.

(b) Suppose that I is G-rational, so in particular semiprime and left
Goldie. Since (Z(Q(V /)¢ = k, the action of G permutes the minimal
prime ideals of Q(V/I) transitively. Thus if P is a prime ideal of V
minimal over I, then I = N c;yP. It follows that I is G-prime. |1

3.5. LEMMA. Let J be a prime ideal of V.

@ J® Q(G°) is a prime ideal of V ® Q(G®).

(b) J® QO(G) is a semiprime ideal of V ® Q(G). In fact, it is the
intersection of finitely many prime ideals of V ® Q(G).

Note that J ® Q(G) is certainly not prime if G is not connected.

Proof. (a) This follows immediately from the fact that Q(G°) is unira-
tional over k, see [Bo, Theorem 18.2]. We remark that this can also be
seen without using the unirationality of Q(G®), see Proposition 6.9. Part
(b) follows from (a), as Q(G) is a finite direct sum of fields all k-isomor-
phic to O(G°). 1

The next result is due to Chin [Ch, Corollary 1.3]; his proof uses Hopf
algebra techniques and the hyperalgebra action on V" as higher derivations.
We give a short new proof of his result, and note some corollaries.

3.6. ProrosITION (Chin).  Every G°-prime ideal of V is prime.

It follows from Lemma 3.4(a) that every G°-prime ideal I is semiprime.
And if I is the intersection of finitely many prime ideals, then elementary
arguments show that 7 is prime (cf. [V,, 2.6]). So Chin’s result is of
particular interest in situations where semiprime ideals are not necessarily
intersections of finitely many prime ideals.

Proof. To simplify the notation, assume that G is connected. Let I be
a G-prime ideal of V. By Lemma 3.4(a), there is a prime ideal J of } such
that 7 = (J:G). Let H be the trivial subgroup of G. By Lemma 3.5(a),
J ® Q(G) is prime. Hence also J* = = 3(J ® Q(G)) is prime. By Proposi-
tion 3.3, I = (J:G) =J* N V. Since V ® QO(G) is a central extension of V,
and since J* is prime, [ = J N Vs also prime. 1

We mention some immediate consequences of Proposition 3.6.
3.7. COROLLARY. Let J be a prime ideal of V.
(@ (J:G°) is prime.

(b) (J:G) is the intersection of finitely many, G°-stable prime ideals
(which are in fact the G-conjugates of (J : G°)).
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Proof. (a) This follows from Proposition 3.6 since (J : G°) is G°-prime if
J is prime.

(b) (J:G) is the intersection of the finitely many G-conjugates of
(J:G°). As G° is connected, the latter are all G°-stable. Finally, (J: G°) is
prime by (a). 1

Of independent interest is the next corollary.

3.8. CoroLLARY. If I is a semiprime, G-stable ideal of V, then every

prime ideal of V minimal over I is G°-stable. In particular, the minimal prime
ideals of V are G°-stable.

Proof. If J is a prime ideal minimal over I, then I c (J:G°) CJ. As
(J:G°) is prime, J = (J:G°), i.e., J is G°-stable. |

We will need the following easy consequence of a theorem of Azumaya
and Nakayama [Cog, 7.1.2]. It should be well known, and a proof is only
included for lack of a reference.

3.9. LEMMA. Let R be a finite direct sum of simple rings. Denote the
center of R by C, and let S be a C-algebra. Then intersection gives a
one-to-one correspondence between the ideals of R ®- S and S.

We identify here S with C ® S € R ®. S; this makes sense since S is a
flat C-module (see [Co,, 6.6.5)).

Proof. Say R = & R;, where each R; is a simple ring with center C,.
Set S;=C.S. Then C = &C,; and S = & S,. There is a natural isomor-
phism R & S = & (R, & S,) (cf. Subsection 6.1) which maps S onto
& (C; &, S;). By the theorem of Azumaya and Nakayama, intersection
gives a one-to-one correspondence between the ideals of R; & S; and
C; & ;. The lemma follows now from the elementary fact that the |deals
of a flnlte direct sum of rings & A; are just the direct sums of the ideals of
the 4;. 1

4. T(G)-STABLE SUBALGEBRAS OF Q(G)

In this section, we prove parts (a) and (b) of Theorem 2.11; they follow
from Propositions 4.2 and 4.5, respectively. Combining the latter two
results, we then prove that G acts transitively on certain sets of equivariant
homomorphisms, see Theorem 4.7. This will be a crucial ingredient in the
proof of Theorem 2.2, which asserts that G acts transitively on each
stratum in Rat(}”); see Theorem 7.10.

It is worth noting that Proposition 4.5 gives rise to a Galois type
correspondence between the closed subgroups of the linear algebraic
group G and certain subalgebras of Q(G), see Remark 4.6.
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We begin by defining formally the notion of a purely inseparable
extension of commutative semisimple rings.

4.1. DEFINITION. Let R =R, & --- ® R, be a commutative semisimple
algebra where the R, are fields. We say that R is purely inseparable over a
semisimple subalgebra L of R if there are subfields L; of R, such that R,
is purely inseparable over L;, and such that L =L, ® --- @ L,,.

4.2. PROPOSITION. Let H and K be closed subgroups of a (not necessarily
connected) linear algebraic group G over k. Let L be a T'(G)-stable (com-
mutative) semisimple subalgebra of Q(G/H) such that Q(G/H) is purely
inseparable over L. Suppose there is a T(G)-equivariant homomorphism *
from L into Q(G/K) such that Q(G /K) is purely inseparable over y*(L).
Then there is some z € G such that ™ is induced by right multiplication by z.
That is, y* = A(z2)|.. Moreover, K = zHz™*.

This is somewhat similar to [V,, 3.6 and 3.7]. Note that this result proves
part (a) of Theorem 2.11: if * =7 v v(L) - Q(G/K), then for
some z € G, K = zHz ! and * = A(2)l,(1). Hence ¥ = ¢*o v = A(z)o v.

Proof. Note that ™ is injective since T'(G) permutes the minimal
idempotents of Q(G /H) transitively. Denote by 7* the inclusion of L into
O(G/H). For v € G, define

Azg = (7%) (Gpy)  and Agp = (4 (Gy).

Here &,y = G u) c u» Se€ Subsection 3.1. We apply the proof of [V,
Lemma 3.5] simultaneously to the embeddings #*: L — Q(G/H) and ¢*:
L — Q(G/K). Thus there is an affine variety Y with Q(Y) = L, and there
are affine dense open subsets U and U’ of G/H and G /K, respectively,
such that 7* and * induce epimorphisms 7: U —» Y and ¢: U’ - Y.
Moreover, as the proof of [V,, Lemma 3.5] shows, we can choose U and U’
in such a way that

Asmg =T(v") Ayg forall y,v' € G,
Ayrg=T(y") Ak forall y,y' € G,

A = Oy forall y € G with yH € U,
A3 = vk forall y e G with yK € U'.

Her_e Otniyity = Olm(yiry, v+ SE€ Sgbsgction 3.1 _
Since 7 and  are both surjective, we can find x,y € G such that

xH € U, yK € U', and w(xH) = (yK). Set z =y *x.
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4.3. LEMMA. K = zHz ', Consequently, A(z) induces an isomorphism of
varieties G/H — G /K defined by A(zX(yH) = yz K.

Proof. We show that xHx ™' is the stabilizer in G of A . Since
Asn = Oany = Cuiky = Ayxo

it follows then by symmetry that xHx ' = yKy !, i.e.,, K = zHz %,

In characteristic zero, #* is an isomorphism of L onto Q(G/H). Thus
in this case, 7*(Az) = &, The stabilizer of &, is equal to the
stabilizer of xH € G/H under the action of I'(G), which is xHx™ !, as
required.

Assume now that char k = p is prime. Since Q(G /H) is purely insepara-
ble over L = 7*(L), there is some n such that 7*(L) contains Q(G /H)*".
Denote by f the Frobenius map of Q(G /H) which sends a to a”". It is a
ring (not algebra) isomorphism of Q(G /H) onto Q(G/H)"". Note that for
any y € G,

Pyry N Q(G/H)pn =f(ﬁ(7H))'

Suppose that A,z = A.g, ie, 7(A55) = 7*(A). Then g, and
&1, have the same intersection with 77*(L) so also the same intersection
with Q(G /H)"", and are hence equal, implying that yxH = xH. Hence for
v e G,

D(y) Ay = Agg = 7*(Ayzg) = 7 (Ag)
< yxH =xH < vy € xHx .
Thus xHx~! is the stabilizer in G of A..
Finally, since zHz ' = K, A(z) induces a well-defined map G/H —
G/K: indeed, A(z)(yH) = yHz ' = yz7'K. |

4.4, LEMMA. ¢ o A(z) = 7 as rational maps of varieties G/H — Y.

Proof. Set U, = {y € G|lyxH € U}. Then U, is open in G, being the
inverse image in G of the open subset U of G/H under the morphism
v — yxH. By definition of G/H, the quotient map G — G/H is open,
i.e., maps open sets to open sets. Hence also the morphism y — yxH is
open. Since U is a dense open subset of G/H it follows that its inverse
image, the open set U,, is dense in G. Similarly, also Uj = {y € GlyyK €
U'} is dense and open in G. Hence also V' = U, N U} is dense and open in
G, implying that VxH is dense and open in G/H. Fix a y € V. Since
z =y 1x,

[¢ o A(2)](yxH) = ¢(yxz7'K) = ¢(yyK).
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So it suffices to show that w(yxH) = ¢(yyK), i.e, that & ) =
wyyky- BUt

(1) (2)
@’(w(ny)) = Ayx_H= F(V)Am = F('Y)ﬁ(rr(xH))

(3) (4) (5)

= T(v)Cuuky = T(v)A5x = Aj5r = Oyiyyiy-

Here (1) is true since yxH € U; (2) because xH € U, (3) because 7 (xH)
= y(yK); (4) because yK € U’; and (5) because yyK € U'. 1

We now finish the proof of Proposition 4.2. By the previous lemma,
A(z)*o * = 7*. Once checks readily that A(z)* = A(z™?!). Indeed, for
v, 8 € G and f e a(G), [ALY)*(HISE) =[fo AlIS) = f(8y~1), while
[A(YXHI8) = f(&y). Consequently, A(z Yo y* = 7*, ie, ¢* =
A(z)o m*. Since #* is the inclusion of L into Q(G/H), it follows that
¥* = A(z)|.. This concludes the proof of Proposition 4.2. |

4.5. PROPOSITION. Let L be a (commutative) semisimple subalgebra of
Q(G) which is T(G)-stable. Then

H={ye GIA(y)f=fforallf € L}

is the unique closed subgroup of G such that L is contained in Q(G /H) and
such that Q(G /H) is purely inseparable over L.

Note that this proves part (b) of Theorem 2.11.

Proof. We will show below that H is closed, and that Q(G/H) is
purely inseparable over L. Assuming this, we now show that H is unique.
Suppose K is another closed subgroup of G such that L is contained in
0O(G /K) and such that Q(G /K) is purely inseparable over L. Then H and
K are conjugate by Proposition 4.2. Moreover, since L € Q(G/K) =
O(G) ™ it follows that K € H. These two facts easily imply H = K.

