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Astrocytes play a crucial role in proper iron handling within the central nervous system. This competence can be
fundamental, particularly during neuroinflammation, and neurodegenerative processes, where an increase in
iron content can favor oxidative stress, thereby worsening disease progression. Under these pathological condi-
tions, astrocytes undergo a process of activation that confers them either a beneficial or a detrimental role on
neuronal survival. Ourwork investigates themechanisms of iron entry in cultures of quiescent and activated hip-
pocampal astrocytes. Our data confirm that themain source of iron is the non-transferrin-bound iron (NTBI) and
show the involvement of two different routes for its entry: the resident transient receptor potential (TRP) chan-
nels in quiescent astrocytes and the de novo expressed divalent metal transporter 1 (DMT1) in activated astro-
cytes, which accounts for a potentiation of iron entry. Overall, our data suggest that at rest, but even more after
activation, astrocytes have the potential to buffer the excess of iron, thereby protecting neurons from iron
overload. These findings further extend our understanding of the protective role of astrocytes under the condi-
tions of iron-mediated oxidative stress observed in several neurodegenerative conditions.

© 2013 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Astrocytes are versatile cells with a wide range of physiological
functions. They have long been known to contribute not only to the
formation of the Blood–brain Barrier (BBB) but also to provide trophic
support to neurons and to regulate the synaptic microenvironment.
More recently, they have been proposed to modulate neuronal activ-
ity and control neuroinflammation [1,2]. Within this complex frame-
work, astrocytes participate to brain homeostasis of iron, an equally
versatile element, which is essential not only for a wide variety of
physiological functions but which is also able to induce oxidative
damages when mishandled. Indeed, astrocytes control brain iron up-
take through the BBB and are responsible for iron redistribution to
neuronal cells. Several reports indicate that iron exceeds the binding
capacity of Transferrin (Tf) in brain interstitial fluids, thus implying
that a significant amount of iron circulates free or loosely bound to
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carrier molecules (e.g. ATP, ascorbate, citrate) released by the astro-
cytes [3,4]. This NTBI pool is considered to be the main source of
iron for astrocytes in vivo, since the expression of Tf receptor 1
(TfR1) and the uptake of Tf-bound-iron (TBI) have been reported
only in culture [5,6]. NTBI uptake was suggested to occur via the
DMT1, the main transporter responsible for Fe2+ intake in mammals
[7]; nonetheless, there is only limited evidence of its expression in
vivo, at the level of the astrocytic perivascular endfeet [8,9], while
its cellular distribution and specific plasma membrane localization
in cultured astrocytes have yet to be clearly demonstrated [10,11].
Other mechanisms, such as the zinc transporter Zip14, have been pro-
posed for NTBI uptake in astrocytes [7,12], but even in this case their
physiological role is still to be established.

More recently, reports have shown that Fe2+ uptake can occur via
calcium permeable channels in different cell types, a possibility that
might have strong physiopathological implications not only for neu-
rons but also for astrocytes [13–15]. The pathways responsible for
NTBI uptake in astrocytes are still matter of debate: there is wide con-
sensus that NTBI enters mainly as Fe2+, while little evidence supports
the existence of a Fe3+ import pathway in astrocytes in vitro [16,17].

Many studies indicate that the NTBI pool increases in pathological
conditions: in acute brain injury, such as hemorrhagic stroke [18]; in
several neurodegenerative disorders, causing the oxidative stress in-
volved in disease progression [12,19]; in autoimmune diseases, such
as multiple sclerosis [20]. All these pathological conditions are associ-
ated with neuroinflammation, a complex response to the cytokines
and the pro-inflammatory molecules released by microglia. As a
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consequence, also astrocytes undergo changes in their phenotype, in
a process known as activation. Activated astrocytes surround brain le-
sions undergoing neurodegeneration and modulate the inflammatory
response, with possible neuroprotective or detrimental effects on the
neighboring neurons [21].

Although it is well established that inflammation influences
systemic iron metabolism, little is known about the effects of
neuroinflammation on brain iron homeostasis. In this study we char-
acterize the mechanisms responsible for NTBI uptake in primary
hippocampal astrocytes in resting conditions as well as upon inflam-
matory activation. Our final aim was to investigate whether the acti-
vation process could improve the capability of astrocytes to handle
and buffer the NTBI pool, thereby protecting neurons by a potentially
dangerous outcome [15].

2. Materials and methods

2.1. Cell cultures

Primary rat hippocampal astrocytes were prepared from 2 to
3 day-old Sprague–Dawley rats, according to [15]. The Institutional
Animal Care and Use Committee of the San Raffaele Scientific Institute
approved the experimental procedures.

