=

metadata, citation and similar papers at core.ac.uk brought to you by ;i C(

provided by Elsevier - Publisher Con

N,

s Computational
Geometry

Theory and Applications

ELSEVIER Computational Geometry 16 (2000) 223-233

www. elsevier.nl/locate/comgeo

Computing simple paths among obstacles

Qi Cheng?!, Marek ChrobaR*!, Gopalakrishnan Sundardm

@ Department of Computer Science, University of California, Riverside, CA 92521, USA
b Environmental Systems Research Institute Inc., Redlands, CA 92373, USA

Communicated by K. Mehlhorn; submitted 1 January 1997; revised 1 January 1999; accepted 1 May 2000

Abstract

Given a sefX of points in the plane, two distinguished poinis € X, and a se® of obstacles represented by line
segments, we wish to compute a simple polygonal path fréon that uses only points i as vertices and avoids
the obstacles i . We present two results: (1) we show that finding such simple paths among arbitrary obstacles is
NP-complete, and (2) we give a polynomial-time algorithm that computes simple paths when the obstacles form a
simple polygon? andX is insideP. Our algorithm runs in time Gn2n?), wherem is the number of vertices d#
andn is the number of points iX. 0 2000 Elsevier Science B.V. All rights reserved.

Keywords:Computational geometry; Polygon; Simple path; NP-completeness

1. Introduction

The research we describe in this paper was motivated by polygon generation problems. Suppose tha
given a setX of points in the plane, we wish to generate all simple polygons whose vertices e in
A simple, iterative approach to this problem is to start at an arbitrary paink’ and successively extend
the path. Given the current pathending at a point, let Y denote the set of points df that are not
on L. We can extend. to all pointsz € Y U {x} for which the interior of the line segmeit, z] does
not intersectL. For some sequences of choices, however, we can reach situationsyvdaemot be
connected to any € Y U {x} without intersecting.. Thus such a path is not a feasible partial solution.
In order to avoid this difficulty, and reduce the backtracking, at any step of this process, given the current
(feasible) pathL., we would like to verify which extensions @f are feasible, that is, to compute the set of
all z’s in Y for which the extended path’ = Lz can be completed to a simple polygon. One can think of
this question as the problem of finding a simple path that avoids given obstacles and uses given points a:

* Corresponding author.
E-mail addressesqcheng@cs.ucr.edu (Q. Cheng), marek@cs.ucr.edu (M. Chrobak), gsundaram@esri.com (G. Sunda-
ram).
1 This research supported by NSF Grant CCR-9503498.

0925-7721/00/$ — see front matter 2000 Elsevier Science B.V. All rights reserved.
PIl: S0925-7721(00)00011-0

https://core.ac.uk/display/81127611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

224 Q. Cheng et al. / Computational Geometry 16 (2000) 223-233

vertices: we want to find a simple path franto x that does not interseét’ — {x, z} and whose vertices
areinY U {x}.

A similar idea can be applied to the problem of generating a “random” polygon with verticeslim
this case the next pointcan be picked, say, uniformly at random frahu {x}. Note, however, that the
probability distribution on the polygons resulting from this process is not necessarily uniform, that is,
different polygons may be generated with different probabilities. It is an open problem whether there is
a polynomial-time algorithm that uniformly generates simple polygons with vertices from a givén set
(see, for example, [2,15]).

Let us now define our problem formally. Given pointg x1, ..., x;, by apath L = xox1...x, we
mean the union of line segments, x; 1], fori =0, ...,k — 1. L is calledsimpleif it is homeomorphic
to a line segment (in other words, does not “intersect itself”). We refer to the pointsas thevertices
of L. Pointsxo and x, are called thestart pointand theend pointof L, respectively, and are usually
denoted by and:. WhenX is a finite set of points aneb, ..., x; € X thenL is called an(s, X, ¢)-path
If @ is any subset of the plane, then we say thatvoids® if L N® C {s, r}. In other wordsL does not
intersect®, except for possibly at pointsand:.