We now show that H is closed, and that Q(G /H) is purely inseparable
over L. In case that L is a field, this is the content of [V;, 3.4]; we will use
that result below.

Say L=L, ® --- ® L,, where the L, are fields. We denote the unit
element of L, by e. Let G’ be the stabilizer of e for the action I' of G.
Then G’ is also the stabilizer of L, = Le, and the index of G’ in G is n.
The unit element of L is the sum of certain primitive idempotents of
Q(G) which are permuted transitively by T'(G). Consequently, L and
Q(G) have the same unit element. Moreover, G' is closed and contains G°
by [MR;, 1.22] (see also [V, 2.5)).
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We may assume that e contains as a summand the primitive idempotent
of Q(G) which is the rational function which is identically one on G° and
identically zero on the other irreducible components of G. Note that this
primitive idempotent belongs to Q(G’) since G° € G'. We next show that
under this assumption on e, L, € Q(G’). Denote by m the number of
irreducible components of G. This is also the number of (orthogonal)
primitive idempotents in Q(G). The number of primitive idempotents of
Q(G) which are summands of e is m/n; this is also the number of
primitive idempotents of Q(G) contained in Q(G’). Note that I'(G')
permutes transitively the primitive idempotents of Q(G’) (which are also
primitive idempotents of Q(G)). Since I'(G') permutes also the primitive
idempotents which are summands of e, it follows that all m /n primitive
idempotents of Q(G') are summands of e. Consequently, e is the unit
element of Q(G"), and L, € Q(G)e = Q(G").

Choose y;, € G such that T'(y,)L, = L,. Then the y,G’ are the distinct
left cosets of G’ in G, and L, c T'(y)O(G") = O(y,G").

Note that H € G'. Denote by H' the set of all y & G’ such that
A(y)f=f for all f< L,. We show next that H = H'. Clearly, H c H'.
Suppose now that y € H' and f € L;. We have to show that A(y)f = f.
Now for some g e L, f=T(y)g Hence A(y)f= A(yI(y)g =
T'(y)A(y)g = T'(y,)g = f, since the actions T'" and A commute. Thus
H = H'. It follows by [V,, 3.4] that H is a closed subgroup of G’ (and thus
of G), and that Q(G'/H) is a finite, purely inseparable field extension
of L,.

Now Q(G) = @, O(y,G"). Since the y,G' are A(H)-stable (as H is a
subgroup of G’), we have

0(G/H) = 0(6)*" = @ 0(%G)*™.

Since T'(y,) induces a A(H)-equivariant isomorphism of Q(G’) onto
O(y,G"), it maps Q(G' /H) = Q(G")*"D isomorphically onto Q(y,G") .
Hence Q(y,G")*! is a field which is a finite, purely inseparable extension
of L; = T(y)L,. |

4.6. Remark. Proposition 4.5 gives rise to a Galois type correspondence
between the closed subgroups H of a linear algebraic group G and those
I'(G)-stable semisimple subalgebras L of Q(G) for which no element of
Q(G)\ L is purely inseparable over L. For connected linear algebraic
groups G, this recovers a result of Abe and Kanno [AK] (although their
correspondence is phrased slightly differently). We omit the verification of
the details.
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Combining Propositions 4.2 and 4.5, we can now prove the following
theorem which will be important in the sequel, in particular in the proofs
of Theorems 7.10 and 2.2.

4.7. THEOREM. Let L be a (commutative) semisimple subalgebra of Q(G)
which is T(G)-stable. Denote by Hom (L, Q(G)) the set of T(G)-equiv-
ariant k-algebra homomorphisms from L into Q(G). Then the action of G on
Hom(L, O(G)) induced by A is transitive.

To be precise, the group G acts on Hom (L, Q(G)) as follows: given
vy <€ G and f e Homg(L, Q(G)), y sends f to A(y)e f.

Proof. Let * € Hom(L, Q(G)). By Proposition 4.5, there are closed
subgroups H and K of G such that Q(G/H) and Q(G/K) are finite
purely inseparable extensions of L and *(L), respectively. So by Proposi-
tion 4.2, there is some z € G such that * = A(z)|,. Then * = A(z)- f,
where f is the embedding of L into Q(G). 1

5. GOLDIE CONDITIONS FOR PRIME IDEALS
AND THEIR ORBS

Recall that a semiprime ideal is left Goldie if modulo that ideal, the ring
has finite left uniform dimension and satisfies the ascending chain condi-
tion on left annihilators. In this section we prove Theorem 2.1, which
states that a prime ideal of V7 is left Goldie if and only if its orb is left
Goldie. We begin with a well-known elementary lemma.

5.1. LEMMA. Let R[x] be the polynomial ring in one central indeterminate
over a prime ring R. If R[x] is left Goldie, then so is R.

Proof. Note that R[x] is a prime ring. Its subring R satisfies the
ascending chain condition on left annihilators. If @1, is a direct sum of left
ideals of R contained in R, then GBIj[x] is a direct sum of left ideals of
R[x] contained in R[x]. Hence the left uniform dimension of R is
bounded above by the left uniform dimension of R[x], which we assume to
be finite. Thus R is left Goldie. |

5.2. ProposITION (Bell, Ferrero). Let R[x] be the polynomial ring in one
central indeterminate over a ring R. Let P be a prime ideal of R[x]. Then P is
left Goldie if and only if the prime ideal P N R is left Goldie.

The implication < is due to Bell [Be, Proposition 2.4], see also [FP,
Corollary 10]. The other implication is due to Ferrero, who kindly permit-
ted its inclusion in this paper. We remark that one can prove < also along
the lines of Ferrero’s proof of the other implication, which we present
next.
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Proof of = . Factoring out by (P N R)[x], we may assume that P N R
= 0. So R is now a prime ring. If P = 0, we are done by Lemma 5.1. So
assume that P # 0. Denote by T the left Martindale quotient ring of R,
see [P, Sect. 10]. The extended centroid C of R is by definition the center
of T. We need to know only the following fact about T': given finitely many
non-zero elements g; € T, there is a non-zero ideal 4 of R such that
0 # Agq; C R for all i, see [P, 10.2]. By [Fe, Corollary 2.8], there is a prime
ideal P’ of T[x] lying over P, i.e.,, with P’ N R[x] = P. Since PN R =0,
P’ N T = 0. By [Fe, Corollary 2.7 and Remark 2.6], P’ is generated as an
ideal by a monic irreducible polynomial with coefficients in C. Conse-
quently, T c T[x]/P’ is a finite centralizing extension of prime rings.

Since R[x]/P is left Goldie, its subring R satisfies the ascending chain
condition on left annihilators. We have to show that R has finite left
uniform dimension. We show first that T[x]/P’ has finite left uniform
dimension. For that, it suffices to show that every non-zero left ideal of
T[x]/P’ has non-zero intersection with R[x]/P. To prove this, it suffices
to show that if f(x) € T[x]\ P’, then rf(x) € R[x]\ P for some r € R.
There is certainly a non-zero ideal 4 of R such that 0 + Af(x) € R[x].
Suppose Af(x) € P. Then also AR[x]f(x) cP. But as PN R =0 and
f(x) & P, this is impossible. Consequently, T[x]/P’ has finite left uni-
form dimension. Since T[x]/P’ is a finite centralizing extension of T, also
T has finite left uniform dimension, see [McR, 10.1.9]. It follows easily that
also R has finite left uniform dimension and is thus left Goldie. Indeed, let
@ 1; be a finite direct sum of left ideals of R contained in R. Then XT7; is
a direct sum of left ideals of T contained in T suppose not. Then there
are a; € TI;, not all zero, such that Ya; = 0. For some non-zero ideal A of
R, Aa; c I; for all j, and Aa; # 0 if a; # 0. This is a contradiction to the
assumption that the sum of the /; is direct. Hence R has finite left uniform
dimension and is thus left Goldie. |

5.3. PROPOSITION.  Let L be a finitely generated field extension of a field K,
and let R be a K-algebra. Let P be a prime ideal of R ®, L. Then P is left
Goldie if and only if the prime ideal P N R is left Goldie.

Proposition 6.5 below gives a partial extension of this result for semiprime
ideals.

Proof. Let L, be a subfield of L which is a purely transcendental
extension of K, and over which L is algebraic. Then R ® L, C R ® L is
a finite centralizing extension. Hence P is left Goldie if and only if the
prime ideal P N (R & L,) is left Goldie, see [RS, Theorem 5.6]. We may
thus assume that L is purely transcendental over K. By induction, we may
assume that L = K(x) is a rational function field in one variable x over K.
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Note that R ® K[x] = R[x]is a polynomial ring in one central indeter-
minate over R. Moreover, R, = (R &, K(x))/P is the localization of
R, = R[x]/(P N R[x] at a set of regular central elements. By [McR,
2.2.12], R, and R, have the same left uniform dimension. If R, is left
Goldie, its subring R, satisfies the ascending chain condition on left
annihilators and is thus also left Goldie. Conversely, if R, is left Goldie,
then R, € Q(R,), so that R, satisfies the ascending chain condition on
left annihilators and is thus left Goldie. Consequently, P is left Goldie if
and only if P, =P N R[x] is left Goldie. By Proposition 5.2, P, is left
Goldie if and only if P,NR =P NR is left Goldie. This proves the
proposition. i

5.4. Proof of Theorem 2.1. Recall that the intersection of a finite
number of minimal prime ideals is left Goldie if and only if all the minimal
prime ideals involved are left Goldie, see [McR, 3.2.5]. It suffices thus by
Corollary 3.7 to show that J is left Goldie if and only if (J:G®) is left
Goldie. Hence we may assume that G is connected.

Denote by H the trivial subgroup of G. By Lemma 3.5, P =J ® Q(G) is
prime, and so is J* = u~(P). By Proposition 3.3, (J : G) = J* N V. Apply-
ing Proposition 5.3 twice to the ring extension IV c IV ® Q(G) shows that
J =P NV is left Goldie iff P is left Goldie iff J* = w~1(P) is left Goldie
iff (J:G) =J° NV is left Goldie. [l

As an immediate corollary of Theorem 2.1, we obtain the next result
which applies in particular to the G-rational ideals I of 7 (see Lemma
3.4(b)).

5.5. COROLLARY. Let I be a G-prime ideal of V which is left Goldie. Let J
be an ideal of V maximal with respect to the property that (J : G) = I. Then J
is a prime ideal which is left Goldie.

Proof. By Lemma 3.4(a), such a J exists and is a prime ideal. By
Theorem 2.1, J is left Goldie. |

6. THE CORRESPONDENCE h AND
GOLDIE CONDITIONS

In the sequel, we sometimes denote the action of G on V' by B. Let H
be a closed subgroup of the linear algebraic group G. Recall the corre-
spondences h and between the H-stable subspaces of 1} and the
(B ® T)XG)-stable subspaces of V' ® Q(G/H), see Subsection 3.1. The
main result of this section is that h and # preserve the property that an
ideal is semiprime, and the property that an ideal is semiprime left Goldie,
see Theorem 6.6. This enables us to prove Theorem 2.10(b), see 6.7. At the
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end of this section, we also study to what extent h and ﬁ preserve the
property that an ideal is prime, see Theorem 6.6(c) (proved in 6.10).
Example 6.11 shows what can go wrong.