Pure astrocyte cultures were obtained by two steps of overnight
shaking at 200 rpm; selective detachment of microglia was confirmed
by the absence (b0.1%) of staining for IBA1, a specific microglia mark-
er [22]. Confluent astrocytes were trypsinized and re-plated onto
poly-lysine-coated coverslips or Petri dishes and experiments were
performed within 3 days after re-plating. In order to obtain the acti-
vated phenotype, the astrocytes were treated with cytokines [23]. A
mix of recombinant rat interleukin-1β (IL1β; 10 ng/ml) and tumor
necrosis factor α (TNFα; 30 ng/ml) or interferon γ (INFγ; 20 ng/ml)
was administered to astrocytes and incubated for 24 h at 37 °C. The
cytokines were from R&D Systems (Minneapolis, MN, USA).

2.2. Videomicroscopy

The videomicroscopy setup is based on an Axioskope 2 micro-
scope (Zeiss, GmbH, Martinsried, Germany) and a Polychrome IV
(Till Photonics, GmbH, Martinsried, Germany) light source. The total
internal reflection fluorescence (TIRF) microscopy setup was de-
scribed in [24]. The ratio analysis was performed between the fluores-
cence signals (evaluated within the same region of interest) from
TIRF and epifluorescence.

Fura-2 acetoxymethyl ester (Calbiochem, Merck KGaA, Darmstadt,
Germany) and calcein acetoxymethyl ester (Molecular Probes, Life
Technologies, Carlsbad, CA, USA) loadings were performed at 37 °C
(4 μM 40 min and 0.25 μM 3 min, respectively) in Krebs Ringer
Hepes buffer (KRH, containing 5 mM KCl, 125 mM NaCl, 2 mM
CaCl2, 1.2 mM MgSO4, 1.2 mM KH2PO4 and 6 mM glucose, 20 mM
Hepes, pH 7.4). Single cell experiments were performed in KRH buff-
er at room temperature. To monitor Fe2+ variations, fura-2 was excit-
ed at 355 nm. This wavelength was adopted as isosbestic since it
turned out to be Ca2+ insensitive in our optical configuration [15].

2.3. Pharmacological treatments

Fe2+ and Fe3+ water stock solutions were freshly prepared by dis-
solving ferrous ammonium sulfate and ferric ammonium citrate
(Sigma-Aldrich, St. Louis, MO, USA), respectively. In some experiments
cells were pre-treated for the specified times with pharmacological
agents (Sigma-Aldrich) listed as follows: ebselen (50 μM, a DMT1
blocker), for 40 min; nimodipine (10 μM, a dihydropyridine L-type
VOCC blocker), verapamil (100 μM, a phenylalkylamine L-type VOCC
blocker), SC38249 (100 μM, a TRPC blocker) and LU52396 (10 μM, a
TRPC blocker), for 15 min; oATP (100 μM, a blocker of P2X7 receptors)
for 1 h.

2.4. Real time PCR analysis

RNA was extracted from cells with TRIzol (Invitrogen, Life
Technologies) following manufacturer instruction. Single strand cDNA
was obtained using Superscript III Retrotranscription Kit (Invitrogen)
with random hexamers as primers. SYBR green-based reverse tran-
scription quantitative PCR (RT-qPCR) was performed and analyzed on
a LightCycler 480 (Roche Diagnostics, Basel, Switzerland). Specific
primers were: GTCCGATGGGGAAGAAGCA forward for DMT1-1A, CCT
GGGATATGGGGTCGC forward for DMT1-1B, GTGAAGGGCTCCTCAGA
ATC reverse for both DMT1 1A and B; GCCTGTCTGTCTGTCTTTGC and
CCCAGTGTTTCCCAACTAACA for DMT1-IRE(+), TAGATGACCAACAG
CCCAGA and CACAGCCGTTAGCTTTACCC for DMT1-IRE(−); TCACCA
TTAAGCTGGGCG and TTCTTCCCGGTCCAGTCATA for frataxin (used for
normalization).

2.5. LIP measurement

Cells were loaded with calcein and the fluorescence was measured
before and after 15 min incubation with 100 μM salicylaldehyde
isonicotinoyl hydrazone (SIH), a cell permeant iron chelator. The
analysis was performed by using a High Throughput Microscopy
(HTM) system, the IN Cell Analyzer 1000 [15] (GE Healthcare, Grand-
view Blvd, Waukesha, WI, USA).

2.6. 55Fe uptake

To evaluate iron uptake, astrocytes (sampled in triplicate)were incu-
bated 18 h with 2 μM 55Fe–Ammonium Citrate (Perkin Elmer, Monza,
Italy), corresponding to 2.5 μCi/ml, in the presence of 1 μM ascorbic
acid (Sigma-Aldrich). For the higher Fe2+ concentration, 2 μM 55Fe–
Ammonium Citrate was mixed with 18 μM of non-radiolabelled Fe–
Ammonium Citrate. Cells were then washed three times with
phosphate-buffered saline and lysed with 20 mM Tris–HCl pH 7.4
with 0.5% Triton X-100. Cellular extracts were collected and centrifuged
at 16,000 g for 10 min. Samples (10 μl) from the soluble fraction were
mixed with 0.5 ml of Ultima Gold (Packard Instrument Co, Meriden,
CT) and counted (3 min) in a scintillation counter (Packard Instrument
Co). Finally, total protein content of soluble cellular extractswas used to
normalize radioactive counts.

