
Computational Geometry 16 (2000) 223–233

Computing simple paths among obstacles

Qi Chenga,1, Marek Chrobaka,∗,1, Gopalakrishnan Sundaramb
a Department of Computer Science, University of California, Riverside, CA 92521, USA

b Environmental Systems Research Institute Inc., Redlands, CA 92373, USA

Communicated by K. Mehlhorn; submitted 1 January 1997; revised 1 January 1999; accepted 1 May 2000

Abstract

Given a setX of points in the plane, two distinguished pointss, t ∈X, and a setΦ of obstacles represented by line
segments, we wish to compute a simple polygonal path froms to t that uses only points inX as vertices and avoids
the obstacles inΦ. We present two results: (1) we show that finding such simple paths among arbitrary obstacles is
NP-complete, and (2) we give a polynomial-time algorithm that computes simple paths when the obstacles form a
simple polygonP andX is insideP . Our algorithm runs in time O(m2n2), wherem is the number of vertices ofP
andn is the number of points inX.  2000 Elsevier Science B.V. All rights reserved.

Keywords:Computational geometry; Polygon; Simple path; NP-completeness

1. Introduction

The research we describe in this paper was motivated by polygon generation problems. Suppose that
given a setX of points in the plane, we wish to generate all simple polygons whose vertices are inX.
A simple, iterative approach to this problem is to start at an arbitrary pointx ∈X and successively extend
the path. Given the current pathL ending at a pointy, let Y denote the set of points ofX that are not
on L. We can extendL to all pointsz ∈ Y ∪ {x} for which the interior of the line segment[y, z] does
not intersectL. For some sequences of choices, however, we can reach situations wheny cannot be
connected to anyz ∈ Y ∪ {x} without intersectingL. Thus such a pathL is not a feasible partial solution.
In order to avoid this difficulty, and reduce the backtracking, at any step of this process, given the current
(feasible) pathL, we would like to verify which extensions ofL are feasible, that is, to compute the set of
all z’s in Y for which the extended pathL′ = Lz can be completed to a simple polygon. One can think of
this question as the problem of finding a simple path that avoids given obstacles and uses given points as

∗Corresponding author.
E-mail addresses:qcheng@cs.ucr.edu (Q. Cheng), marek@cs.ucr.edu (M. Chrobak), gsundaram@esri.com (G. Sunda-

ram).
1 This research supported by NSF Grant CCR-9503498.

0925-7721/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0925-7721(00)00011-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81127611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


224 Q. Cheng et al. / Computational Geometry 16 (2000) 223–233

vertices: we want to find a simple path fromz to x that does not intersectL′ − {x, z} and whose vertices
are inY ∪ {x}.

A similar idea can be applied to the problem of generating a “random” polygon with vertices inX. In
this case the next pointz can be picked, say, uniformly at random fromY ∪ {x}. Note, however, that the
probability distribution on the polygons resulting from this process is not necessarily uniform, that is,
different polygons may be generated with different probabilities. It is an open problem whether there is
a polynomial-time algorithm that uniformly generates simple polygons with vertices from a given setX

(see, for example, [2,15]).
Let us now define our problem formally. Given pointsx0, x1, . . . , xk , by a path L = x0x1 . . . xk we

mean the union of line segments[xi, xi+1], for i = 0, . . . , k− 1.L is calledsimpleif it is homeomorphic
to a line segment (in other words,L does not “intersect itself”). We refer to the pointsxi as thevertices
of L. Pointsx0 andxk are called thestart point and theend pointof L, respectively, and are usually
denoted bys andt . WhenX is a finite set of points andx0, . . . , xk ∈X thenL is called an(s,X, t)-path.
If Φ is any subset of the plane, then we say thatL avoidsΦ if L∩Φ ⊆ {s, t}. In other words,L does not
intersectΦ, except for possibly at pointss andt .

Our task can be stated as follows. We are given a finite set of pointsX, two distinguished points
s, t ∈X, and an obstacle setΦ represented by a union of line segments, and we wish to compute a simple
(s,X, t)-path that avoidsΦ, if it exists, or to report that such path does not exist, otherwise.