6.1. It will be helpful to quickly review an elementary property of tensor
products over commutative semisimple rings. Say K=K, & - ® K, is a
commutative semisimple ring, where the K, are fields. Let M and N be
K-modules. Denote by M; = MK, and N, = NK; their respective isotypic
components; so M = @M, and N = &N, Then M; & N, =0 if i #],
and M; & N; =M, & N, Consequently, M & N = &, M, & N. In
this way, many assertions involving tensor products over commutative
semisimple rings can be reduced to statements involving tensor products
over fields.

6.2. Hypotheses for Lemmas 6.3, 6.4, and Proposition 6.5. Let K C L be
commutative semisimple rings such that K = L® for some group () acting
on L. Let M be a K-module. We identify M with its isomorphic image in
M ®, L. Then Q acts on M ®, L by acting trivially on M. In particular,
() acts in this way on R ®, L for every K-algebra R.

6.3. LEMMA. Let K, L, Q, and M be as in Subsection 6.2.
@ If X is an Q-stable L-submodule of M ®; L, then

X=(XNM)L=(XnM)g& L.

(b) If N is a K-submodule of M, then N = (NL) N M.

We will apply this lemma as well as Lemma 6.4 and Proposition 6.5
mostly in the following two situations:

e L =0(G), Q=AG),and K=L*=k;or
e L =0(G), Q=A(H), and K = L? = Q(G/H).

Lemma 6.3 is similar to [MRj, 1.2]; it is classical in case L is a field. Not
aware of a suitable reference, we include its proof.

Proof. (a) Here we identify M with M® 1 cM & L, and (X N
M)L denotes the L-submodule of M ®, L generated by X N M.

Since K is semisimple, L is a flat K-module [Co,, 6.6.5]. Tensoring the
inclusion X N M — M with L over K shows that (X " M) & L = (X N
M)L. Moreover, (M ®, L)/(XNM)L =(M/(X N M)) ® L. In order
to prove that X = (X N M)L, we may hence replace M by M /(X N M),
and assume that X N M = 0. We have now to show that X = 0. We
reduce first to the case that K is a field. Say K is the direct sum of finitely
many fields K;. For any K-module Y, denote by Y; its K -isotypic compo-
nent. So Y; = YK;, and Y = @,Y,. Clearly X = 0 if and only if all X; = 0.
Moreover, L, = LK, is Q-stable, and K, c (L)* cL*NL,=KNL,=
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K, showing that (L)® = K,. Also, X; is an (-stable L,submodule of
(M & L);=M & L, =M;® L; So in order to prove (a), we may
assume that K is a field.

Suppose now that X # 0. Choose a non-zero x € X such that x =
Yiim; ®a; €M & L with n as small as possible. Denote by ¢; the
finitely many minimal primitive idempotents of L. Then L; = Le; is a
field, and L is the direct sum of the L. Since 1 = Ye;, xe; # 0 for some ,
say j = 1. Replacing x by xe,, we may assume that all a, = a,e, belong to
L,. Since L? = K, Q permutes the e; transitively. Hence there are o, € ()
such that w,(e;) =e;. Set b, = ¥;wi(a,) = X,wa,)e;. Note that b;e; =
w;(a;) # 0 for all j, so that b; is invertible in L. Set y = Y,m; ® b, =
L;w(x). Since ye; = w;(x) # 0, y # 0. Replacing x by y, we may hence
assume that all a, are invertible elements of L. Replacing x by x(a,)™!,
we may furthermore assume that a, = 1. Now for every € Q, x — w(x)
=Y ,m; ® (a; — w(a,)), so it must be zero. By the minimality of n, the
m; are K-linearly independent, implying that a, = w(a,) for all i. Conse-
quently, all a, € L® = K. It follows that x = m ® 1 for some m € M. But
then x € X " M = 0, a contradiction. This proves (a).

(b) Set N, = NL N M. Then N c N,, and NL = N, L. Denote by ¢
and ¢ the inclusions N = N, and N, = M, respectively. Since L is flat
over K, the maps ¢ ®, id, and # ®, id, are injections. Since (i ®,
id;)e(¢ ® id;) and (¢ ®, id,) have the same image in M ®, L, namely
NL = N,L, ¢ ® id;, must be surjective, so an isomorphism. Since L is
flat over K, this implies that (N, /N) ®, L = 0. Hence N, /N = 0, since L
is faithfully flat over K, see [AM, p. 45, Exercise 16]. 1

6.4. LEMMA. Let K and L be as in Subsection 6.2, and let J be an ideal of
a K-algebra R. Then J is a semiprime ideal of R if and only if ] & L is a
semiprime ideal of R &, L.

Proof. Since R € R ®& L is a centralizing extension, J = R N (J ®& L)
is semiprime if J ® L is. Suppose now that J is semiprime. Factoring out
by J, we may assume that J is zero. Denote by N the intersection of all
prime ideals of R ®, L. It is Q-stable, so by Lemma 6.3(a) generated by
its intersection with R. Now let p be a prime ideal of R. Then P, =p &, L
is an ideal of R ®; L lying over p, i.e., P, is an ideal with P, N R = p. By
a Zorn’s lemma argument, there is an ideal P of R ®, L which is maximal
with respect to lying over p. One checks easily that P is a prime ideal, so
contains N. Hence p contains N N R. So every prime ideal of the
semiprime ring R contains N N R, implying that N N R = 0. Conse-
quently N = (N N R)L =0, so that R ®, L is semiprime. |

6.5. PRoPOsSITION. Let K and L be as in Subsection 6.2, with the addi-
tional property that each direct summand L, of L is a finitely generated field
extension of the image of K in L. Let R be a K-algebra.
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(@) Let J be a semiprime ideal of R which is left Goldie. Then J &, L is
a semiprime ideal of R ®, L which is left Goldie.

(b) Let J be a semiprime ideal of R & L which is left Goldie. Then
J N R is a semiprime ideal of R which is left Goldie.

For the proof of part (b), we will not use the fact that L® = K. Note that
some finiteness condition is needed in part (a). To give an example, let
R =L = Q be the algebraic closure of the rational numbers K = Q. As
one can check, the semiprime ring R & L = Q ®, @ has an infinite
number of minimal prime ideals, so is not Goldie.

Proof. (a) Factoring out by J, we may assume that J = 0. By Lemma
6.4, R ® L is semiprime. Since L is flat over K (see, e.g., [Co,, Theorem
6.6.5, p. 242]), R ®, L embeds into Q(R) ®, L. By the finiteness assump-
tion on L and a generalization of Hilbert's basis theorem (e.g., [McR,
1.2.10 and 2.1.16(iii)]), the latter algebra is Noetherian. Consequently, its
subalgebra R ®, L satisfies the ascending chain condition on left annihi-
lators. Note that the set S of regular elements of R consists of regular
elements of R ® L. We show next that S satisfies the left Ore condition
for R ® L. Indeed, if s € § and Xa, ® [, € R ® L, we can bring the
fractions a;s~' to a common left denominator. So there are b, € R and
t € § such that ta; = b;s for all i. Then (b, ® [,)s = t(Xa; ® [,), and
(R ® L)s N S(Xa; ® [;)) # &. Consequently, Q(R) ®& L is a localization
of R®, L at a left Ore set consisting of regular elements. By [McR,
2.2.12], these two rings have the same left uniform dimension, which is
finite since the larger ring is Noetherian.

(b) Because R C R ®, L is a central extension, J N R is semiprime.
Since J is a finite intersection of prime left Goldie ideals J;, and since
JNR=NW,;NR), we may assume that J is actually prime, see [McR,
3.25]. Say K= K, & --- ® K, where the K, are fields. Set R, = RK; and
L; = LK, As in Subsection 6.1, R = ®R; and R & L = &(R, & L,).
Replacing R by a suitable R,, and R ® L by its corresponding direct
summand R; ® L, we may assume that K is a field.

Now write L = L, ® - oL, where the L, are field extensions of K.
Then R & L = ®(R & L;), and under this isomorphism, R = R ®, 1
corresponds to the “diagonal”: r € R mapsto (r ® 1,...,r ® 1). We may
assume that J corresponds under this isomorphism to P © [®" ,(R ®
L)), where P is a prime left Goldie ideal of R ® L,. Note that / " R C
R ® L is left Goldie if and only if P "R C R ®& L, is. Hence we may
assume that L is a field as well. Now we are done by Proposition 5.3. |

We are ready for the main result of this section.

6.6. THEOREM. Let H be a closed subgroup of G. The correspondences h
and # preserve the property that an ideal is semiprime, and the property that
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an ideal is semiprime and left Goldie. Under certain connectedness assump-
tions, these correspondences also preserve the property that an ideal is prime.
To be more precise, let J be an ideal of V which is B(H )-stable, and consider
the corresponding ideal I* of V ® Q(G /H).

@ J is semiprime if and only if I' is semiprime.
(b) J is semiprime left Goldie if and only if J " is semiprime left Goldie.

(¢c) IfJis prime and G connected, J " s prime. If J " s prime and both
G and H are connected, then J is prime.

Part (a) extends [MR,, 1.37], which asserts that J is B(H )-(semi-)prime
if and only if J* is (8 ® I')(G)-(semi-)prime. We remark that part (c),
though interesting in its own right, will not be used in the sequel. We will
see in Example 6.11 that the conclusions in part (c) can be false if the
connectedness assumptions are not satisfied.

Proof of Parts (a) and (b). The proof of (a) is similar to the proof of
(b), but easier, using Lemma 6.4 instead of Proposition 6.5. Therefore we
omit it, and turn to the proof of (b). Assume first that J is semiprime and
left Goldie. Then so is J ® Q(G) by Proposition 6.5(a) with Q = A(G).
Hence also . 1(J ® Q(G)) is semiprime and left Goldie. Using the fact
that Ve O(G) =W O(G/H)) ®Q(G/H) Q(G), Proposition 6.5(b) with

= A(H) implies that J' = p '(J ® O(G) N (V ® O(G/H)) is
semlprlme and left Goldie. Conversely, assume that Jiis semiprime and
left Goldie. By Lemma 6.3(a) with Q = A(H), u '(J ® Q(G)) =
® /uy Q(G). Hence u “1(J ® Q(G)) is semiprime and left Goldie by
Proposition 6.5(a) with QO = A(H). Thus J ® Q(G) is semiprime and left
Goldie, and so is J by Proposition 6.5(b) with Q = A(G). 1

We have now the missing technical ingredient to reprove [V,, Theorem
5.1] without assuming that every semiprime ideal of 1 is left Goldie.

6.7. Proof of Theorem 2.10(b). This follows as in the proof of [V,, 5.1].
There the assumption that every semiprime ideal of 1V is Goldie is used
only once, namely to show that the semiprime ideal J is left Goldie. This
follows from Theorem 6.6(b) since the semiprime ideal J* was already
shown to be left Goldie. |

We turn to the proof of Theorem 6.6(c). We need two auxiliary results.

6.8. LEMMA. Let K be a field, and L a finitely generated separable field
extension of K. Let J be a prime ideal of a K-algebra R. Then J ®, L is the
intersection of finitely many prime ideals of R & L.