2.7. Expression vectors and cell transfection

The pEYFP-C1-DMT1-1A/IRE(+) and pEYFP-C1-DMT1-1B/IRE(+)
vectors were generated as described in [25]. Primary hippocampal as-
trocytes were transfected using Lipofectamine 2000 (Invitrogen)
according to the manufacturer's instructions. Cells were analyzed
24–48 h after transfection.

2.8. Western blotting

Cells were lysed by mechanical scraping in ice-cold PBS containing
0.1 mM EDTA, 2% Nonidet P-40, 0.2% sodium dodecyl sulfate (SDS)
and CLAP. Samples (20 μg of proteins per lane) in denaturating buffer
(50 mM Tris/HCl, 2.5 mM EDTA/Na, 2% SDS, 5% glycerol, 20 mM DTT,
0.01% bromophenol blue) were incubated 10 min at 65 °C and pro-
teins separated by standard SDS—polyacrylamide gel electrophoresis
(SDS-PAGE) and electrically transferred onto nitrocellulose mem-
brane. Membranes were blocked with Tris–Buffered Saline (TBS)
supplemented with 0.1% Tween-20 and 5% skimmed milk powder.
Primary antibodies were diluted as follows: mouse anti-TfR1 anti-
body, 1:3000 and rabbit anti-actin 1:5000 (Invitrogen) in blocking
solution; rabbit anti-DMT1 antibody 1:500 in TBS—0.1% Tween-20.



Fig. 1. NTBI entry pathways in hippocampal astrocytes. Single cell imagingwas performed
on hippocampal astrocytes loadedwith 4 μM fura-2 (355 nm excitation) and, when indi-
cated, with 0.25 μM calcein (488 nm excitation). The iron-mediated quenching of the
fluorescence signals, allowed the estimation of iron entry in different experimental condi-
tions. The bars represent the mean values (± SEM) of fura-2 fluorescence quenching
(f. quenching; ~20 astrocytes per experiment, 5–10 separate experiments per each
condition). A: Fe2+ uptake measurements. The sole administration of 100 μM Fe2+ pro-
moted a remarkable fura-2 quenching (with respect to basal values), while 100 μM
Fe3+ caused a much lower quenching of both fura-2 and calcein. B: Fe2+ entry pathways.
Fe2+ entry in astrocytes was evaluated after administration of 5 μM Fe2+, in control con-
ditions as well as in the presence of the following blockers: 50 μM ebselen for DMT1;
10 μM nimodipine or 100 μM verapamil for VOOCs; 100 μM SC38249 together with
10 μM LU52396 for TRPCs; and 100 μM oATP for P2X7 receptors. None of these
treatments significantly modified the fura-2 quenching observed in control condition.
C:modulation of Fe2+ entry pathways. Fura-2 quenching induced by 5 μMFe2+was eval-
uated in control conditions as well as in the presence of different stimuli: pH reduction to
6 for DMT1; 30 mM KCl for VOCCs; and activation of metabotropic pathways, with either
100 nM bradykinin, BK, or 50 μM DHPG, for TRPCs. Only the indirect activation of TRPCs
promoted a significant increase in Fe2+ influx that was prevented by the mix of TRPC
blockers (SC38249 and LU52396). Statistical significance in B and C was tested by
one-way ANOVA followed by Bonferroni's post hoc test.
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After washing, membranes were incubated with secondary goat
anti-rabbit or anti-mouse HRP-conjugated antibodies (Biorad, Hercules,
CA, USA) diluted 1:2000 in blocking solution. Protein bands were
detected on autoradiographic films by chemiluminescence with the
West Pico or West Femto Super Signal substrate (Pierce, Thermo Fisher
Scientific, Waltham, MA, USA).

2.9. Data analysis

Data are presented as mean ± s.e.m. Statistical significance was
tested using unpaired t-test to compare two separated groups of data.
Experiments with more than two groups of data were analyzed by
two-way ANOVA or one-way ANOVA followed by Dunnett's (for multi-
ple comparisons against a single reference group) or Bonferroni's (for
all pairwise comparisons) post hoc tests, as indicated in figure legends.
Statistical analysis was performed using GraphPad Prism (GraphPad
Software, San Diego, CA, USA).