Our task can be stated as follows. We are given a finite set of p&intsvo distinguished points
s,t € X, and an obstacle sét represented by a union of line segments, and we wish to compute a simple
(s, X, r)-path that avoid®, if it exists, or to report that such path does not exist, otherwise.

We present two results. In Section 2 we prove that itis NP-complete to decide whether there is a simple
(s, X, r)-path that avoid®>. In Section 3 we consider the case when the obstacle set is a simple polygon
P andX is inside P. We give a polynomial time dynamic-programming algorithm for computing simple
(s, X, 1)-paths inP. Our algorithm works in time Qn?n?), wheren is the number of points iX andm
is the number of vertices a?.

To the best of our knowledge, no research on the above problem has been reported in the literature
A related problem of computing arbitrary, X, r)-paths avoiding®, not necessarily simple, can be
solved using visibility graphs. Lefs (X) be the visibility graph ofX with respect to® defined as

Fig. 1. Example of a simplé, X, ¢)-path.

Q. Cheng et al. / Computational Geometry 16 (2000) 223-233 225

follows. The vertices ofjp (X) are the points inX, and two pointst, y € X are connected by an edge
in Go (X) if the line segmenfx, y] does not intersea®. (More precisely[x, y] N @ C {s,t}.) Then,
finding an(s, X, ¢)-path that avoid reduces to the problem of finding anpath inG4 (X). The latter
problem can be solved in time(@+ ¢), wheren = | X | ande = O(1?) is the number of edges G (X).
The graphGe (X) can be computed using the algorithm by Ghosh and Mount [7] that works in time
O(e + (n + m)log(n + m)), wherem is the number of line segments ¢n.

Requiring that the(s, X, r)-path is simple makes the problem substantially harder. Fig. 1 shows an
example of a simplés, X, ¢)-path inside a polygon. Note that if we remove poinno simple(s, X, 7)-
path will exist, but there still exists a self-intersectiag X, ¢)-path. We leave it as an exercise for the
reader to construct a similar example in whi¥tas only four points.

2. Arbitrary obstacles

In this section we show that the simple path problem is NP-complete for arbitrary obstacles. The input
consists of an obstacle s@étrepresented by a union of line segments, axsef points, and two points
s,t € X.Ourgoal is to determine if there is a simpgle X, r)-path that avoid®. It is easy to see that this
problem is in NP. The proof of NP-hardness is by reduction from the problem HP3PD, the Hamiltonian
path problem for 3-regular planar digraphs, which is known to be NP-complete, see [12].

First we draw the given 3-regular planar digra@h= (V, E) on the rectilinear ©:?) size grid, with at
least one bend in each edge (see Fig. 2). This can be achieved in polynomial time by slightly modifying
the algorithms from [6,14]. Next, magnify the drawing and replace each vengih a corresponding
gadgetA,. For each arc, replace one bewmdon this arc with a gadgeB,, and all other bends with
gadget<C,. Each gadget consist of a number of obstacles and points.

Let|V|=n. We think of A, as a box that has three groups of “entrance points” corresponding to the
edges incident to. For example, if there is an arc fromto u (or fromu to v), A, has a group of entrance
pointse,, ;, 1 <i < n. EachA, is drawn in the plane so that the poirfs, fori =1, ..., n, are ordered
clockwise around the center df,. GadgetA, is shown in Fig. 3, in which solid dots are points Xf
solid lines represent the obstacles, and dashed lines represent the visibility lines between goints in
Any path with the vertices iX must follow these visibility lines.

e

Fig. 2. A rectilinear drawing of a 3-regular planar digraph.