Proof. Let L, be a purely transcendental field extension of K such
that L is a finite separable extension of L,. Replacing L by the normal
closure of L over L,, we may assume that L is Galois over L, with finite
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Galois group €. The ideal J ®, L, is clearly prime. Let P be an ideal of
R ®; L maximal with respect to PN (R ®, L,) =J & L,. Then P is a
prime ideal. Since (P : Q) is Q-stable, it is generated by its intersection
with R &, L,, which is J & L, (see Lemma 6.3(a)). Hence J &, L = (J
®& L) & L =(P:Q). Since Q is finite, (P: Q) is a finite intersection
of prime ideals. |

6.9. PROPOSITION. Let H be a closed subgroup of G, and assume that
both G and H are connected. Let J be a prime ideal of V ® Q(G/H). Then
J 8y uy Q(G) is a prime ideal of V ® O(G).

This result extends Lemma 3.5(a), and in fact reproves that result (in
case H = G) without using the unirationality of Q(G®) over k. We will see
in Example 6.11 that J &, 4, Q(G) may not be prime if H is not
connected.

Proof. Set I =17 &,y Q(G), and Q = (id ® A)XH). Since Q(G/H)
is the fixed field of Q(G) under the action of a group, namely A(H), Q(G)
is separable over Q(G/H), see [Ros, p. 4]. By Lemma 6.8, I is a finite
intersection of prime ideals. Say P,,..., P, are the prime ideals of V' ®
Q(G) which are minimal over I. Then their intersection is I, and they are
permuted by Q. Since J is prime, it follows from Lemma 6.3(a) that I is
Q-prime. Since [ is the finite intersection of the Q-stable ideals (P, : Q), it
follows that 7 = (P;: Q) for some i, implying that Q permutes the P,
transitively. Set p, = P, N (VV ® A(G)), where A(G) denotes the algebra of
regular functions on G. Since V' ® Q(G) is a localization at regular
(central) elements of V ® A(G), P, = p,0(G). Note that Q permutes
Py ..., P, transitively. Since the action of the connected group Q on
V' ® A(G) is rational, the p; are Q-stable, so that n = 1. Consequently,
I =P, sothat I is prime. |

6.10. Proof of Theorem 6.6(c). Assume first that J is prime and G
connected. Then J ® Q(G) is prime by Lemma 3.5(a). Thus u~*(J ® Q(G))
is prime, and so is J' = u 1(J ® O(G)) N (V ® Q(G/H)). Conversely,
assume that J* is prime, and that both G and H are connected. Set
I=pJ® QG) =T &,y Q(G). By Proposition 6.9, I is prime.
Hence J = w(I) N V is prime. |

6.11. ExampPLE. The conclusions of Theorem 6.6(c) and Proposition 6.9
can be wrong if the connectedness assumptions are not satisfied. To be
precise, let J be an ideal of V.

(a) Suppose J is prime. If G is not connected, then J ® Q(G) is not
prime, and J may not be prime.

(b) Suppose J* is prime. If H is not connected, then both J and
J ® /uy @(G) may not be prime (even if G is connected).
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(a) Suppose first that J is prime and G not connected. Then Q(G) is
not a field but a direct sum of fields, implying that J ® Q(G) is not prime.
If H=1,then J* = u }(J ® O(G)), s0 is also not prime.

(b) Let G = G,, be the multiplicative group of k, and let V' = k[ x]
be the commutative polynomial ring in one variable. The action 8 of G on
IV is given as follows: ¢ € G sends x to a 'x. The algebra of regular
functions on G can be represented as A(G) = k[t,¢t™ '], where ¢ is a
central indeterminate over k such that I'(a)t = A(a)t = at for all a € G.
Then Q(G) = k(¢). Note that V' ® Q(G) = k[x] ® k(t) = k(¢)[x] is a poly-
nomial ring in one variable over a field. Let P be the prime ideal of
V' ® Q(G) defined by P=(xt + 1) = (x + ¢t ). It is (8 ® I')(G)-stable.
Let H be any finite, non-trivial subgroup of G. Set M =PnN I ®
Q(G/H)). Then M is a ( B8 ® T')XG)-stable prime ideal of VV ® Q(G/H).
Set J = M*. Then M = J*. We will show that M & s, Q(G) = u(J ®
Q(G)) is not prime. It then follows by Lemma 3.5(a) that J is not prime,
either.

Let O =(id ® A)XH). Let 1 #a € H. Then (id ® A)a)(xt + 1) = axt
+ 1. If P were Q-stable, then P would contain the non-zero scalar
1—a=(axt +1) —a(xt + 1), a contradiction. Consequently, (P: Q) is
strictly contained in P, and therefore not prime (since Q is finite). Since it
is Q-stable, it is by Lemma 6.3(a) generated by its intersection with
V' ® O(G/H), which is M. So M &, ,;, Q(G) = (P : Q) is not prime.

7. THE MAPS v,

In this section, the technical heart of this paper, we prove several of the
main results: Theorem 2.2, which asserts that G acts transitively on each
stratum in Rat(}'); Theorem 2.3, which states that rational ideals are
maximal in their strata in Spec(?); and the more technical Theorem 2.12.
At the end of the section, in Subsection 7.12 and Diagram 7.13, we
summarize much of the information obtained, showing how V' /J and
V/(J : G) are related for a rational ideal J of V. This is the starting point
for our investigations in the later sections.

Our approach is based on the work of Moeglin and Rentschler. In
constructing the maps »;, below, we follow to some extent the strategy in
the proof of “(ii) = (i)” in [MR,, Théoréme 2], but working in arbitrary
characteristic, and not assuming that all semiprime ideals of 1" are Goldie.
We then use some of the ideas in [MR, Sect. 2]. We also heavily use the
results we obtained in the earlier sections.

7.1. Throughout this section, we assume that J is a prime left Goldie
ideal with (J: G) = 0. Then V' is G-prime, and left Goldie by Theorem 2.1.
Let S be the set of regular elements of 1. By assumption, S is a left Ore
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set, and Q(VV) = S™1V. We denote by C the center of Q(V), and by
Hom(C, Q(G)) the k-algebra homomorphisms from C to Q(G) intertwin-
ing the actions B and I' of G. From Subsection 7.8 on, we will additionally
assume that J is rational. Then I will be G-rational by Theorem 2.10(a).

7.2. The Map ¢;. We denote by ¢, the composition of the following
algebra homomorphisms:

0, Ve Q(G) — V& Q(G) » V/I® Q(G).

Here the second map is the canonical projection.

Since V/J is prime and left Goldie, V/J ® Q(G) is semiprime left
Goldie by Proposition 6.5(a), applied with L = Q(G) and Q = A(G).
Hence Q(V/J ® Q(G)) exists, and V/J ® Q(G) c Q(V/J ® Q(G)). We
therefore sometimes treat ¢, as a map from V' ® Q(G) into Q(V/J ®
0(G)).

We summarize some of the properties of ¢, in the following lemma.
LEMMA. Let H be a closed subgroup of G stabilizing J.

(@ ¢, intertwines the actions B ® T and id ® T' of G.

(b) ¢, intertwines the actions id ® A and B ® A of H.

© kerg,=pu(J® Q0(G))

(d) ker(glveoc, u)) = 7

() oy is injective.
Proof. Parts (a) and (b) follow from the first and second intertwining

property, respectively, see [MR,, 0.4]. Part (c) is clear and implies (d) by

the definition of J*. Part () follows from (d) since J* N V = (J: G) = 0 by
[MR,, 1.5], see Proposition 3.3. 1

7.3. The Map @,. The left Ore set S of regular elements of 17 is also a
left Ore set of regular elements of V' ® O(G), and S~ Y(VV ® Q(G)) =
Q) ® Q(G); cf. the proof of Proposition 6.5(a).

LEMMA. The set ¢,(S) consists of regular elements of V/J ® Q(G).
Hence ¢; extends to a map

¢ 0(V) ® Q(G) = Q(V/7 @ Q(G)),

which intertwines the actions B ® I' and id ® T" of G. Moreover, the restric-
tion of @; to Q(V') is injective.

Proof.  This is shown in the proof of [MR,, Théoréme 2]; we reproduce
the argument for the reader’s convenience. Set T = ¢,(S), and

X={xeV/]®Q(G)ltx =0forsome s T}.



ACTIONS OF ALGEBRAIC GROUPS 243

We first show that X is an ideal of V/J ® Q(G). Because T = ¢,(S)
satisfies the left Ore condition in ¢,(}'), X is closed under addition (so
that it is a right ideal in VV/J ® Q(G)), and also closed under left multipli-
cation by elements in ¢,(V). Since V/J ® Q(G) = ¢,(FV)Q(G), X is thus
also a left ideal and hence a two-sided ideal.

Suppose X is non-zero. From the fact that ¢, intertwines the actions
B®T and id ® T, it follows that 7 and hence X are (id ® T')(G)-stable.
By Lemma 6.3(a) with Q = I'(G), X is generated by its intersection with
V/J. Since V/J is a prime left Goldie ring, its non-zero ideal X N (VV/J)
contains a regular element x. Since regular elements of V//J remain
regular in VV/J ® Q(G), and since the elements of T are non-zero (as ¢,y
is injective), this is a contradiction. Hence X = 0, and the elements of T
are right regular in V/J ® Q(G) (see [McR, 2.1.2]). Since S is left Ore in
V' ® Q(G), and since ¢; maps V' ® Q(G) onto V/J ® Q(G), T = ¢,(S) is
left Ore in VV/J ® Q(G). Using this, one sees that the elements of T are
right regular in the ring of left fractions Q(V/J ® Q(G)). Since the latter
algebra is semisimple Artinian, the elements of 7 are regular in V/J ®
Q(G). This proves the existence of @,.

It is clear that o, intertwines the actions B ® I' and id ® I' of G.
Finally, since V' is G-prime, the prime ideals of the semisimple Artinian
algebra Q(V') are permuted transitively by the action 8 of G, so their
intersection is zero. Hence any proper B(G)-stable ideal of Q(V) is zero.
This applies in particular to the kernel of @,lo). |

7.4. LEMMA. If J is rational, then @,(C) is contained in Q(G), which we
identify with its natural image in Q(V /] ® Q(G)).

Proof. Suppose that J is rational. Then Q(VV/J) ® Q(G) is a finite
direct sum of simple rings, and has center Q(G). Consequently, Q(V/J ®
0(G)) = 0OV /1) ® O(G)) has center O(G) (see [McR, 2.1.16]). Since
V/I® Q(G) = ¢,(1V)Q(G), ,(C) is central in Q(V/J ® Q(G)) and thus
contained in Q(G). 1

7.5. The Map v,. Suppose that g,(C) € O(G). (By Lemma 7.4, this is
in particular satisfied if J is rational.) Then restricting g, to C gives rise to
amap v,: C — Q(G). By Subsection 7.3, v, is injective and intertwines the
actions B and I' of G. So v, € Hom(C, O(G)).

7.6. LEMMA. Let J, and J, be two distinct prime Goldie ideals of V' with
(J;: G) = 0. Suppose that both ¢(C) and ¢,(C) are contained in Q(G).
(This is, for example, satisfied if J, and J, are both rational.) Then v; # v, .