3. Results

3.1. Pathways for NTBI entry in hippocampal astrocytes

The first aim of this work was to investigate in pure hippocampal
astrocytes the pathways potentially involved in NTBI entry. To this
purpose, we performed a single cell fluorescence microscopy analysis,
by exploiting the capability of iron to quench different fluorescent
dyes [26,27]. Among them, the calcium indicator fura-2 has recently
drawn interest because of its selectivity for Fe2+ when excited at
the calcium-insensitive wavelength of 355 nm [15,27]. The adminis-
tration of 100 μM Fe2+ (as ferrous ammonium sulfate; FAS) to
fura-2 loaded astrocytes promoted a fast and marked fluorescence
quenching (~30% reduction, 15 min after iron addition), comparable
to neuronal counterpart [15], thus indicating the capability of astro-
cytes to uptake Fe2+. Since the NTBI is expected to contain also ferric
iron and considering that two recent studies have proposed an
unidentified path for Fe3+ entry in astrocytes [16,17], we loaded
these glial cells with both fura-2, which probes only Fe2+, and
calcein, a fluorescent dye sensitive to both Fe2+ and Fe3+ [26].
After incubation with 100 μM ferric ammonium citrate (FAC), fura-2
quenching was ~10 times lower than after administration of the
same concentration of Fe2+, thereby suggesting that a small fraction
of Fe3+ was reduced to Fe2+ [17]. On the other hand, the evidence
that the quenching of calcein was comparable to that of fura-2 further
indicates that Fe3+ ingress was negligible (Fig. 1A).

Based on this premise, we next used fura-2microscopy to character-
ize the mechanisms responsible for the influx of Fe2+ in astrocytes, by
administering Fe2+ in the presence of pharmacological treatments
able to interfere with putative routes for iron uptake. In particular, in
the following experiments, astrocytes were exposed to a more physio-
logical concentration of Fe2+ (5 μM), a condition that was able to pro-
mote a low, but reproducible, quenching of fura-2 (5.49% ± 1.53; ~30
cells per experiment from 10 separate experiments). Although the
most credited mechanism of NTBI uptake in astrocytes is based on the
iron transport through the DMT1, pre-incubation (45 min) with
50 μM ebselen, a selective blocker of the transporter [28] did not affect
the process (Fig. 1B). Since in a previous work we demonstrated that
calcium-permeable channels are the main responsible for iron entry
in hippocampal neurons [15], we investigated whether this was
true also for astrocytes. We first considered the contribution of
voltage-operated calcium channels (VOCCs), which are reported to be
expressed in astrocytes [29].We evaluated the effects of two chemically
distinct blockers of L-type VOCC, nimodipine (10 μM) and verapamil
(100 μM). None of the two treatments significantly affected NTBI
entry, even though verapamil reduced fura-2 quenching to some ex-
tent. We then considered the TRP canonical (TRPC) channels, which
are permeable to calcium and are also expressed in astrocytes [30].
Cultures were treated with a mix of two blockers of TRPC: SC 38249
[31] and LU52396 [32]. Even in this case, a moderate reduction of
fura-2 quenching was observed although not significantly different
from controls. Finally, the amount of Fe2+ entry was unaffected also
by the oxidized ATP (oATP, 100 μM), a blocker of the P2X7 purinergic
receptors [33] (Fig. 1B).
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Overall, a major route for Fe2+ influx did not emerge clearly in
resting astrocytes, even though the TRPC channels appeared to exert
some effect. In order to further explore this issue, we next assessed
the relevance of these routes upon stimulation (Fig. 1C). In order to
positively modulate the activity of DMT1 (a proton-coupled metal
ion transporters), the pH of the extracellular solution was switched
from 7.4 to 6; however, this condition did not improve the iron im-
port, which, rather, was even slightly reduced. The administration of
KCl (30 mM), to activate the VOCCs, promoted neither an influx of
Ca2+ (data not shown), nor an increase in Fe2+ uptake. In contrast,
the stimulation of the TRPC Ca2+ channels, which are mainly activat-
ed by PLC-dependent depletion of intracellular calcium stores and by
the increase in diacylglycerol, promoted a significant raise in Fe2+ in-
gress. Indeed, PLC stimulation by either bradykinin (100 nM), a
vaso-active peptide acting on B2 receptor or DHPG (50 μM), a selec-
tive agonist of group I metabotropic glutamate receptors, promoted
an elevation of [Ca2+]i (not shown) and a significant increase in
fura-2 quenching. This effect was specifically attributable to the open-
ing of TRPC channels, since administration of the two blockers previ-
ously used (SC 38249 and LU52396) completely prevented the
potentiation of Fe2+ entry.
Fig. 2. Effects of astrocyte activation on iron uptake. Astrocytes were activated by
24-hour treatment with 10 ng/ml IL1β and 30 ng/ml TNFα. In all panels, each bar
was obtained by normalizing the values (expressed as mean values ± SEM) of activat-
ed over quiescent astrocytes. A: LIP measurements. LIP was estimated in terms of fluo-
rescence recovery upon administration of the iron chelator (SIH, 100 μM) to
calcein-loaded astrocytes. Fluorescence was measured by high throughput microscopy
(HTM) in 4 separate experiments (~1000 astrocytes for each condition, per experi-
ment). B: 55Fe uptake measurements. The uptake of 55Fe was quantified in lysates
from astrocytes incubated for 30 min with 2 μM 55Fe. The counts per minute (cpm),
corrected for protein content, were averaged from replicate samples in 2 separate ex-
periments. C: Fe2+ uptake measurements. The administration of 5 μM Fe2+ promoted
a quenching of fura-2 fluorescence significantly higher in activated compared to quies-
cent astrocytes (calculated in 10 separate experiments for both conditions). D: phar-
macological modulation of Fe2+ uptake in activated astrocytes. The DMT1 blocker
ebselen (50 μM), but not the TRPC blockers (100 μM SC38249 together with 10 μM
LU52396) prevented the potentiation of Fe2+ entry induced by the activation process.
The black line represents the reference quenching, after 5 μM Fe2+ administration, in
untreated quiescent cells. E: role of pH on Fe2+ uptake in activated astrocytes. The acid
pH further increased the Fe2+ uptake in activated astrocytes. The values of fura-2
quenching were normalized as in D. Statistical significance was tested by: two-tailed
paired t-test in A; two-tailed unpaired t-test in B, C and E; one-way ANOVA followed by
Dunnet's post hoc test in D.
3.2. Effects of astrocyte activation on iron uptake