226 Q. Cheng et al. / Computational Geometry 16 (2000) 223-233

i-1 i i+l
I | |
| I I
I I I
I | |
| I I
I I |
| I I
I I I
I I |
| I I
e L_1______I
R I I
Y L
i+
i mm e e e - 4=
-l === - = - - - - - - — = — =
, L
-1 _ _______ °
T
________ L_e@
B ! Ca
I

i i+l i+2

i+l i 1

Fig. 3. Gadgets\,, B,, andC;.

We also use appropriate gadgdts and C,, so that the following condition holds: if there is an
arc (v,u) in G, an entrance, ; in A, can only see (indirectly) the entraneg; ., in A,. The indices
...i—1,i,i+1,...0nthe visibility lines in Fig. 3 are the indices of the corresponding entrance points.
GadgetC, simply bends the visibility lines at the right angle. Gad@etis similar, but in addition
to bending the direction of the visibility lines, it also reverses and shifts the order of their indices. It
increases the indices by one when traversing along the direction of the arc, with the exception of index
n for which we reach a dead-end. A symmetric statement holds for traversing an arc in the opposite

direction.

Q. Cheng et al. / Computational Geometry 16 (2000) 223-233 227

Let the neighbors of beu, u;, uz. The crucial property of gadget, is that if A, is entered through
entrancer, , then the only way to leave it, without self-intersecting the path, is through an engnce
for someb # a. Additionally, once we visitA, this way, it is impossible to visit it again without crossing
edges. In this case we say thgt is visited inmode:i.

GadgetA, looks similar toA, in Fig. 3. To constructd,, remove the 2 — 2 interior (non-entrance)
points whose visibility lines have indices greater than 1, and name any of the remaining two interior
vertices asy. We construct gadget,, with an interior vertexy, analogously.

The above construction can be performed in polynomial time and, in addition, the resulting grid has
polynomial size. LeX be the set of points ané the set of obstacles created above. It remains to show
that G has a Hamiltonian path fromto r if and only if there is a simplésq, X, 70)-path that avoids the
obstacles inp.

If we have a Hamiltonian patli/ in G from s to ¢, then we can go fromnsg to 1 by visiting the
gadgetsA, in the same order as we visit the vertiaesf G in H. Letv; denote theth vertex onH, for
i=2,...,n—1. We traversei,, in modei, that is we go frone,’ , ; toe,’ ;. Between gadgets,, and

Ay forz =1...,n—1,we go fromev it e;”ﬁl That the resulting path is simple follows from the
properties of the gadgeﬁ;v, B,, andC,.

Suppose now that there is a simple patlfrom sq to 7y that avoids®. Each gadget can be visited at
most once. We leavd, in mode 1, we enteA, in modern, and the mode between visiting two gadgets
can only increase or decrease by 1. Since we can visit each gagdgéeimost once, the only way it can
happen is when we visit all gadgets and increase the mode at every step. Recall that increasing the
mode corresponds to following the direction of an arc. Then the permutation of the vertices corresponding
to the order in which we visit the gadgets determines a Hamiltonian paihfiom s to z.

We summarize our result in the following theorem.

Theorem 1. The problem of finding a simpl@, X, ¢)-path that avoids a given s& of obstacles is
strongly NP-complete.

3. Paths in simple polygons

In this section we concentrate on computing sin{pleX, r)-paths inside a simple polygah. We view
P as a closed bounded region, whose boundaPy,constitutes the sab of obstacle line segments. We
let Vp denote the set of: vertices ofP. We can assume th&t C P andX NaoP C {s,1}.

For the sake of simplicity, throughout the rest of the paper we assume that all the pdipts ik are
in a general position, that is, no three pointslipU X are collinear. Otherwise, we can appropriately
perturb some points without changing the solution.

By (x, y) we denote the open line segment betwaeand y, (x,y) = [x, y] — {x, y}. Similarly,
[x,y) =[x,y] — {y} and (x, y] = [x, y] — {x}. If [x,y] € P, we say thatx, y see each othemn P,
or thaty is visiblefrom x in P.