Proof. Let H be the trivial subgroup of G. Then ker(¢;) = B+l =
ker(g, ). Denote the kernel of g, by M, So the M, are |deals of
0() ® Q(G). Since ¢, is the restriction of ¢ toVe® Q(G) it follows



244 NIKOLAUS VONESSEN

that M, # M,. Since Q(VV) ® Q(G) = Q(V) & (C ® O(G)), Lemma 3.9
implies that M; N (C ® Q(G)) # M, N (C ® Q(G)). Hence the restric-
tions of %[ to C ® Q(G) have distinct kernels. But %IC@Q(G) = v, ®id.
Hence v, #+ v, . 1

We are now able to prove Theorem 2.3.

7.7. Proof of Theorem 2.3. Factoring out by (J : G), we may assume that
(J:G) = 0. So now the hypotheses in Subsection 7.1 are satisfied. By
Lemma 3.4(a), we may assume that P is maximal with respect to (P : G) =
0. By Corollary 5.5, P is prime left Goldie. So we can construct ¢, and @p.
We denote by C the center of Q(V). By Lemma 7.4, ¢,(C) c Q(G), so
that v, exists. We will show that ¢,(C) € O(G), so that v, exists, and that
v, = vp. Then J = P by Lemma 7.6.

Let x € C. Then x = s v for some v € VV and s in S. Denote by 7 the
natural Q(G)-linear projection from VV/J ® Q(G) onto V/P ® Q(G). Then
@p = o ¢;. From v = sx, we obtain ¢,(v) = ¢,(s)g,(x). Using the fact
that 7 is Q(G)-linear, it follows that ¢,(v) = m(¢,(v)) = w(¢,(s)g,(x))
= W(QDJ(S))a](x) = QDP(S)'QBJ(X)- Hence ap(x) = (PP(S)_lﬁop(U) = aj(x) =
v,(x). This shows firstly that ¢,(C) = v,(C) € Q(G), and then that v, =
(@ple =v;. 1

7.8. Until the end of this section, we assume in addition to the hypotheses
in Subsection 7.1 that V' is G-rational, and that J is rational (cf. Theorem
2.10). It follows in particular that @, induces the map v,: C — Q(G).

7.9. LEMMA. Forany y € G, vy, = Aly)e v;.

Proof. The second intertwining property states that we(id ® AXy) =
(B ® A)y)e u. Moreover, (B8 AXy)J ® Q(G)) = (B(y)]) ® O(G).
Hence ¢, °(id ® AXy) = (B ® A)y)° ¢;. Consequently, also

Bpipye(id @ A)(y) =(B®A)(y)o g (*)

Note that the restriction to C of (id ® A)(y) is the identity, and that the
restriction of (8 ® A)(y) to g,(C) = v;,(C) is A(y). So restricting the
maps in () to C, we obtain v\, = A(y)ev,. |

7.10. THEOREM. Under the hypotheses in Subsections 7.1 and 7.8, the
map

v: (G-stratum of J in Rat V') — Hom(C, Q(G))

given by P — v, is a G-equivariant bijection. In particular, the action of G
on the G-stratum of J in Rat V is transitive.

Here vy € G acts on the G-stratum of J via B(y), and it acts on
Hom(C, Q(G)) by composition with A(y). Note that Theorem 2.2 is an
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immediate consequence of this result. Theorem 2.12, which we will prove
shortly, gives an explicit inverse for the bijection P — v,. For Noetherian
rings in characteristic zero, Theorem 7.10 is due to Moeglin and Rentschler
[MR,, 2.9].

Proof. By Lemma 7.6, v is injective. By Lemma 7.9, v is G-equivariant.
By Theorem 4.7, the action on Hom;(C, Q(G)) is transitive. Hence v is
onto, and also the action on the G-stratum of J in Rat I/ is transitive. |

7.11. Proof of Theorem 2.12. Factoring out by I =(J:G), we may
assume that I = (J: G) = 0. So now the hypotheses in Subsections 7.1 and
7.8 are satisfied. It follows from Theorem 7.10 that y € G belongs to the
stabilizer of J iff v, = A(y)e v, iff A(y)f = f forall f e v,(C). Hence the
stabilizer of J is

H={yeGIA(y)f=fforall fe v(C)}.

By Proposition 4.5, H is the unique closed subgroup of G such that
O(G/H) is a finite purely inseparable extension of v,(C) (cf. Definition
4.1). It remains to show that J = 7 (w(V)my,,).

Consider the following commutative diagram:

def

Ve Q(G/H) —~> B o(V) & Q(G/H)

def .
“_e(¢J|Q(V)) & id

‘PJ‘V@Q(G/H)

o(V/7 @ 0(G))

Here O(G/H) is a C-module via the map v,, and =’ is the Q(G/H)-
linear extension of the natural map =: V— B = Q(V) & O(G/H). We
show first that « is injective. Write Q(V) = @R, where the R; are simple
rings with centers C,. Write Q(G/H) = &K, where each K, is a (purely
inseparable) field extension of »,(C,). Recall from Subsection 6.1 that
oV) & O(G/H) = &,(R; & K,). Each R, & K, is a simple ring and
thus not contained in the kernel of «, since the restriction of @, to
R, c Q(V) is injective. Since every ideal of the semisimple Artinian
algebra Q(V') & QO(G/H) contains one of the R, & K, it follows that «
is injective. This fact together with Lemma 7.2(d) implies that ker(z') =

ker(glveow /u)) = 7,
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Consider the map #': V' ® Q(G/H) — B. Set 2% ker(z") = J%, so that
J =.2*. Then by [MR;, 1.5(ii)],

J=a? =V ([an(Vedy)+ (1 emy)),

where A(H)dg@’(H/H),c/H (which is contained in Q(G /H), see Subsection
3.1). It follows easily that J = 7~ (7 (V)m,,): write w' = g o f where f:
VoV®Ay and g Ve Ay - 0V) & Q(G/H) are the obvious
maps. Then ker(g) =2 NV ®Ay), and gV @ m) = 7(V)my,.
Consequently, [.Z# N (V® A, )]+ (V & my) =g "(m(VIm ), imply-
ing that J = (g~ "(w(VIm ) = 7 (a(V)Im ), as desired. 1

7.12. Diagram 7.13 summarizes the relationship between the algebras V /J
and V/(J : G) via a series of central ring extensions. This relationship was
discovered and heavily exploited by Moeglin and Rentschler (though
extension (3) did not occur in their work in characteristic zero). We will
refer to this diagram repeatedly. For convenience, we summarize the
current hypotheses: J is a rational ideal of 1/, and H is the stabilizer of J
in G. We assume that (J: G) = 0 (so that V' =V /(J: G)), and denote by
C the center of Q(V) = Q(V/(J : G)). In the last two rows, it is indicated
how G and H act on each column of extensions, and how ™! and f
intertwine these actions.

Diagram 7.13. Relating V/J and V/(J : G) via central ring extensions:

(V/1) © Q(G) L T @ye u, O(G) = (V' ® O(G))/u~ (] ® O(G))
)

<1> T==(V ® Q(G/H)) /I > VC & 0(G/H)
o
v/ Ve
‘(4)
V=V/(J:G)
(o TNG) © (B8 IXG) o (B IXG)

(B® AH) < (id® AXH)

In the diagram, all (vertical) ring extensions are central (i.e., the larger
algebra is generated over the smaller by its center), and all but extension
(4) are given by tensoring.

Extensions (1) and (2) are given by tensoring with Q(G) over k and over
QO(G/H), respectively. Note that if G is connected, then Q(G) is a field;
moreover, Q(G) is in this case unirational over k (though not necessarily
over the intermediate field O(G /H)).
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Extension (3) is a finite central extension. Here Q(G/H) is a C-module
via v;. By Theorem 2.12, Q(G /H) is a finite purely inseparable extension
of v,(C) (cf. Definition 4.1). This extension is of course trivial in character-
istic zero, but can complicate the situation in prime characteristic; see
Example 9.1 and Remark 9.2.

Extension (4) behaves similar to a central localization: VC is the subalge-
bra of Q(V) generated by I and by the center C of Q(V).

The First Row. The isomorphism in the first row is induced by w 1. Since
J ® O(G) is (B ® A H)-stable, the second intertwining property implies
that w 1(J ® O(G)) is (id ® A)H)-stable. So by Lemma 6.3(a), u *(J ®
oG) = J° ®c ) Q(G). Hence

(V® Q(G))/:“_l(J ® Q(G)) =T QG /H) Q(G)

The Second Row. The isomorphism f sends the class of a tensor in the
algebra T= 0" ® Q(G/H))/JtI to the corresponding tensor in VC ®.
O(G/H). To be precise, given v € V and a € Q(G/H), the map f sends
(v ® a) +J* to v ® a. We now show that this map is well-defined and
an isomorphism.

Denote by @, the embedding of 7= (JV ® O(G/H)) /J* into Q(V /] ®
0(G)) induced by ¢, (see Lemma 7.2(d)). We saw in the proof of Theorem
2.12 (see 7.11), that the map a = (g,low)) & id from Q(V) ®. O(G/H)
to Q(V/J ® Q(G)) is injective. Hence so is its restriction «, to VC &
O(G/H). So we have the following Q(G /H )-linear embeddings:

T= (Ve Q(G/H)) /' =5 0(V/I @ Q(G)) <= VC & Q(G/H).

Both @, and @, are induced by u. Hence for v € V, g,(v ® 1) = ¢,(v ®
1) = ay(v ® 1). Since @, and «, are both Q(G/H )-linear, they have the
same image. Hence T is isomorphic to VC &. Q(G/H) via the map
g = aytog,. This map is clearly Q(G /H )-linear, and for v € V, g(v ® 1)
=0v ® 1. Hence g = f, and f is a well-defined isomorphism.

The Last Two Rows. It follows from the intertwining properties of w that
w1 intertwines the indicated actions. Note that (id ® A)(H) is trivial on
T. Since the actions of G induced by T" and A commute, T is (8 ® T'XG)-
stable. Since v, intertwines the actions g and T', G acts on V'C &. Q(G/H)
via. B®T. It is clear from the description of f above that f is (8 ®
I')(G)-equivariant. ||

8. LOCALLY CLOSED RATIONAL IDEALS
In this section we study locally closed rational ideals. Note that some

results are proved under special assumptions; see Subsections 8.5 and 8.10.
The main result is Theorem 2.6, which says that a rational ideal is locally
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closed if and only if its orb is G-locally closed. One direction is an easy
consequence of the fact that rational ideals are maximal in their strata in
Spec(V’) (Theorem 2.3). We present the proof of this direction first. For
the proof of the other direction, we follow the strategy in [MR,, Sect. 3].
More care is needed because of the greater generality in which we are
working, especially because we do not assume that V' is Noetherian. After
we complete the proof of Theorem 2.6 (see 8.13), we deduce some
consequences. In particular, we prove Theorem 2.5, which is a special case
of Theorem 8.15. At the end of the section, we investigate how the
correspondence h behaves with respect to locally closed ideals.