Inflammatory processes and neurotoxic conditions promote a
microglia-dependent activation of astrocytes, with consequent
changes in their phenotype and alterations in their physiological
functions [34,35]. Therefore, we investigated a possible effect of as-
trocyte activation on the mechanisms of iron uptake. In vitro activa-
tion was achieved by treating astrocytic cultures with 10 ng/ml IL1β
and 30 ng/ml TNFα for 24 h and was assessed by quantifying specific
activation markers [23] (IL6, nitric oxide, inducible nitric oxide
synthase; data not shown). Upon activation, astrocytes showed an in-
crease in the labile iron pool (LIP; Fig. 2A), which is an indication of an
elevation of cellular iron level [36]. Accordingly, we evaluated the in-
corporation of iron in resting and activated astrocytes after 30 min
exposure to two different concentrations of 55Fe (2 and 20 μM in
the presence of 1 and 10 μM ascorbic acid, respectively). In the
presence of 2 μM 55Fe (instead of 5 μM Fe2+, because of the higher
sensitivity of this assay compared to the analysis based on fura-2
quenching), the radioactive iron incorporation was more than dou-
bled in activated astrocytes compared to those at rest (Fig. 2B),
while at higher iron concentration there were no significant differ-
ences (not shown). These results were confirmed by the Fe2+ uptake
assay since, in activated astrocytes exposed to 5 μM Fe2+, fura-2
quenching was two to three times higher than in controls, providing
direct evidence of an increased iron ingress (Fig. 2C). In order to
identify which iron influx pathway was potentiated upon activa-
tion, we evaluated the effects of the blockers above described.
Ebselen, which previously had failed to affect basal iron entry, virtual-
ly abolished the potentiation of fura-2 quenching observed in
cytokine-treated astrocytes, thereby suggesting that DMT1 is the
main responsible for the increased Fe2+ uptake in reactive astrocytes
(Fig. 2D). In line with this hypothesis, the block of calcium permeable
channels with nimodipine and oATP did not influence the effect of cy-
tokine treatment (data not shown); interestingly, also the inhibition
of TRPC channels, did not significantly reduce the fura-2 quenching
in activated glial cells (Fig. 2D). As expected from these findings,
also Ca2+ influx was not increased upon astrocyte activation (not
shown). Considering the putative role of DMT1 in potentiating iron
uptake in activated astrocytes, we expected that a reduction of pH
(from 7.4 to 6) could favor the activity of the uniporter, further ampli-
fying its effect. Indeed, in the acidic environment a significant in-
crease in fura-2 quenching was observed, thus indicating higher
iron uptake (Fig. 2E).
3.3. DMT1 expression in inflammation-activated astrocytes