We present two results. In Section 2 we prove that it is NP-complete to decide whether there is a simple
(s,X, t)-path that avoidsΦ. In Section 3 we consider the case when the obstacle set is a simple polygon
P andX is insideP . We give a polynomial time dynamic-programming algorithm for computing simple
(s,X, t)-paths inP . Our algorithm works in time O(m2n2), wheren is the number of points inX andm
is the number of vertices ofP .

To the best of our knowledge, no research on the above problem has been reported in the literature.
A related problem of computing arbitrary(s,X, t)-paths avoidingΦ, not necessarily simple, can be
solved using visibility graphs. LetGΦ(X) be the visibility graph ofX with respect toΦ defined as

Fig. 1. Example of a simple(s,X, t)-path.



Q. Cheng et al. / Computational Geometry 16 (2000) 223–233 225

follows. The vertices ofGP (X) are the points inX, and two pointsx, y ∈ X are connected by an edge
in GΦ(X) if the line segment[x, y] does not intersectΦ. (More precisely,[x, y] ∩ Φ ⊆ {s, t}.) Then,
finding an(s,X, t)-path that avoidsΦ reduces to the problem of finding anst-path inGΦ(X). The latter
problem can be solved in time O(n+ e), wheren= |X| ande=O(n2) is the number of edges inGΦ(X).
The graphGΦ(X) can be computed using the algorithm by Ghosh and Mount [7] that works in time
O(e+ (n+m) log(n+m)), wherem is the number of line segments inΦ.

Requiring that the(s,X, t)-path is simple makes the problem substantially harder. Fig. 1 shows an
example of a simple(s,X, t)-path inside a polygon. Note that if we remove pointx, no simple(s,X, t)-
path will exist, but there still exists a self-intersecting(s,X, t)-path. We leave it as an exercise for the
reader to construct a similar example in whichX has only four points.

2. Arbitrary obstacles

In this section we show that the simple path problem is NP-complete for arbitrary obstacles. The input
consists of an obstacle setΦ represented by a union of line segments, a setX of points, and two points
s, t ∈X. Our goal is to determine if there is a simple(s,X, t)-path that avoidsΦ. It is easy to see that this
problem is in NP. The proof of NP-hardness is by reduction from the problem HP3PD, the Hamiltonian
path problem for 3-regular planar digraphs, which is known to be NP-complete, see [12].

First we draw the given 3-regular planar digraphG= (V ,E) on the rectilinear O(n2) size grid, with at
least one bend in each edge (see Fig. 2). This can be achieved in polynomial time by slightly modifying
the algorithms from [6,14]. Next, magnify the drawing and replace each vertexv with a corresponding
gadgetAv. For each arc, replace one bendw on this arc with a gadgetBw and all other bendsz with
gadgetsCz. Each gadget consist of a number of obstacles and points.

Let |V | = n. We think ofAv as a box that has three groups of “entrance points” corresponding to the
edges incident tov. For example, if there is an arc fromv tou (or fromu to v),Av has a group of entrance
pointsevu,i , 16 i 6 n. EachAv is drawn in the plane so that the pointsevu,i , for i = 1, . . . , n, are ordered
clockwise around the center ofAv. GadgetAv is shown in Fig. 3, in which solid dots are points ofX,
solid lines represent the obstacles, and dashed lines represent the visibility lines between points inX.
Any path with the vertices inX must follow these visibility lines.

Fig. 2. A rectilinear drawing of a 3-regular planar digraph.



226 Q. Cheng et al. / Computational Geometry 16 (2000) 223–233

Fig. 3. GadgetsAv , Bw andCz.

We also use appropriate gadgetsBw andCz, so that the following condition holds: if there is an
arc (v, u) in G, an entranceevu,i in Av can only see (indirectly) the entranceeuv,i+1 in Au. The indices
. . . i − 1, i, i + 1, . . . on the visibility lines in Fig. 3 are the indices of the corresponding entrance points.