For arbitrary pointsc, y on a pathL (not necessarily vertices), y[x, y] we denote the sub-path of
L betweenx andy. If x, y are non-consecutive vertices bfthat see each other iR, then[x, y] is
called ashortcutof L. PathL is called shortcut-freeif it has no shortcuts. If. is simple andx, y] is
a shortcut whose interior does not interséctthen[x, y] is called asimpleshortcut. In other words,
“simple” means here that we can take the shortcut without violating the simplicity of

228 Q. Cheng et al. / Computational Geometry 16 (2000) 223-233

Fig. 4. The construction of,, zp, z. in the proof of Lemma 1.

Lemma 1 (The Consecutive Intersection Propertygt L = xox;...x; be a simple path inP without
simple shortcuts, and, y € P be two points that see each otheri Letzy, ..., z; be the intersection
points of L with [x, y], listed in the order in which they appear dn Thenzg, ..., z; are consecutive on
[x, y], that is,z; is betweern;_; andz; i forall i =2,..., j — 1.

Proof. Consider a permutation of 1,2, ..., j, such that, going fromx to y, the intersection points
are ordered (1), 2z (2). - - - » Zz(j)- |f the lemma is false, thep > 3 and there is &, 1< b < j, thatis a
local extremum ofr, and such that,, is neither closest te@ nor to y. By symmetry, assumk s a local
minimum. This means that i, andz,. are the intersection points immediately to the left and to the right
of z,, thenz, appears beforg, andz. on L. Again, by symmetry, we can assume thatppears before
Zga0ONnL.

Let z. € [x;, x;41), and consider a simple polyga@ whose boundary i8Q = L[z, z.] U [24, 25]-
Suppose first thakg ¢ Q. That means thal. crosses[x, y] at z, and z, in the opposite direction
(see Fig. 4). InQ, eitherx; and x;,», can see each other, ar,; can see some vertax of Q. By
the constructionu cannot bez, nor z,. Thus, in both cases, we obtain a simple shortcuf.of a
contradiction.

If xo € O, thenL[xo, z,] is inside Q. In this case, essentially the same argument as before shows that
eitherx; seesy; > in Q, orx; 1 sees a vertex of) other tharg, orz,. O

Obviously, for the purpose of computing simglke X, r)-paths we can restrict our attention to simple
paths without simple shortcuts. The lemma below states that we can in fact consider only shortcut-free
paths.

Lemma 2. If there exists a simplés, X, t)-path in P, then there also exists such a path that is shortcut-
free.

Proof. Let L = xox1...x; be asimplgs, X, r)-path inP. Without loss of generality, we can assume that
L has no simple shortcuts. Suppose that it has a shdntgut;], for i < j. By Lemma 1,L[s, x;] and

Q. Cheng et al. / Computational Geometry 16 (2000) 223-233 229

xp

Fig. 5. An example of a cut.

L[x;,t] do not intersectx;, x;). But then we can replace the subpdtfx;, x;] by the segmenttx;, x;].
By repeating this process we could eliminate all shortcuts.

If p,q € 3P see each other iR then the line segmelfp, ¢] is called acut Each cuf p, ¢] partitions
P into two polygonsQ, Q' that are disjoint except for sharing edge, ¢1. If p € Vp, s € Q, and
x € (p,q), then we introduce the following notatiod;, = [p. g1, g, =g andS,, = Q (see Fig. 5).
Sometimes, to avoid double subscripts, we will write, p), S(x, p) andg(x, p) instead of,,, S, and
gxp, respectively. Ifx = s thensS;, is not uniquely defined. In this case, we chodsgto be the one of
Q, O’ that does not contain

Lemma 3. If z is not visible frons then there is a vertex e Vp visible froms such that any shortcut-free
simple(s, X, r)-path L does not intersect the line segméntg;,).