8.1. Proof of “(b) = (a)” in Theorem 2.6. We assume that J is a
rational ideal such that (J:G) is G-locally closed. We show that J is
locally closed. Suppose to the contrary that J = N,. , P, where .#
denotes the set of all prime ideals strictly containing J. Then the G-stable
ideal Np. ,(P:G) is contained in J and contains (J: G), so is equal to
(J: G). By Theorem 2.3, J is maximal in its stratum in Spec(}'). That is,
(J:G) ¢ (P:G)forall P ez Hence (J:G) is the intersection of certain
G-stable semiprime ideals all of which strictly contain (J : G), a contradic-
tion to the assumption that (J: G) is G-locally closed. |

We now turn to the proof of the other implication in Theorem 2.6.

8.2. LEMMA. Let J be a semiprime ideal of V, and let H be a closed
subgroup of G stabilizing J. Then J is a B(H )-locally closed ideal of V' if and
only if I* is a ( B ® T'XG)-locally closed ideal of V ® Q(G /H).

Proof. The bijection h between the B(H)-stable ideals of IV and the
(B ® I')(G)-stable ideals of VV® Q(G/H) is inclusion preserving, and
maps semiprime ideals to semiprime ideals by Theorem 6.6(a). So N is a
B(H )-stable semiprime ideal of V' strictly containing J and contained in
all B(H)-stable semiprime ideals of 7 which strictly contain J, if and only
if N is a (B ® I')(G)-stable semiprime ideal of V & O(G/H) strictly
containing J* and contained in all ( 8 ® I')(G)-stable semiprime ideals of
V' ® Q(G/H) which strictly contain J%. This proves the lemma. |

8.3. LEMMA. Let J be a locally closed ratlonal ideal of V, and let H be a
closed subgroup of G stabilizing J. Then I is a (B® IXG)- -locally closed
ideal of V ® Q(G/H).

Proof. We first prove that if () is a group acting on a ring R, and if the
zero ideal of R is locally closed, then it is also Q-locally closed. To see
this, let Q be a non-zero )-stable semiprime ideal of R. Then Q is the
intersection of non-zero prime ideals of R. Hence Q contains the non-zero
intersection of all non-zero prime ideals of R. Thus the zero ideal of R is
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Q-locally closed. It follows from this fact that J is S(H )-locally closed.
Hence by Lemma 8.2, J* is a (8 ® I')XG)-locally closed ideal of V' ®
O(G/H). 1

8.4. LEMMA. For the proof of the implication (@) = (b) in Theorem 2.6,
we may assume that (J: G) = 0 and that G is connected.

Proof. 'We may clearly assume that (J: G) = 0. Since V' is G-rational,
the finitely many minimal prime ideals of the semiprime left Goldie ring I
are permuted transitively by G, so they are G°-stable as G acts rationally.
One of them is P = (J: G°). It suffices then to show that 0 = (J: G) is
G-locally closed if P = (J:G®) is G°-locally closed.

Let I be a G°-stable ideal of IV strictly containing P. We show first that
then (I:G) # 0. Note that (I: G) is the intersection of the finitely many
G-conjugates of I. If (I:G) were zero, the prime ideal P would contain
v(I) for some y € G. Thus I would strictly contain y"(I) for all positive
integers n. This is impossible as G /G” is a finite group and I is G°-stable.
Thus (I:G) # 0.

Denote by Q the intersection of all G°-stable semiprime ideals of 1V
containing P strictly. We are assuming that Q contains P strictly. As we
have seen, this implies that (Q : G) # 0. Now let I be a non-zero G-stable
semiprime ideal of V. In order to show that the zero ideal is G-locally
closed, it suffices to show that I contains (Q:G). As every G-stable
semiprime ideal is an intersection of G-prime ideals, we may assume that
I is G-prime. So there is a prime ideal M such that 7 = (M:G). As M
contains some minimal prime ideal of 1/, and as the minimal prime ideals
of IV are permuted transitively by G, we may assume that M contains P.
Then (M :G°) contains P. Suppose (M :G°) =P. Then I =(M:G) =
(P:G) =0, a contradiction. So (M : G°) contains P strictly and contains
hence Q. Therefore I = (M : G) contains (Q:G). 1

Lemma 8.4 allows us to make the following assumptions.

8.5. Until 8.13, the end of the proof of the implication “(a) = (b)” in
Theorem 2.6, we assume that the linear algebraic group G is connected.
Moreover, we assume that I is a G-rational algebra, and that J is a locally
closed rational ideal with (J: G) = 0. We denote by H the stabilizer of J
in G. It is a closed subgroup of G. Since G is connected, (J:G) =0 s a
prime ideal, so that IV is a prime ring. We denote by S the set of regular
elements of 17, and by C the center of Q(J). We will make additional
assumptions in Subsection 8.10.

8.6. LEMMA. Let A C B be a finite centralizing extension of prime rings.
Let Q) be a group acting on B such that A is Q-stable. Then the zero ideal of A
is Q-locally closed if and only if the zero ideal of B is Q-locally closed.
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Proof. Denote by A, and B, the intersections of all non-zero Q-stable
semiprime ideals of A and B, respectively. We have to show that A4, # 0
iff By # 0.

Suppose first that 4, # 0. Let QO be any non-zero ()-stable semiprime
ideal of B, and set ¢ = Q N A. Then q is clearly an ()-stable semiprime
ideal of 4. By Bergman’s incomparability theorem for finite centralizing
extensions of prime rings (see [RS, 4.5]), every non-zero ideal of B has
non-zero intersection with 4. Hence g # 0, so it contains A,. Thus Q
contains A,. Consequently also B, contains A, and is therefore non-zero.

Suppose now that B, # 0. Let ¢ be a non-zero, Q-stable semiprime
ideal of 4. Let p be a prime ideal of A containing g. By Bergman'’s lying
over theorem for finite centralizing extensions (see [RS, 4.1]), there is a
prime ideal P of B lying over p. That is, PN A = p. Since (p:Q)
contains g = 0, (P:Q) is a non-zero ()-stable semiprime ideal of B.
Hence P contains B,. It follows from Bergman’s incomparability theorem
that B, N A # 0. Hence p contains the non-zero ideal B, N A of A. As
this is true for all prime ideals containing the semiprime ideal g, also g
contains B, N A. Consequently, A4, contains B, N A and is therefore
non-zero. (Note that we proved that B, 2 A4, 2 B, N A; consequently,
Ay=B,nA4) 1

8.7. PROPOSITION.  The zero ideal of the algebra VC is G-locally closed.

Proof. Recall Diagram 7.13. We are assuming that J is locally closed.
By Lemma 8.3, the zero ideal of T=(® Q(G/H))/Jh is (B ® I')(G)-
locally closed. Since T = VC ®. Q(G/H), the proposition follows now
from Lemma 8.6, applied to the ring extension 'C ¢ VC ®. O(G/H) and
the action of the group Q = (8 @ T)XG). 1

Having established that the zero ideal of 'C is G-locally closed, we now
show that the zero ideal of V' is also G-locally closed. We follow the
strategy in [MR,, Sect. 3]; Lemmas 8.8 and 8.9, Proposition 8.12, and
Subsection 8.13 correspond more or less to [MR,, 3.4, 3.5, 3.6, and 3.8],
respectively. More care is needed in our context because of the greater
generality in which we are working, especially because we do not assume
that 17 is Noetherian.

8.8. LEMMA. Let B be a k-subalgebra of C which is G-stable. Then the
zero ideal of B is G-locally closed.

Proof. Using the G-equivariant embedding v, of C into O(G) (see
Subsection 7.5), it suffices to prove the following: if B is a I'(G)-stable
subalgebra of Q(G), then the zero ideal of B is I'(G)-locally closed.
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Consider the finitely generated B-algebra B - A(G). It is a domain since
Q(G) is a field. By generic flatness (see [D, 2.6.3]), there is some non-zero
t € B such that B, A(G) is a free B-module; here B, = B[t"*]. We will
show that every non-zero I'(G)-stable semiprime ideal I of B contains ¢.

Suppose that I is a T'(G)-stable semiprime ideal of B which does not
contain ¢. Then there is some prime ideal of B containing I which does
not contain ¢. Consequently, I, # B,. Then I, A(G) is a proper ideal of
B, A(G), and so IA(G) N A(G) is a proper ideal of A(G). Since IA(G) is
I'(G)-stable, and since T'(G) permutes the maximal ideals of A(G) transi-
tively, it follows that 14(G) N A(G) = 0. Hence I = 0: suppose not. Then
there is a non-zero x € I € Q(G). Hence for some non-zero f € A(G),
xf € A(G), so xf € IA(G) N A(G) = 0, a contradiction since Q(G) is a
field. |1

8.9. LEMMA. There is a finite subset F of C such that the subalgebra B of
C generated by U, c ; y(F) has the following properties: Q(B) = C, and the
only proper G-stable ideal of B is the zero ideal.

Proof. Let F' be a finite set of generators of C as a field extension of
k, and let B’ = k[y(F")|y € G]. Applying Lemma 8.8 to B’, there is a
non-zero element ¢ € B’ such that ¢ is contained in every non-zero
G-stable semiprime ideal of B'. Let F = F’ U {t"!}, and let B = k[y(F)|y
€ Gl =B'[y(t) ']y € G]. Then Q(B) = C. Let I be a proper G-stable
semiprime ideal of B. Then I N B’ is a proper, G-stable semiprime ideal
of B’ not containing ¢. Hence I N B’ = 0, so that I = 0. Finally, if 7 is
any proper G-stable ideal of B, then the radical of I is a G-stable
semiprime ideal and thus zero. Hence I is zero. |

8.10. Until 8.13, the end of the proof of the implication “(@) = (b)” in
Theorem 2.6, we make the following assumptions in addition to the
hypotheses in Subsection 8.5. We choose F and B as in Lemma 8.9, and
set

d={xeVIxFcV} and p-= ) y(d).

'yGG

Since F is a subset of the center C of Q(V), d is an ideal of V. Since F is
a finite subset of Q(V'), d is non-zero. Hence p. is a non-zero G-stable
ideal of V.

8.11. LEMMA. Let p be a prime ideal of V which is G-stable and does not
contain p.. Let wy,...,w, be finitely many elements in VB. Then there is a
non-zero ideal I of V which is not contained in p with the property that
w; I C V for all j. Moreover, if all w; belong to pB, then we can find such an I
such that w1 C p for all j.
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Proof.  There is a finite subset G’ of G such that every w; is a finite
sum of terms of the form vb, --- b, with v € V' and b; € G'(F) = {y(f)ly
€ G', f€ F}. If all w; € pB, we can assume here that v € p. Set D =
N, < v(d). Then D + 0 since V' is a prime ring and the intersection is
finite. Suppose D is contained in p. Then y(d) C p for some y € G'. But
then p. = X;.;8y(d) is contained in the G-stable ideal p, a contradic-
tion. Thus D is not contained in p. Since p is a prime ideal, p also does
not contain any power of D. Since the b; are central in VB, it follows that

(vh, - b,)D" = v(b,D) -+ (b,D)

is a subset of V" (or even of p if v € p). So for some large m and all j,
w;D™ is a subset of 17 (or even of p if w; € pB). Set [ =D™. |

8.12. PROPOSITION. Let p be a prime ideal of V which is G-stable and
does not contain p.. Then there is a G-stable prime ideal of VC lying over p.