GadgetCz simply bends the visibility lines at the right angle. GadgetBw is similar, but in addition
to bending the direction of the visibility lines, it also reverses and shifts the order of their indices. It
increases the indices by one when traversing along the direction of the arc, with the exception of index
n for which we reach a dead-end. A symmetric statement holds for traversing an arc in the opposite
direction.



Q. Cheng et al. / Computational Geometry 16 (2000) 223–233 227

Let the neighbors ofv beu1, u2, u3. The crucial property of gadgetAv is that ifAv is entered through
entranceevua,i then the only way to leave it, without self-intersecting the path, is through an entranceevub,i
for someb 6= a. Additionally, once we visitAv this way, it is impossible to visit it again without crossing
edges. In this case we say thatAv is visited inmodei.

GadgetAs looks similar toAv in Fig. 3. To constructAs , remove the 2n− 2 interior (non-entrance)
points whose visibility lines have indices greater than 1, and name any of the remaining two interior
vertices ass0. We construct gadgetAt , with an interior vertext0, analogously.

The above construction can be performed in polynomial time and, in addition, the resulting grid has
polynomial size. LetX be the set of points andΦ the set of obstacles created above. It remains to show
thatG has a Hamiltonian path froms to t if and only if there is a simple(s0,X, t0)-path that avoids the
obstacles inΦ.

If we have a Hamiltonian pathH in G from s to t , then we can go froms0 to t0 by visiting the
gadgetsAv in the same order as we visit the verticesv of G in H . Let vi denote theith vertex onH , for
i = 2, . . . , n− 1. We traverseAvi in modei, that is we go fromevivi−1,i

to evivi+1,i
. Between gadgetsAvi and

Avi+1, for i = 1, . . . , n−1, we go fromevivi+1,i
to evi+1

vi ,i+1. That the resulting path is simple follows from the
properties of the gadgetsAv , Bw andCz.

Suppose now that there is a simple pathL from s0 to t0 that avoidsΦ. Each gadget can be visited at
most once. We leaveAs in mode 1, we enterAt in moden, and the mode between visiting two gadgets
can only increase or decrease by 1. Since we can visit each gadgetAv at most once, the only way it can
happen is when we visit all gadgetsAv and increase the mode at every step. Recall that increasing the
mode corresponds to following the direction of an arc. Then the permutation of the vertices corresponding
to the order in which we visit the gadgets determines a Hamiltonian path inG from s to t .

We summarize our result in the following theorem.

Theorem 1. The problem of finding a simple(s,X, t)-path that avoids a given setΦ of obstacles is
strongly NP-complete.

3. Paths in simple polygons

In this section we concentrate on computing simple(s,X, t)-paths inside a simple polygonP . We view
P as a closed bounded region, whose boundary,∂P , constitutes the setΦ of obstacle line segments. We
let VP denote the set ofm vertices ofP . We can assume thatX ⊆ P andX ∩ ∂P ⊆ {s, t}.

For the sake of simplicity, throughout the rest of the paper we assume that all the points inVP ∪X are
in a general position, that is, no three points inVP ∪X are collinear. Otherwise, we can appropriately
perturb some points without changing the solution.

By (x, y) we denote the open line segment betweenx and y, (x, y) = [x, y] − {x, y}. Similarly,
[x, y) = [x, y] − {y} and (x, y] = [x, y] − {x}. If [x, y] ⊆ P , we say thatx, y see each otherin P ,
or thaty is visible from x in P .

For arbitrary pointsx, y on a pathL (not necessarily vertices), byL[x, y] we denote the sub-path of
L betweenx andy. If x, y are non-consecutive vertices ofL that see each other inP , then [x, y] is
called ashortcutof L. PathL is called shortcut-freeif it has no shortcuts. IfL is simple and[x, y] is
a shortcut whose interior does not intersectL, then [x, y] is called asimpleshortcut. In other words,
“simple” means here that we can take the shortcut without violating the simplicity ofL.