Proof. Sincer is not visible froms, there is a vertex € Vp, visible froms, such that the line segment
L, is tangent tod P at r. If we extendé,, beyondr, it will intersect 9P at a pointh,. Any simple
(s, X, r)-path L intersects the segmept 4,]. Then, by Lemma 1. cannot intersects, g,,). O

Lemma 4. Suppose thal = xgx;...x; is a simple shortcut-freés, X, ¢)-path in P. Then there exist
verticespo, p1, ..., pr € Vp, that satisfy the following conditions:

@) Sxi_1, pic1) C S, pp) foralli =1, ...k,

(b) Llxo, x;]1 C S(x;, pi) fori =0,... k.

Proof. The lemma is trivial fork = 0, 1, so we assumé > 2. We construct the points; one by one.
First we show how to construgiy. Let& be a mobile point that is initially;. We slide¢ towardsx, until
[s, €] hitsd P at a vertexs. While we moves, the segments, &) cannot interseck, since otherwise we
would obtain a shortcut (this intersection would occur at a vertek other thanx;). Furthermore, by
Lemma 1,L does not intersedt, g,,). Thus we can sebg = u.

Suppose we already constructggl ..., p,_1. Let Q be the polygon consisting of the pointssuch
that (z, x;) does not intersect neithéP nor £(x;_1, p;—1). Let & be initially x;_,. We will move point

230 Q. Cheng et al. / Computational Geometry 16 (2000) 223-233

Fig. 6. Example of a simplés, X, t)-path and a corresponding sequence of cuts.

& along the edges dfQ and examine the intersection pointségk;, &) with d P and L. We distinguish
three cases.

Suppose, first, that= k. In this case, mové alonga Q in the direction ofp;_1, and stop wheif;, &]
touches a vertex of P. The cuté(x;,u) does not intersect(x;_1, p;_1) (except possibly ap;_1, if
u=p;_1). SO we can sep; = u.

Throughout the rest of the proof we can assume thatk. Let « be the line through;_; and x;.
Suppose now;,; is on the same side af as p,_;. We move& alongaQ in the direction ofp;_;.
Similarly as before[x;, £] must touch a vertex of P. Throughout this movement;, £) does not
intersectL, since otherwise we would obtain a shortcut(idf, g(x;, u)) does not intersedt, we can set
p; = u and we are done.

Otherwise, if(x;, g(x;, u)) intersectsL, then letn € [x;, x;;1), for j > i, be the intersection point
closest tox;. Now we moven towardsx ;1. Segmentx;, n] must intersect P beforen reachesy; .,
since otherwise we would have a shorttyt x;,1]. Letv be this intersection point. By the construction,
L does not intersedty;, v) and, by Lemma 1L does not intersedt;, g(x;, v)). Thus we can sep; = v.

The remaining case is whem, ; is on the same side of asg = g(x;_1, pi_1). Let g the endpoint of
the edge ofP that containg which does not belong t8(x;_1, p;,_1). In this case, we movg alonga Q
in the direction ofy. Since the internal angle i@ atg is less than 180 and sincey is a vertex ofP, the
segmentx;, £] cannot interseckt. before[x;, £] touches some vertexof P. The rest of the argument is
the same as in the previous casel

Algorithm SimplePath. Without loss of generality assume thas not visible froms in P. We consider
first theboundary casewhens € Vp. For convenience, we think efas consisting of three points; s’
ands”, wheres is treated as a point of ands’ ands” as vertices of?, and we introduce the cut,, for
which S, = {s} and g,y = s".

Q. Cheng et al. / Computational Geometry 16 (2000) 223-233 231

First, create a directed gragh= (C, A), whereC is the set of all cutg,,, forx € X andp € V. The
arcs inA are determined as follows: given any two céts and/,,, we create an ar¢,, — £,, if y is
visible fromx in P andS,, C S,,. Obviously, D is acyclic.