Since DMT1 appears to be the entry pathway primarily responsi-
ble for the increased iron uptake observed in activated astrocytes,
we next evaluated whether the cytokine-mediated activation was
able to affect DMT1 expression, both at the transcript and at the pro-
tein level. Accordingly, we extended the RT-qPCR analysis performed
on resting hippocampal astrocytes [25], to those exposed to the in
vitro activation protocol. The primers, designed to discriminate the
four different DMT1 isoforms at the C- and N-terminus, revealed an
increase in the levels of all transcripts upon activation. Comparatively,
there was a predominance of the DMT1-IRE(+) isoforms with respect
to the IRE(−) and a significantly higher expression of the DMT1-1A
isoforms – i.e. those responsible for Fe2+ uptake at the apical side of
duodenal enterocytes – with respect to the 1B (Fig. 3A). Of note, the

image of Fig.�2


Fig. 3. DMT1 expression in activated astrocytes. A: modulation of DMT1 transcripts by
cytokines treatments. RT-qPCR analysis of DMT1 transcripts shows that the expression
of all DMT1 isoforms is increased in astrocytes exposed to the protocol of activation
(10 ng/ml IL1β and 30 ng/ml TNFα; 4 preparations), but not to 20 nM IFNγ (3 prepa-
rations). The DMT1-1A isoform appears to be the most affected by the activation
process. B: modulation of DMT1 protein expression by cytokines treatments. The var-
iations of the transcripts levels observed in A were paralleled by similar changes in
the protein expression (revealed by an antibody that recognizes all DMT1 isoforms
and normalized by actin). Inset: one of the 4 western blots analyzed in B. Statistical sig-
nificance was tested by two-way (in A) and one-way (in B) ANOVA followed by
Bonferroni's post hoc test.

Fig. 4. Overexpression of DMT1-1A and 1B in astrocytes. A: effects of DMT1-1A and 1B
overexpression on Fe2+ uptake. The overexpression of the EYFP-DMT1-1A/IRE(+) pro-
moted an increase in Fe2+ entry, induced by administration of 5 μM Fe2+, with respect
to non-transfected astrocytes (black line; 10 experiments). Pre-treatments with the
DMT1 blocker (50 μM ebselen for 40 min) prevented the potentiation of Fe2+ entry in
transfected astrocytes (5 experiments). Over-expression of the EYFP-DMT1-1B/IRE(+)
did not modulate Fe2+ uptake and was not affected by ebselen treatment (7 experiments
per condition). B: plasma membrane localization of DMT1-1A and 1B. Astrocytes
transfected with EYFP-DMT1-1A/IRE(+) or EYFP-DMT1-1B/IRE(+) were analyzed by
both epifluorescence and TIRF microscopy. The expression at the plasma membrane
level was higher for EYFP-DMT1-1A/IRE(+) than for EYFP-DMT1-1B/IRE(+) as shown
by the two pairs of images and by analysis of the ratio between TIRF and epifluorescence
signals. Statistical significance was tested by one-way ANOVA, followed by Bonferroni's
post hoc test, in A and by two-tailed unpaired t-test in B.
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treatment with interferon γ (IFNγ, 20 nM), another cytokine de-
scribed to be effective in promoting an increase in DMT1 mRNA, at
least in macrophages [37] and bronchial epithelial cells [38], failed
to induce comparable effects on hippocampal astrocytes (Fig. 3A).
The increase in DMT1 transcript levels observed in activated astro-
cytes, was accompanied by massive upregulation of the protein ex-
pression that, as expected, was not affected by the treatment with
IFNγ (Fig. 3B).

The relevance of DMT1-1A upregulation in sustaining iron uptake
in activated astrocytes, was also supported by the results we obtained
with astrocytes transfected with EYFP-DMT1-1A/IRE(+) and EYFP-
DMT1-1B/IRE(+) respectively. While upregulation of EYFP-DMT1-
1B/IRE(+) failed to modulate fura-2 quenching, the overexpression
of EYFP-DMT1-1A/IRE(+) promoted an increase in Fe2+uptake with
respect to control cells analyzed within the same field of observation
(Fig. 4A). As expected, the treatment with 50 μM ebselen was ineffec-
tive in the former condition, but completely prevented the positive
effect played by DMT1-1A/IRE(+) on iron entry (Fig. 4A). Since the
capability of DMT1-1A to mediate Fe2+ influx in reactive astrocytes
was expected to be due to its expression on the plasma membrane,
we verified its localization with Total Internal Reflection Fluorescence
(TIRF) microscopy. In fact, by this approach, the excitation of
fluorophores occurs only within a narrow layer (~80 nm) juxtaposed
to the coverslip, thus allowing to evaluate the fraction of the
EYFP-DMT1 molecules located at the plasma membrane level. While
conventional epifluorescence shows a similar signal pattern for both
constructs, the TIRF images display a clear and punctate plasmalem-
ma localization only for EYFP-DMT1-1A/IRE(+). The differences of
the fluorescence levels showed by pairs of images acquired by the two
methods were also quantified in terms of ratio analysis (Fig. 4B).
3.4. Effects of astrocyte activation on TfR pathway