228 Q. Cheng et al. / Computational Geometry 16 (2000) 223–233

Fig. 4. The construction ofza, zb, zc in the proof of Lemma 1.

Lemma 1 (The Consecutive Intersection Property).Let L = x0x1 . . . xk be a simple path inP without
simple shortcuts, andx, y ∈ P be two points that see each other inP . Let z1, . . . , zj be the intersection
points ofL with [x, y], listed in the order in which they appear onL. Thenz1, . . . , zj are consecutive on
[x, y], that is,zi is betweenzi−1 andzi+1 for all i = 2, . . . , j − 1.

Proof. Consider a permutationπ of 1,2, . . . , j , such that, going fromx to y, the intersection points
are orderedzπ(1), zπ(2), . . . , zπ(j). If the lemma is false, thenj > 3 and there is ab, 16 b 6 j , that is a
local extremum ofπ , and such thatzb is neither closest tox nor toy. By symmetry, assumeb is a local
minimum. This means that ifza andzc are the intersection points immediately to the left and to the right
of zb, thenzb appears beforeza andzc onL. Again, by symmetry, we can assume thatzc appears before
za onL.

Let zc ∈ [xi, xi+1), and consider a simple polygonQ whose boundary is∂Q = L[zb, za] ∪ [za, zb].
Suppose first thatx0 /∈ Q. That means thatL crosses[x, y] at zb and za in the opposite direction
(see Fig. 4). InQ, either xi and xi+2 can see each other, orxi+1 can see some vertexu of Q. By
the construction,u cannot beza nor zb. Thus, in both cases, we obtain a simple shortcut ofL – a
contradiction.

If x0 ∈Q, thenL[x0, zb] is insideQ. In this case, essentially the same argument as before shows that
eitherxi seesxi+2 in Q, or xi+1 sees a vertex ofQ other thanza or zb. 2

Obviously, for the purpose of computing simple(s,X, t)-paths we can restrict our attention to simple
paths without simple shortcuts. The lemma below states that we can in fact consider only shortcut-free
paths.

Lemma 2. If there exists a simple(s,X, t)-path inP , then there also exists such a path that is shortcut-
free.

Proof. LetL= x0x1 . . . xk be a simple(s,X, t)-path inP . Without loss of generality, we can assume that
L has no simple shortcuts. Suppose that it has a shortcut[xi, xj ], for i < j . By Lemma 1,L[s, xi] and



Q. Cheng et al. / Computational Geometry 16 (2000) 223–233 229

Fig. 5. An example of a cut.

L[xj , t] do not intersect(xi, xj ). But then we can replace the subpathL[xi, xj ] by the segment[xi , xj ].
By repeating this process we could eliminate all shortcuts.2

If p,q ∈ ∂P see each other inP then the line segment[p,q] is called acut. Each cut[p,q] partitions
P into two polygonsQ, Q′ that are disjoint except for sharing edge[p,q]. If p ∈ VP , s ∈ Q, and
x ∈ (p, q), then we introduce the following notation:`xp = [p,q], gxp = q andSxp =Q (see Fig. 5).
Sometimes, to avoid double subscripts, we will write`(x,p), S(x,p) andg(x,p) instead of̀ xp, Sxp and
gxp, respectively. Ifx = s thenSsp is not uniquely defined. In this case, we chooseSsp to be the one of
Q,Q′ that does not containt .

Lemma 3. If t is not visible froms then there is a vertexr ∈ VP visible froms such that any shortcut-free
simple(s,X, t)-pathL does not intersect the line segment(s, gsr).

Proof. Sincet is not visible froms, there is a vertexr ∈ VP , visible froms, such that the line segment
`sr is tangent to∂P at r . If we extend`sr beyondr , it will intersect ∂P at a pointhr . Any simple
(s,X, t)-pathL intersects the segment[r, hr ]. Then, by Lemma 1,L cannot intersect(s, gsr). 2
Lemma 4. Suppose thatL = x0x1 . . . xk is a simple shortcut-free(s,X, t)-path inP . Then there exist
verticesp0,p1, . . . , pk ∈ VP , that satisfy the following conditions:
(a) S(xi−1,pi−1)⊂ S(xi,pi) for all i = 1, . . . , k,
(b) L[x0, xi] ⊂ S(xi,pi) for i = 0, . . . , k.