If there is no path front,, to somet,, in D, then report that there is no simple X, ¢) path in P.
Otherwise, letK be a path front,, to ¢,, in D. The actuals, X, ¢)-pathL is reconstructed fronk in D
in the following way. If¢,, is on K thenx is on L, and if ¢, is the first vertex ok after¢,, theny
follows x on L.

Correctnessilf [x, y] is an edge of. then¢,, — ¢,, is an arc ofD for somep, g € Vp. This means that

y is visible fromx in P. ThereforeL does not intersecP. We also haves,, C S,,, which implies that

(x, y) does not intersedt[s, x]. Thus,L is simple. On the other hand, by Lemma 4, if there exists any
simple(s, X, t)-path in P, then some path will be found by our algorithm.

Time complexityLet n be the number of points ik andm the number of vertices i?. We now estimate

the time complexity. The visibility grap#i, (X) of X in P can be computed in time@: +m)?). We have

at mostm?n? pairs¢,,, £,, of cuts. For each such pair we want to determine if there is af,gre> £,

in D. To implement it efficiently, for each cut, compute the poing,,. With O(m) preprocessing, this

point can be determined in time(ldgm) using the ray shooting algorithm from [4]. Then we sort all

the pointsg,, based on their order of appearance when we traverse the polygon clockwise, starting from
s” and ending at”. Using this ordering, we can in time(© determine if¢,, — ¢,, is an arc: simply
check whether (ay is visible fromx, and (b) whether mitp, g,) < g, g,y < Max(p, gp)-

General caseSuppose now that € P is arbitrary. We construct another polygdt in which s is a
vertex. Letr be the vertex from Lemma 3, and let, v] be the edge of that containsg,,. Introduce
two pointsu’, v’ € [u, v] such that the ordering of the points alojag v] is u, u’, g, v, v, andu’, v" are
close enough t@,, so that the triangléu’, s, v") does not contain any points &f. Create polygonP’
obtained fromP by replacing edgéu, v] by four edgegu, u'], [/, s1, [s, v'] and[v’, v].

The correctness of the algorithm follows from Lemma 3, which implies thhgs a simplés, X, 1)-
path if and only if P’ has a simplds, X, r)-path. PolygonP’ can be easily computed in time(@ + n)
using the visibility polygon of [5], and point location algorithms (see [13, pp. 45-67]). We summarize
the discussion above in the following theorem.

Theorem 2. Algorithm SimplePath computes simglke X, r)-paths inside a simple polygoA in time
O(m?n?).

4. Final comments

We presented the NP-completeness result for arbitrary obstacles and a polynomial-time algorithm for
the case whew is a simple polygon.

There are several possible directions for further research. The first question is whether it is possible to
compute simplds, X, t)-paths inP substantially faster than @?2n?). In particular, is it possible to do
it in time O(mn(m +n))?

232 Q. Cheng et al. / Computational Geometry 16 (2000) 223-233

With some minor modifications to Algorithm SimplePath, we can obtain @n’@’)-time algorithm
to compute simplés, X, ¢)-pathsoutsidea simple polygonP. (Lemma 1 remains true in this case. Using
this lemma, we can reduce the “outside” case to the “inside” case.) One possible application of this
algorithm is to generate all simple polygons with verticeXiwith only polynomial-time overhead (that
is, the time complexity is bounded by a polynomial multiplied by the number of generated polygons).
In order to do so, in the incremental algorithm for generating polygons, the@atbnerated so far is
treated as a thin polygon, and we use Algorithm SimplePath to check if there is a simple path from the
last vertex onQ to the first vertex onQ that avoidsQ. Note that in this application the given skt
and the given polygorP are subject to only local changes at each step. Thus it would be interesting to
develop a dynamic algorithm for this problem.