Although the “in vivo” expression of TfR1 in astrocytes is still de-
bated, the transcript as well as the protein were found in cultured
cells [6,39]. Since astrocyte activation induced the upregulation of
the NTBI entry, we verified whether it similarly affected transferrin
iron uptake: either directly, as a raise of TfR1 expression or, indirectly,
as a consequence of the increase of DMT1, which could makemore ef-
ficient the export of iron from the endosomes to the cytosol. Surpris-
ingly, the western blot analysis revealed a significant reduction of
TfR1 expression in activated astrocytes compared with the resting
ones (Fig. 5A). On the other hand, the Fe2+ uptake, revealed by quan-
tification of fura-2 quenching, did not show any difference, indicating
a similar cytosolic release of Fe2+ from the endosomes during the
TfR1 cycle, after administration of 100 μg/ml TBI (Fig. 5B). Also the
quenching of calcein, whose fluorescence is affected by both Fe2+
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Fig. 5. TfR1 in activated astrocytes. A: modulation of TfR1 expression. The activation
process promoted a reduction of TfR1 expression (normalized by actin). Inset: one of
the 4 western blots analyzed in A. B: modulation of TBI uptake. The activation did
not affect fura-2 quenching after administration of 100 μg/ml TBI (B). Statistical signif-
icance was tested by two-tailed unpaired t-test.
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and Fe3+, did not change between resting and activated astrocytes
(not shown).

4. Discussion

The mechanisms responsible for iron entry in the various cell
types of central nervous system (CNS) are still controversial and
poorly characterized, although they are crucial for cellular iron han-
dling and iron-dependent toxicity. This is particularly true for astro-
cytes that, in virtue of their specific morphology, play a crucial role
in the regulation of iron flow from peripheral blood to cerebrospinal
fluid (CSF) but may as well control iron concentration in the synaptic
environment [6,40,41].

TfR1, which is responsible for the best-characterized route for iron
entry, is reported to be expressed in astrocytes, but only in culture, not
in vivo, at least in physiological conditions [6,39,42]. Our results not
only confirm the expression and the presence of TfR1 in cultured hip-
pocampal astrocytes, but also indicate that TBI does not significantly
contribute to the amount of iron that enters these glial cells. It follows
that the main source of iron for astrocytes is represented by the NTBI.
This is expected to be mainly composed of Fe2+, because of the highly
reducing potential of the CSF [43], which is largely ascribable to the
ascorbate released by astrocytes [16], and of the presence of iron re-
ductases, such as Dcytb, SDR2 and STEAP2 [17,44,45].

Nonetheless, a recent study has also hypothesized an unidentified
route for direct Fe3+ influx in astrocytes [16]. Our data suggest that
iron entry is mainly due to Fe2+, with only a negligible contribution of
Fe3+, thereby opening the issue of which mechanisms are involved.
The presence of DMT1 in the end-feet of in vivo astrocytes [46,47]
was put in relation to the regulation of brain iron absorption and this
gave the basis to the idea that DMT1 might be expressed at the plasma
membrane where it would control direct iron entry into the cytosol
[40]. In contrast, we have recently demonstrated that the expression
of DMT1 is very low in pure hippocampal astrocytes, both at the tran-
script and protein level [25]; moreover, our present results clearly
show that this route does not play a significant role in Fe2+ ingress.
This draws the attention to mechanisms other than DMT1 for the
cellular uptake of NTBI [17]. In the last decade there has been growing
evidence that Fe2+ can flow throughCa2+-permeant channels in differ-
ent cell types [13–15]. This was expected to be the case also for astro-
cytes, since they are endowed with L-type VOCCs, as well as members
of the TRPC family and purinergic P2X7 receptors [48]. However, in
control astrocytes, none of these routes appeared to be significantly in-
volved in Fe2+ entry, with the possible exception of TRPC, which
showed a moderate reduction in Fe2+ import when specific blockers
were applied. Further consideration deserves the possible role of astro-
cytes in the control of ironwithin the synaptic environment, when they
are exposed to physiological or pharmacological stimulation. This could
be of particular relevance in excitatory synapses since, in the presence
of a higher NTBI, glutamate releasewould favor the postsynaptic uptake
of Fe2+ through NMDA receptors and VOCCs [15]. Under these condi-
tions, the astrocytic processes, which wrap the synapses, might shield
neurons from this harmful event, with active iron sequestration. Of
note, this process of iron clearance could be favored by the same synap-
tic activity, since spill over of glutamate from the synaptic cleft or accu-
mulation of K+ might promote the activation of calcium permeant
channels in astrocytes. However, the activation of VOCCs by physiolog-
ical elevation of extracellular K+ concentration, did not induce an in-
crease in Fe2+ influx, in contrast to what we had observed in neurons
[15]. The concomitant lack of [Ca2+]i variations provides further con-
firmation that VOCCs are not activated under these conditions; most
likely, higher concentration of K+ is required, as it occurs when extra-
cellular ionic osmosis is greatly perturbed [49]. These findings are in
line with the report that K+-dependent Ca2+ elevation in astrocytes is
mainly due to the metabotropic response to the glutamate released by
the neuronal activity [50]. Interestingly, the stimulation of differentme-
tabotropic pathways, via activation of group Imetabotropic receptors or
bradykinin receptors, displayed similar efficacy in determining iron in-
flux. Therefore, our data indicate that TRPC channels, and not DMT1,
play a central role in controllingNTBI import in hippocampal astrocytes,
and that synaptic activity can modulate this process.