Proof. The lemma is trivial fork = 0,1, so we assumek > 2. We construct the pointspi one by one.
First we show how to constructp0. Let ξ be a mobile point that is initiallyx1. We slideξ towardsx2 until
[s, ξ ] hits ∂P at a vertexu. While we moveξ , the segment(s, ξ) cannot intersectL, since otherwise we
would obtain a shortcut (this intersection would occur at a vertex ofL other thanx1). Furthermore, by
Lemma 1,L does not intersect(s, gsu). Thus we can setp0= u.

Suppose we already constructedp0, . . . , pi−1. LetQ be the polygon consisting of the pointsz such
that (z, xi) does not intersect neither∂P nor `(xi−1,pi−1). Let ξ be initially xi−1. We will move point



230 Q. Cheng et al. / Computational Geometry 16 (2000) 223–233

Fig. 6. Example of a simple(s,X, t)-path and a corresponding sequence of cuts.

ξ along the edges of∂Q and examine the intersection points of`(xi, ξ ) with ∂P andL. We distinguish
three cases.

Suppose, first, thati = k. In this case, moveξ along∂Q in the direction ofpi−1, and stop when[xi, ξ ]
touches a vertexu of P . The cut`(xi, u) does not intersect̀(xi−1,pi−1) (except possibly atpi−1, if
u= pi−1). So we can setpk = u.

Throughout the rest of the proof we can assume thati < k. Let α be the line throughxi−1 andxi .
Suppose nowxi+1 is on the same side ofα aspi−1. We moveξ along ∂Q in the direction ofpi−1.
Similarly as before,[xi, ξ ] must touch a vertexu of P . Throughout this movement(xi, ξ ) does not
intersectL, since otherwise we would obtain a shortcut. If(xi, g(xi, u)) does not intersectL, we can set
pi = u and we are done.

Otherwise, if(xi, g(xi, u)) intersectsL, then letη ∈ [xj , xj+1), for j > i, be the intersection point
closest toxi . Now we moveη towardsxj+1. Segment[xi, η] must intersect∂P beforeη reachesxj+1,
since otherwise we would have a shortcut[xi, xj+1]. Let v be this intersection point. By the construction,
L does not intersect(xi, v) and, by Lemma 1,L does not intersect(xi, g(xi, v)). Thus we can setpi = v.

The remaining case is whenxi+1 is on the same side ofα asg = g(xi−1,pi−1). Let q the endpoint of
the edge ofP that containsg which does not belong toS(xi−1,pi−1). In this case, we moveξ along∂Q
in the direction ofq. Since the internal angle inQ atg is less than 180◦, and sinceq is a vertex ofP , the
segment(xi, ξ ] cannot intersectL before[xi , ξ ] touches some vertexu of P . The rest of the argument is
the same as in the previous case.2
Algorithm SimplePath. Without loss of generality assume thatt is not visible froms in P . We consider
first theboundary case, whens ∈ VP . For convenience, we think ofs as consisting of three points:s, s′
ands′′, wheres is treated as a point ofX ands′ ands′′ as vertices ofP , and we introduce the cut`ss ′, for
whichSss ′ = {s} andgss ′ = s′′.



Q. Cheng et al. / Computational Geometry 16 (2000) 223–233 231

First, create a directed graphD = (C,A), whereC is the set of all cuts̀xp, for x ∈X andp ∈ VP . The
arcs inA are determined as follows: given any two cuts`xp and`yq , we create an arc̀xp→ `yq if y is
visible fromx in P andSxp ⊂ Syq . Obviously,D is acyclic.