Sometimes we may wish to generate a polygon thataispsints ofX, not just a subset. This naturally
leads to the problem of computirggmple Hamiltonian(s, X, r)-paths(that is, simple(s, X, r)-paths that
visit all points of X) that avoid®. It is easy to see that the problem is NP-complete for arbitrary obstacles,
SO we restrict our attention to the case whiea= P is a simple polygon and is inside (or outsideP.
When P is convex, a simple Hamiltonia@, X, ¢)-path that avoids® always exists and can be computed
in time O(n logn) by using angular orderings of the pointsXnin an appropriate fashion. However, the
status of this problem whef is an arbitrary simple polygon remains open.

It is an open problem whether simple polygons whose vertex s€tdan be counted (or generated
uniformly) in polynomial time. Auer and Held [2] considered several heuristics for this problem. One of
their heuristics is, in essence, the same incremental method as the one we described in the introductior
They reduce the backtracking by storing the inventory of usable edges, that is the edges that do not
intersect the current path. An efficient algorithm that computes Hamiltonian sitple, r)-paths
outside a given polygo® could be used to eliminate all useless branching.

We would also like to mention the result of Alsuwaliyel and Lee [1] that finding a Hamiltariaxi, ¢)-
path (not necessarily simple) in a simple polygdis NP-complete. Their proof works even in the special
case wherX is restricted to be the vertex set Bf (Note that the boundary dt is not a feasible solution
if s andr are not consecutive.)

Acknowledgements

We would like to thank David Eppstein for helpful discussions and pointing out several references. We
would also like to thank an anonymous referee for comments that helped us improve the presentation.

References

[1] M.H. Alsuwaiyel, D.T. Lee, Minimal link visibility paths inside a simple polygon, Computational Geometry
3(1993) 1-25.

[2] T. Auer, M. Held, Heuristics for the generation of random polygons, in: F. Fiala, E. Kranakis, J.-R. Sack (Eds.),
Proc. 8th Canadian Conference on Computational Geometry, Carleton University Press, Ottawa, Canada,12-
15 August 1996, pp. 38—44.

[3] M. Babikov, D. Souvaine, R. Wenger, Constructing piecewise linear homeomorphisms of polygon holes, in:
Proc. 9th Canadian Conference on Computational Geometry, 1997, pp. 6-10.

[4] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, J. Snoeyink, Ray shooting in
polygons using geodesic triangulations, Algorithmica 12 (1994) 54—-68.

Q. Cheng et al. / Computational Geometry 16 (2000) 223-233 233

[5] H. EIGindy, D. Avis, A linear time algorithm for computing the visibility polygon from a point, J. Algorithms
2(1981) 186-197.
[6] S. Even, G. Granot, Rectilinear planar drawings with few bends in each edge, Technical Report CS0797,
Computer Science Department, Technion, Israel Institute of Technology, 1994.
[7]1 S. Ghosh, D. Mount, An output-sensitive algorithm for computing visibility graphs, SIAM J. Comput. 20
(1991) 888-910.
[8] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness,
Freeman, New York, 1979.
[9] L.J. Guibas, J. Hershberger, Optimal shortest path queries in a simple polygon, J. Comput. System Sci. 39
(1989) 126-152.
[10] L. Guibas, J. Hershberger, D. Leven, M. Sharir, R. Tarjan, Linear-time algorithms for visibility and shortest
path problems inside triangulated simple polygons, Algorithmica 2 (1987) 209-233.
[11] J. Hershberger, An optimal visibility graph algorithm for triangulated simple polygons, Algorithmica 4 (1989)
141-155.
[12] J. Plesnik, The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two,
Inform. Process. Lett. 8 (1979) 199-201.
[13] F.P. Preparata, M.l. Shamos, Computational Geometry, An Introduction, Springer, Berlin, 1985.
[14] R. Tamassia, I.G. Tollis, Planar grid embeddings in linear time, IEEE Trans. Circuits Systems 9 (1989) 1230—
1234.
[15] C. Zhou, G. Sundaram, J. Snoeyink, J.S.B. Mitchell, Generating random polygons with given vertices,
Computational Geometry 6 (1996) 277—-290.