A central issue is the role astrocyte activation has in brain iron
handling. In fact, under neuroinflammation or neurodegenerative con-
ditions a change in astrocyte competence to control brain iron homeo-
stasis could be crucial to confer them either a neuroprotective or
neurodetrimental role [51,52]. Our results showed that astrocyte activa-
tion, by an in vitro protocol that recapitulates the effects of in vivo in-
flammation, significantly altered iron handling, by increasing basal
level of LIP and Fe2+ uptake. A consistent body of evidence makes
clear that this change in the functional phenotype was related neither
to the TfR1 route, nor to calcium permeable channels. Indeed, a signifi-
cant reduction of TfR1 expression was observed in activated astrocytes,
as a direct consequence of cytokines action [53] or translational re-
sponse to iron elevation. Rather, change in iron homeostasis could be
ascribed to DMT1 as: 1) DMT1 was upregulated, at the level of both
transcripts and proteins; 2) DMT1 blocker, but not TRPC blockers,
completely reverted the potentiation of iron uptake; 3) lower extracel-
lular pH further increased the ingress of iron, as expected for the DMT1
transporter that is energized by the H+ electrochemical gradient. These
results are in linewith recent evidence that TNFα is able to promote as-
trocyte activationwith increase in DMT1 expression [54] and iron accu-
mulation [55]. Conversely, the ability of IFNγ to enhance the DMT1
levels both in macrophages and bronchial epithelial cells [37,38], was
not observed in our hippocampal astrocytes.

In line with the expectations, RT-qPCR showed that the activation
protocol promoted primarily the expression of DMT1-1A, i.e. the
isoform mainly involved in iron intake at the level of the apical
membrane of enterocytes [56,57]. In agreement with this result,
overexpression of DMT1-1A in control astrocytes led to its localiza-
tion at the plasma membrane level, as revealed by TIRF microscopy,
and favored iron entry. The expression of DMT1-1A after activation
draws the attention to the role played by this transporter under aci-
dosis. It is well known that extracellular pH can decrease at values
even lower than 6 in acute states of brain inflammation, ischemic
stroke and neurotrauma [58]. The above pathological conditions are
potentially associated with astrocyte activation and may see exten-
sive biodegradation of extravasated hemoglobin with consequent in-
crease in the free iron concentrations within brain interstitial fluid
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[18]. Under these conditions, the expression of DMT1-1A in activated
astrocytes and a strongly favorable H+ gradient are expected to sig-
nificantly contribute to iron clearance. Of note, this competence per-
tains solely to DMT1 since acid-sensing ion channels are reported
not to be expressed in the plasma membrane of hippocampal
astrocytes [58,59] while the activation of TRP vanilloid 1 (TRPV1)
nocisensors [60] with capsaicin did not modulate the capability of as-
trocytes to uptake iron (not shown).

4.1. Conclusions

Overall, it emerges that astrocytes not only control iron access at
the BBB level, but also buffer local extracellular iron changes at the
synaptic level. In physiological conditions, glutamate spill over during
neuronal activity can promote the activation of glutamate metabotro-
pic receptor in astrocytes, thereby controlling iron uptake through
the TRPC channels. Accordingly, the higher is the synaptic activity,
the more efficient is also iron clearance in the synaptic environment,
a mechanism that protects the synapse from iron overload, particu-
larly when NTBI is higher. Under neuroinflammation, this control is
potentiated by the process of activation that promotes the expression
of DMT1-1A, further increasing astrocyte competence to uptake iron,
particularly when acidosis establishes. In conclusion, if it is widely
recognized that astrocyte activity is important to contain spill over
of glutamate, we can now envisage that astrocyte can prevent also
“spill in” of iron into the synaptic cleft, thereby protecting neurons
from a potentially harmful iron overload through NMDAR and
VOCCS. This complex control is expected to be relevant not only in
iron dysmetabolisms but also in many neurodegenerative conditions,
such as Alzheimer's, where neuronal hyperactivity, astrocyte activa-
tion and NTBI increase are established [61,62], or Parkinson disease
where the neuronal competence to uptake iron is reported to be po-
tentiated [62,63].
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