If there is no path from̀ ss ′ to some`tu in D, then report that there is no simple(s,X, t) path inP .
Otherwise, letK be a path from̀ ss ′ to `tu inD. The actual(s,X, t)-pathL is reconstructed fromK inD
in the following way. If`xp is onK thenx is onL, and if `yq is the first vertex onK after `xp theny
follows x onL.

Correctness.If [x, y] is an edge ofL then`xp→ `yq is an arc ofD for somep,q ∈ VP . This means that
y is visible fromx in P . ThereforeL does not intersect∂P . We also haveSxp ⊂ Syq , which implies that
(x, y) does not intersectL[s, x]. Thus,L is simple. On the other hand, by Lemma 4, if there exists any
simple(s,X, t)-path inP , then some path will be found by our algorithm.

Time complexity.Let n be the number of points inX andm the number of vertices inP . We now estimate
the time complexity. The visibility graphGP (X) ofX in P can be computed in time O((n+m)2). We have
at mostm2n2 pairs`xp, `yq of cuts. For each such pair we want to determine if there is an arc`xp→ `yq
in D. To implement it efficiently, for each cut̀xp compute the pointgxp. With O(m) preprocessing, this
point can be determined in time O(logm) using the ray shooting algorithm from [4]. Then we sort all
the pointsgxp based on their order of appearance when we traverse the polygon clockwise, starting from
s′ and ending ats′′. Using this ordering, we can in time O(1) determine if`xp→ `yq is an arc: simply
check whether (a)y is visible fromx, and (b) whether min(p, gxp) < q,gyq <max(p, gxp).

General case.Suppose now thats ∈ P is arbitrary. We construct another polygonP ′ in which s is a
vertex. Letr be the vertex from Lemma 3, and let[u, v] be the edge ofP that containsgsr . Introduce
two pointsu′, v′ ∈ [u, v] such that the ordering of the points along[u, v] is u,u′, gsr, v′, v, andu′, v′ are
close enough togsr so that the triangle(u′, s, v′) does not contain any points ofX. Create polygonP ′
obtained fromP by replacing edge[u, v] by four edges[u,u′], [u′, s], [s, v′] and[v′, v].

The correctness of the algorithm follows from Lemma 3, which implies thatP has a simple(s,X, t)-
path if and only ifP ′ has a simple(s,X, t)-path. PolygonP ′ can be easily computed in time O(m+ n)
using the visibility polygon ofs [5], and point location algorithms (see [13, pp. 45–67]). We summarize
the discussion above in the following theorem.

Theorem 2. Algorithm SimplePath computes simple(s,X, t)-paths inside a simple polygonP in time
O(m2n2).

4. Final comments

We presented the NP-completeness result for arbitrary obstacles and a polynomial-time algorithm for
the case whenΦ is a simple polygon.

There are several possible directions for further research. The first question is whether it is possible to
compute simple(s,X, t)-paths inP substantially faster than O(m2n2). In particular, is it possible to do
it in time O(mn(m+ n))?



232 Q. Cheng et al. / Computational Geometry 16 (2000) 223–233

With some minor modifications to Algorithm SimplePath, we can obtain an O(m2n2)-time algorithm
to compute simple(s,X, t)-pathsoutsidea simple polygonP . (Lemma 1 remains true in this case. Using
this lemma, we can reduce the “outside” case to the “inside” case.) One possible application of this
algorithm is to generate all simple polygons with vertices inX with only polynomial-time overhead (that
is, the time complexity is bounded by a polynomial multiplied by the number of generated polygons).
In order to do so, in the incremental algorithm for generating polygons, the pathQ generated so far is
treated as a thin polygon, and we use Algorithm SimplePath to check if there is a simple path from the
last vertex onQ to the first vertex onQ that avoidsQ. Note that in this application the given setX
and the given polygonP are subject to only local changes at each step. Thus it would be interesting to
develop a dynamic algorithm for this problem.