Proof. We show first that p = pB N V. Let w € pB N V. By Lemma
8.11, there is a non-zero ideal I, of }V not contained in p such that
wl, C p. Since p is prime and [, is not contained in p, it follows that
wep.Hence p=pBNV.

Now let P’ be an ideal of VB maximal with respect to the property that
P’ NV =p. Then P’ is a prime ideal of VB. Let P = (P':G). Then P is
a G-stable ideal of VB. Since p is G-stable and contained in P’, it follows
that P N V' = p. We show now that P is a prime ideal of 'B. Note that
this does not immediately follow from the fact that G is connected, since
G does not necessarily act rationally on VB.

Let w,,w, € VB such that w,VBw, C P. By Lemma 8.11, there is an
ideal I of 1V not contained in p such that w,I,w,I C V. Then w,IVw, I is
contained both in 1V and in P, and thus in P N V' = p. As p is prime, one
of the w;I is a subset of p. Say w,I C p. Let Q be any prime ideal of V'B
with Q N V' = p. Then Q contains w, I and also w,(VB)I = w,IB. The last
equality holds since I is an ideal of IV and B is central in VVB. Hence Q
contains w, or 1. If Q contained the ideal I of ',then IO NV =p,a
contradiction. Hence w; € Q. Now for every y € G, y(P’) is a prime ideal
of VB with y(P') NV =p. Hence w, belongs to every y(P’). Conse-
quently w, € P, and P is a prime ideal of VB.

As p = P NV, the G-stable ideal P N B of B is proper and thus zero.
Since C = Q(B), VC is a central localization of V/B. So since P is prime,
PC is a prime ideal of VC, and P = PC n VB. Consequently,

pCPCNVC(PCNVB)NV=PNV=p.

Hence PC is a G-stable prime ideal of V'C satisfying p=PC N V. |
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8.13. Proof of “(a) = (b)” in Theorem 2.6. By Lemma 8.4, we can make
the assumptions in Subsection 8.5. By Proposition 8.7, V'C is G-locally
closed, i.e., the intersection N of all non-zero G-stable semiprime ideals of
V'C is non-zero. Since VC < Q(V), N NV # 0. Let p be a non-zero prime
ideal of V which does not contain p. (see Subsection 8.10). By Proposition
8.12, there is a G-stable prime ideal P of VC with PNV =p. Then P
contains N, so that p contains the non-zero ideal N N V. Thus every
non-zero G-stable prime ideal of V" contains I = p. N (N N V'), which is
non-zero as V is a prime ring. Now let Q be a non-zero G-stable
semiprime ideal of V/, and let P be any prime ideal containing Q. Then
(P:G)is G-stable, and it is prime since G is connected and acts rationally
on V. Hence (P : G) contains I. As P was an arbitrary prime containing
Q, this shows that Q contains I. Consequently 0 = (J: G) is G-locally
closed. This concludes the proof of Theorem 2.6. |

We now derive some consequences of Theorem 2.6. First, we prove that
if J is a rational ideal of IV which is locally closed, then the orbit of J in
Rat(1") is open in its closure:

8.14. Proof of Corollary 2.7. We may assume that the orbit of J is not
equal to its closure, which consists of all rational ideals containing (J : G).
Denote by I the intersection of all G-stable semiprime ideals strictly
containing (J: G). By Theorem 2.6, (J: G) is G-locally closed, so strictly
contained in I. Let J' be a rational ideal containing (J : G) which is not in
the orhit of J. Then Theorem 2.2 implies that J' is not in the G-stratum of
J,i.e, (J':G) # 0. Hence (J': G) contains I. Consequently, the comple-
ment of the orbit of J in its closure consists of all rational ideals
containing I, so is a closed set. ||

8.15. THEOREM. Let J be a locally closed rational ideal of V. Assume that
every prime ideal of V/(J : G) is an intersection of rational ideals. If P is an
ideal of V maximal with respect to (P : G) = (J : G), then P is rational (and
thus contained in the G-orbit of J).

Note that the hypotheses of this theorem are in particular satisfied in
the following two interesting special cases: if either 17 is a finitely gener-
ated k-algebra and J is a rational ideal such that 1V/J is finite-dimensional
over k, see Corollary 8.16 below. Or, more generally, if J is locally closed,
V/(J:G) is a Jacobson ring, and every primitive ideal of V/(J:G) is
rational; this result was already stated as Theorem 2.5.

Proof. By Lemma 3.4(a), P is prime. Factoring out by (J: G), we may
assume that (J:G) = 0. Since J is locally closed, it follows by Corollary
2.7 that there is a non-zero G-stable ideal N which is contained in every
rational ideal not in the orbit of J. Since (P : G) = 0, the ideal N cannot
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be contained in P. Since P is an intersection of rational ideals, P must be
contained in some rational ideal J' in the G-orbit of J. Then (J':G) =
(J:G) =0, s0 that P =J’ by the maximality of P. |

8.16. COROLLARY. Assume that V is a finitely generated k-algebra. Let J
be a rational ideal of V such that V /J is a vector space of finite dimension
over k. If P is an ideal of V maximal with respect to (P : G) = (J : G), then P
is rational (and belongs thus to the G-orbit of J).

Proof. Factoring out by (J: G), we may assume that (J: G) = 0. Then
V' is a Pl-algebra. Hence the primitive ideals coincide with the maximal
ideals by Kaplansky’s theorem [Row, 1.5.16]. Kaplansky’s theorem implies
also easily that the maximal ideals coincide with the rational ideals, see,
e.g., [V, 2.6]. In particular, J is a maximal ideal and hence locally closed.
Finally, being an affine Pl-algebra, I is Jacobson by a theorem of Amitsur
and Procesi [Row, 4.4.6]. Hence the hypotheses of Theorem 8.15 (and of
Theorem 2.5) are satisfied. |

Since the relationship between the B(H)-stable ideals of V' and the
(B ® T)XG)-stable ideals of V' ® Q(G/H) given byh plays such an impor-
tant role in the theory, we include the following result, which is not needed
in the sequel. Part of this result was already established in Lemmas 8.2
and 8.3.

8.17. THEOREM. Let J be a rational ideal of V', and let H be a closed
subgroup of G stabilizing J. The following are equivalent:

(@ Jis a locally closed ideal of V.
(b) Jisa B(H)-locally closed ideal of V.
©) J*isa (B ® IXG)-locally closed ideal of V ® O(G /H).

If G is connected, these statements are also equivalent to:
(d) J* is a locally closed ideal of V ® Q(G /H).

It is worthwhile to remark that the proof of (b) = (a) (and hence of
(c) = (a)) depends, via Corollary 2.4, on Theorem 2.3.

We will see in the proof that (d) always implies the other three
statements, even if G is not connected. But (d) can fail if G is not
connected: in that case, J ® Q(G) is not a prime ideal since Q(G) is not a
field (only a direct sum of fields). So if H = 1, then J* = 1~ 1(J ® Q(G))
and is therefore not a prime ideal. Thus J4 is not locally closed, as locally
closed ideals are always prime.

Proof. (a) = (b). This was seen in the proof of Lemma 8.3.
(b) = (a). Let P be a prime ideal of V' strictly containing J. Then by
Corollary 2.4, (P: H) #J. As (P: H) is a semiprime B(H )-stable ideal of
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V' strictly containing J, P contains the non-zero intersection of all
semiprime B(H )-stable ideals which strictly contain J. Hence J is locally
closed.

(b) = (c). This is a special case of Lemma 8.2.

(d) = (c). This holds even if G is not connected, and follows from the
fact established in the proof of Lemma 8.3.

(@) = (d). We now assume that G is connected. We show first that
J ® Q(G) is a locally closed prime ideal of 1V ® Q(G). Factoring out by J,
we may for this purpose temporarily assume that J = 0. By Lemma 3.5,
V'® Q(G) is a prime ring. Denote by S the left Ore set of regular
elements of V. Let P be a prime ideal of V' ® Q(G) such that P N IV = 0.
As Q) ® Q(G) = S"X(V ® O(G)) is Noetherian, S™*P is a two-sided
ideal of Q(V) ® Q(G) which is clearly proper (see [McR, 2.1.16]). But the
latter algebra is simple. Hence S~ 1P = 0, implying P = 0. So if Q is any
non-zero prime ideal of V' ® Q(G), then Q N V= 0. Since V c V ® O(G)
is a centralizing extension, Q N V' is a prime ideal of V. Hence Q contains
the non-zero intersection of all non-zero prime ideals of V. Consequently,
the zero ideal of V' ® Q(G) is locally closed.

We proved that J ® Q(G) is a locally closed prime ideal of V' ® Q(G).
Thus also u1(J ® Q(G)) is a locally closed prime ideal of V' ® Q(G). To
simplify the argument, we introduce some additional notation. Set K =
O(G/H), L =0Q(G), R=V®K, P=upn'(J®Q(G)),and p = J°. Then
R®, L=V ® Q(G),and p = P N R. Moreover, since J ® Q(G) is (B ®
A)(H)-stable, P is (id ® A)(H )-stable by the second intertwining property.
Thus P =p ® L by Lemma 6.3(a). Denote by A the intersection of all
prime ideals of R ® L which contain P strictly. Then A contains P
strictly. Moreover, A4 is (id ® A)(H )-stable (since P is). Hence A = (A N
R) & L, and A N R contains p strictly. Now if ¢ is a prime ideal of R
strictly containing p, then g ®, L is an ideal of R ® L whose intersec-
tion with R is g. By a Zorn’s lemma argument, there is an ideal Q of
R ® L maximal with respect to Q "R =gq. Then Q is prime, and
contains P = p ®, L strictly, so contains A. Hence ¢ = O N R contains
A N R. Consequently, p = Jis locally closed. 1

9. EXAMPLES AND FURTHER APPLICATIONS

Recall Diagram 7.13. Example 9.1 shows that extension (3) can indeed
be quite non-trivial in prime characteristic, even for a faithful action of a
connected, abelian linear algebraic group G. In the remainder of the
section, we relate the uniform dimensions and the Gelfand—Kirillov di-
mensions of ¥ /J and VV/(J : G), proving in particular Proposition 2.9 and
Theorem 2.8, see 9.3 and 9.5, respectively.
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9.1. ExampLE. Assume that the characteristic of k is p # 0. There is a
k-algebra V7 with a rational action of a connected, abelian linear algebraic
group G, having the following properties.

(@) V is a finitely generated Noetherian k-algebra which is a do-
main. Moreover, IV is an Azumaya algebra, and 7V has Pl-degree p (the
latter means in this case that Q(}V) is a division algebra of dimension p?
over its center).

(b) There is a maximal (hence rational) ideal J of V" with (J:G) = 0.
The stabilizer H of J in G is a finite normal subgroup of order p.

(c) Extension (3) in Diagram 7.13 is non-trivial. In fact, V'C is a
division algebra with center C, but T = VC &. Q(G/H) is isomorphic to
p X p-matrices over the field Q(G/H).

(d Here udimV =udimVC =1 <p =udimVC & Q(G/H) =
udim V' /J. So the inequality in Proposition 2.9 can be strict because the
uniform dimension is not constant in extension (3).

(e) The variety G/H is affine, and the action of H on VV/J = M, (k)
factors through GL (k). So [MR,, Proposition 4(ii)] does not extend to
prime characteristic.