Sometimes we may wish to generate a polygon that usesall points ofX, not just a subset. This naturally
leads to the problem of computingsimple Hamiltonian(s,X, t)-paths(that is, simple(s,X, t)-paths that
visit all points ofX) that avoidΦ. It is easy to see that the problem is NP-complete for arbitrary obstacles,
so we restrict our attention to the case whenΦ = P is a simple polygon andX is inside (or outside)P .
WhenP is convex, a simple Hamiltonian(s,X, t)-path that avoidsP always exists and can be computed
in time O(n logn) by using angular orderings of the points inX in an appropriate fashion. However, the
status of this problem whenP is an arbitrary simple polygon remains open.

It is an open problem whether simple polygons whose vertex set isX can be counted (or generated
uniformly) in polynomial time. Auer and Held [2] considered several heuristics for this problem. One of
their heuristics is, in essence, the same incremental method as the one we described in the introduction.
They reduce the backtracking by storing the inventory of usable edges, that is the edges that do not
intersect the current path. An efficient algorithm that computes Hamiltonian simple(s,X, t)-paths
outside a given polygonP could be used to eliminate all useless branching.

We would also like to mention the result of Alsuwaiyel and Lee [1] that finding a Hamiltonian(s,X, t)-
path (not necessarily simple) in a simple polygonP is NP-complete. Their proof works even in the special
case whenX is restricted to be the vertex set ofP . (Note that the boundary ofP is not a feasible solution
if s andt are not consecutive.)

Acknowledgements

We would like to thank David Eppstein for helpful discussions and pointing out several references. We
would also like to thank an anonymous referee for comments that helped us improve the presentation.

References

[1] M.H. Alsuwaiyel, D.T. Lee, Minimal link visibility paths inside a simple polygon, Computational Geometry
3 (1993) 1–25.

[2] T. Auer, M. Held, Heuristics for the generation of random polygons, in: F. Fiala, E. Kranakis, J.-R. Sack (Eds.),
Proc. 8th Canadian Conference on Computational Geometry, Carleton University Press, Ottawa, Canada,12–
15 August 1996, pp. 38–44.

[3] M. Babikov, D. Souvaine, R. Wenger, Constructing piecewise linear homeomorphisms of polygon holes, in:
Proc. 9th Canadian Conference on Computational Geometry, 1997, pp. 6–10.

[4] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, J. Snoeyink, Ray shooting in
polygons using geodesic triangulations, Algorithmica 12 (1994) 54–68.



Q. Cheng et al. / Computational Geometry 16 (2000) 223–233 233

[5] H. ElGindy, D. Avis, A linear time algorithm for computing the visibility polygon from a point, J. Algorithms
2 (1981) 186–197.

[6] S. Even, G. Granot, Rectilinear planar drawings with few bends in each edge, Technical Report CS0797,
Computer Science Department, Technion, Israel Institute of Technology, 1994.

[7] S. Ghosh, D. Mount, An output-sensitive algorithm for computing visibility graphs, SIAM J. Comput. 20
(1991) 888–910.

[8] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness,
Freeman, New York, 1979.

[9] L.J. Guibas, J. Hershberger, Optimal shortest path queries in a simple polygon, J. Comput. System Sci. 39
(1989) 126–152.

[10] L. Guibas, J. Hershberger, D. Leven, M. Sharir, R. Tarjan, Linear-time algorithms for visibility and shortest
path problems inside triangulated simple polygons, Algorithmica 2 (1987) 209–233.

[11] J. Hershberger, An optimal visibility graph algorithm for triangulated simple polygons, Algorithmica 4 (1989)
141–155.

[12] J. Plesnik, The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two,
Inform. Process. Lett. 8 (1979) 199–201.

[13] F.P. Preparata, M.I. Shamos, Computational Geometry, An Introduction, Springer, Berlin, 1985.
[14] R. Tamassia, I.G. Tollis, Planar grid embeddings in linear time, IEEE Trans. Circuits Systems 9 (1989) 1230–

1234.
[15] C. Zhou, G. Sundaram, J. Snoeyink, J.S.B. Mitchell, Generating random polygons with given vertices,

Computational Geometry 6 (1996) 277–290.