We will discuss parts (d) and (e) below after 9.3.

Construction of Example 9.1. Let u be an indeterminate over k, and let
o be the k-algebra automorphism of k[u] given by o () = u + 1; its order
is p. Let V' be the skew-Laurent polynomial ring V = k[ulX, X *; o};
that is, for f(u) € k[ul, f(w)X = Xo(f(w)) = Xf(u + 1). So the defining
relations of V are uX =X(u + 1), uX ' =X"(u—-1), and XX ! =
X !X =1. Then VV is an affine, Noetherian domain. Its center is Z =
k[ul¢“’[XP?, X~ 7). Denote by C the total ring of fractions of Z. Then
C = k(u){"(X?), and VC is a domain of dimension p? over C. It follows
that 7C is a division algebra, so equal to Q(V), and that C = Z(Q(})).

Let G =G, X G,,, where G, and G,, denote the additive and multi-
plicative group of k, respectively. The element y = (a,b) € G acts on V
by yu = u + a and yX = bX. This action is well-defined since the action
of v on k[u] commutes with o; for example, given f(u) € klu],
(yf@)(yX) = flu + a)bX) = (bX)f(u + a + 1) = (yX)o(yf(w). We
can identify o with the element (1,1) of G. Note that this action on the
Laurent polynomial ring k[u, X7, X~ ?] permutes the maximal ideals tran-
sitively, and that the stabilizer of every maximal ideal is trivial. Since this
algebra is integral over Z, the action of G permutes also the maximal
ideals of Z transitively. Consequently, the ideal of Z generated by the
evaluations of the central polynomials of 17 is not contained in any
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maximal ideal, so it is equal to Z. It follows by the Artin—Procesi theorem
that 1 is an Azumaya algebra, see [Co,, 10.7.8]. This proves the assertions
in (a).

Let M be any maximal ideal of Z. Since IV is an Azumaya algebra, there
is a unique maximal ideal of V' lying over M, namely J = MV. Since G
permutes the maximal ideals of Z transitively, (M : G) = 0. Consequently
also (J : G) = 0 (this follows, for example, by incomparability for the finite
centralizing extension Z < 17). Denote the stabilizer of J in G by H. Since
G is abelian, H is a normal subgroup. Since J is the unique maximal ideal
of V' lying over M, H is also the stabilizer of M. In particular, H contains
(o). We will show that H= (o). Let I be a maximal ideal of
k[u, X?, X~ ] lying over M. Since Z = k[u, X?, X ?]{??, ¢ permutes the
prime ideals lying over M transitively, see [AM, Chap. 5, Exercise 13].
Since H permutes the prime ideals of Z lying over M, and since the
stabilizer in G of I is trivial, it follows that H = (o ). In particular, H is a
normal subgroup of G with p elements, proving (b).

We now turn to part (c). We already saw that V'C = Q(V) is a division
algebra with center C. We have to show that Q(G/H) splits V'C. Since
VC ® QO(G/H) is a central simple algebra of degree p with center
Q(G/H), it is either a division algebra, or isomorphic to M,(Q(G/H)).
Hence it suffices to show that it is not a domain. Set Z, = k[ul‘"’[ X, X '].
The map Z, - Z induced by X — X? is a G-equivariant k-algebra
isomorphism. Hence Z, has a maximal ideal M, with (M,:G) = 0;
moreover, the stabilizer of M, is H. So there is a G-equivariant embed-
ding v of Q(Z,) = C(X) into OQ(G/H). Restriction of v to C yields a
G-equivariant embedding of C into Q(G/H). Replacing v by A(y)e v for
some y € G, we may by Theorem 4.7 assume that v|c = »,. Hence
VC ® O(G/H) contains C(X) & v(C(X)) = C(X) & C(X). The lat-
ter algebra is not a domain, since X is algebraic over C but does not
belong to C. Consequently, the simple Artinian algebra VC - Q(G/H)
with center Q(G/H) is not a domain and hence isomorphic to
M,(Q(G /H)). This proves (c), and (d) follows immediately.

Finally, we prove the assertions in (e). Since H is a subgroup of an
abelian group, it is normal. Hence the quotient group G /H is affine. Since
(J:G) =0,V/J is asimple, finitely generated algebra over k of Pl-degree
p and hence isomorphic to Mp(k). Denote the image of X in V/J by X.
Since M was an arbitrary maximal ideal of Z, we may assume that
XP —1eMclJ. Hence X? =1, and H = {(X). Note that (X) is a
subgroup of the group of units of 17/J, which is isomorphic to GLp(k).
Since fX = Xo(f) for f € k[ul, conjugation by X gives the action of the
generator o = (1,1) of H on V'/J. Hence the action of H on V/J = M (k)
factors through (X).



258 NIKOLAUS VONESSEN

9.2. Remark. Using the Frobenius map, it is easy to construct examples
where extension (3) in Diagram 7.13 is non-trivial: one takes a ‘“‘good”
action B’ of a group G on an algebra V' (for which extension (3) is trivial),
and forms a new, “bad” action B by preceding B’ with a Frobenius
morphism. Reference [V,, Example 3.2] is of this form; there B’ is
essentially the action T" of G on A(G). It is worth noting that Example 9.1
is not of this type: in fact, in this example G acts faithfully and V" contains
non-zero homogeneous elements whose degree with respect to the action
of the torus contained in G is one (e.g., the element X € ).

We now turn to uniform dimension (Goldie rank).

9.3. Proof of Proposition 2.9. Since Q(G°) is unirational over k, V/J
and V/J ® Q(G®°) have the same uniform dimension. Since Q(G) is the
direct sum of |G /G°| copies of Q(G), it follows that the uniform dimen-
sion of V/J ® Q(G) is equal to |G/G° udim(VV/J). By Lemma 7.3,
OV /(J:G)) embeds into Q(V/J ® Q(G)). Hence udim(V/(J:G)) <
udim(V/J ® Q(G)) = |G /G- udim(V/T). 1

Moeglin and Rentschler describe in [MR,, Proposition 4] two cases
where equality in Proposition 2.9 holds in characteristic zero for connected
G. Here is a quick outline of some of their arguments. Recall Diagram
7.13. In extensions (2) and (3), the uniform dimension of the larger algebra
is always greater than or equal to the uniform dimension of the smaller
algebra. This holds for the finite centralizing extension (3) by a result of
Lanski [L, Theorem 4]. Since the regular elements of 7' remain regular in
T ®0(G /) 0(G), Q(T_) embegis intg O(T @y iy Q(G)), so that also in
extension (2) the uniform dimension of the larger algebra bounds the
uniform dimension of the smaller. Since VC c Q(V), udim V' = udim V'C.
As seen above, the uniform dimension on the top level of the diagram is
udim(V/J) (since G = G°). If this number is to be the uniform dimension
of V=V /(J: G), then uniform dimension cannot change in extensions (2)
and (3).

As extension (3) is trivial in characteristic zero, it sufficed for Moeglin
and Rentschler in [MR,] to find conditions ensuring that 7" and T ®,; , 4,
Q(G) have the same uniform dimension. One of the two situations studied
by Moeglin and Rentschler is the case that there is a rational section from
G/H to G, where H is the stabilizer of J in G [MR,, Proposition 4(i)].
Using this section, one shows easily that Q(G) is unirational over Q(G /H),
ensuring that 7 and T &, 4y, Q(G) have indeed the same uniform
dimension. The same argument would work in prime characteristic, if one
could show that uniform dimension does not go up in extension (3)
provided there is such a rational section. Example 9.1(d) showed that
uniform dimension may not be constant in extension (3); but in that
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example there is certainly no such section. The second case studied by
Moeglin and Rentschler [MR,, Proposition 4(ii)] cannot be directly gener-
alized to prime characteristic, as Example 9.1(e) showed.

We conclude our discussion of uniform dimension with an example
which shows that also in characteristic zero, the inequality in Proposition
2.9 can be strict.

9.4. ExAMPLE. The inequality in Proposition 2.9 can be strict, even for
connected groups, both in characteristic zero and in prime characteristic.

Let n be an integer > 2, and suppose that £ contains a primitive nth
root of unity ¢; that is, we assume that the characteristic of & is either zero
or else does not divide n. Let IV be the skew-polynomial ring V' = k{x, y}
with relation xy = {yx. Then V' is a Noetherian domain. The center of I
is Z = k[x", y"], a commutative polynomial ring in two variables, and V" is
a free Z-module of rank n?. Let G = k* X k* be a two-dimensional torus.
The element y = (a,b) € G acts on V' by yx = ax and yy = by. Let M
be the maximal ideal of Z generated by x" — 1 and y" — 1. Then the
stabilizer H of M in G is finite (it is in fact isomorphic to Z /(n) X Z /(n)).
Hence the G-orbit of M has dimension two, implying that (M : G) = 0.
(Alternatively, one could have seen this using Theorem 2.8) Let J be a
prime ideal of 1V lying over M. By incomparability for the finite centraliz-
ing extension Z C V, J is a maximal ideal of V. Since (J:G) is a prime
ideal of V, and (J:G) N Z = (M :G) = 0, incomparability for the finite
centralizing extension Z c V' implies that (/: G) = 0. Hence V/(J : G) =
IV has uniform dimension one. Since V' has Pl-degree n and (J:G) = 0,
also VV/J has Pl-degree n. Since V/J is a finitely generated simple algebra
of Pl-degree n over the algebraically closed field k, it is isomorphic to
n X n matrices over k. Hence V/J has uniform dimension n. Thus,
udim(V/(J:G)) =1 <n=1G/G-udim(V/J). 1

We now prove Theorem 2.8, which relates the Gelfand—Kirillov dimen-
sions of V/J and V/(J:G) for a rational ideal J of V. The basic
references for Gelfand—Kirillov dimension are [BK, KL]. We use GK-
dimension always with respect to the fixed base field k.

9.5. Proof of Theorem 2.8. Note that (J: G) is left Goldie by Theorem
2.1. By Corollary 3.7(b), (J:G) is the intersection of the finitely many
G-conjugates of (J:G®°). Hence V/(J:G) and V/(J: G°) have the same
GK-dimension [KL, 3.3]. Moreover, dim G/H = dim G°/(H N G°). Hence
it suffices to prove the theorem in case that G is connected, which we
assume from now on. We may also assume that (J:G) = 0. Recall
Diagram 7.13.
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By [MR, 3.13], GK-dimension does not change in extension (4), and by
[KL, 5.5], it does not change in the finite extension (3). So GKdim T =
GKdim V.

Writing Q(G) as a finite extension of a purely transcendental field
extension of k, one sees that

GKdim(V/J ® Q(G)) = GKdim(V'/J) + dim G,

see [KL, 3.6, 4.2, and 5.5].

The transcendence degree of Q(G) over Q(G/H) is dim H. Writing
Q(G) now as a finite extension of a purely transcendental field extension
of Q(G/H), one sees as above that

GKdim(T &,y Q(G)) = GKdim T + dim H = GKdim V' + dim H.

Hence GKdim V' + dim H = GKdim(V/J) + dim G. Consequently,
GKdim V' = GKdim(V/J) + dim(G /H). 1
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