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Abstract

Thin coverings are a method of constructing graded-simple modules from simple (ungraded) modules.
After a general discussion, we classify the thin coverings of (quasifinite) simple modules over associative
algebras graded by finite abelian groups. The classification uses the representation theory of cyclotomic
quantum tori. We close with an application to representations of multiloop Lie algebras.
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0. Introduction

In a recent series of papers [1–3], B. Allison, S. Berman, A. Pianzola, and J. Faulkner exam-
ined the structure of multiloop algebras. These algebras are formed by a generalization of the
twisting process used in Kac’s construction [8] of the affine Lie algebras.
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More specifically, for any algebra B over an algebraically closed field K and finite-order
commuting automorphisms σ1, . . . , σN of B of period m1, . . . ,mN , respectively, the multiloop
algebra L(B, σ1, . . . , σN) is the following subalgebra of B ⊗ K[t±1

1 , . . . , t±1
N ]:

L(B, σ1, . . . , σN) =
⊕

(i1,...,iN )∈ZN

Bι1,...,ιN ⊗ Kt
i1
1 · · · t iNN ,

where Bι1,...,ιN is the common eigenspace

{
b ∈ B

∣∣ σjb = ξ
ij
j b for 1 � j � N

}
for fixed primitive mj th roots of unity ξj .

In particular, when B is a finite-dimensional simple Lie algebra and the base field K is the
field C of complex numbers, one can construct realizations for almost all extended affine Lie al-
gebras by taking central extensions of the resulting multiloop algebras and adjoining appropriate
derivations [1,12].

Bounded weight modules for such extended affine Lie algebras of nullity r can be constructed
by inducing from bounded weight modules for the corresponding multiloop algebras of nul-
lity r − 1. The classification of these modules for extended affine Lie algebras thus depends on
classifying the corresponding modules for multiloop algebras. While working on this classifica-
tion [5], we considered methods of “twisting” simple B-modules into graded-simple modules for
the multiloop algebras L(B, σ1, . . . , σN). As part of our construction, we used structures called
thin coverings of modules.

Let B = ⊕
g∈GBg be an algebra graded by an abelian group G. A thin covering of a left

B-module M is a family of subspaces {Mg | g ∈ G} with the following properties:

(i) M = ∑
g∈G Mg ,

(ii) BgMh ⊆ Mg+h for all g,h ∈ G,
(iii) if {Ng | g ∈ G} also satisfies (i) and (ii) and Ng ⊆ Mg for all g ∈ G, then Ng = Mg for all

g ∈ G.

We consider finite-dimensional and infinite-dimensional quasifinite modules over a G-graded
associative algebra A. Each thin covering of an (ungraded) left A-module M is associated with
a graded left A-module M̃ . Although thin coverings are generally not unique, the isomorphism
class of M completely determines the graded-isomorphism class of M̃ , under mild conditions. It
is trivial to show that M̃ is graded-simple whenever M is simple.

An A-module may be twisted with an A-automorphism associated with its G-grading. Such
twists do not change the isomorphism class of the graded modules coming from the thin covering
construction, and they play a vital role in our classification of thin coverings.

After these applications to graded theory, we give an explicit characterization of thin coverings
of quasifinite simple modules over arbitrary (unital) associative algebras graded by finite abelian
groups. The classification uses the fact that any such module is also a module for a cyclotomic
quantum torus coming from isomorphisms between twists of the module.

We conclude the paper with an application to the representation theory of multiloop Lie al-
gebras. Our approach is an alternative to Clifford theory, where graded-simple A-modules are
constructed by inducing from simple A0-modules. (See [10, Theorem 2.7.2], and also [6,7].)
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This method gives an explicit procedure for constructing graded-simple A-modules from (un-
graded) simple A-modules via the action of a cyclotomic quantum torus. For the applications
we have in mind, it would be difficult to get a classification of simple A0-modules, whereas
ungraded simple A-modules are well understood.

Note. Though some of the material appearing in the references is written over the field C of
complex numbers, our results do not depend on this material, and we will assume throughout the
paper that K is an arbitrary algebraically closed field of characteristic zero. All algebras will be
considered as algebras over the field K, and all associative algebras will be unital. Modules will
be left modules unless otherwise indicated. Likewise, all hypotheses of simplicity and semisim-
plicity should be interpreted as left simplicity and left semisimplicity.

1. Thin coverings and graded modules

Let A be a (unital) associative algebra graded by an abelian group G. For any mod-
ule M over A, a set of subspaces {Mg | g ∈ G} is a G-covering of M if

∑
g∈G Mg = M and

AgMh ⊆ Mg+h for all g,h ∈ G. We will drop the prefix G from “G-covering” when there is no
ambiguity. Two coverings {Mg | g ∈ G} and {M ′

g | g ∈ G} are equivalent, and we write

{Mg | g ∈ G} ∼ {
M ′

g

∣∣ g ∈ G
}

if there is a fixed h ∈ G such that Mg = M ′
g+h for all g ∈ G.

The set C := C(M,A,G) of coverings of the module M is partially ordered: for any {Mg |
g ∈ G} and {Ng | g ∈ G} in C, let

{Mg | g ∈ G} � {Ng | g ∈ G}
if the covering {Mg} is equivalent to a covering {M ′

g} for which M ′
g ⊆ Ng for all g ∈ G.

The minimal coverings in the poset C are called thin coverings. If M is a finite-dimensional
or infinite-dimensional quasifinite module (see Section 4), then it has a thin covering.

Remark 1.1. Let g be a Lie algebra graded by an abelian group G, and let M be a g-module.
The grading on g extends naturally to a G-grading on the universal enveloping algebra U(g).
Note that the coverings of M as a g-module coincide with its coverings as a U(g)-module. Thus,
by studying thin coverings of modules over associative algebras, we automatically obtain the
corresponding results for Lie algebras. The same applies to Lie superalgebras as well, where we
would need to consider the Z2-graded version of a thin covering. (See the definition in Section 4.)

The following elementary yet important lemma says that the thin coverings of a simple A-
module M are essentially determined by the simple A0-submodules of M .

Lemma 1.2. Let {Mg | g ∈ G} be a covering for a simple module M over an associative algebra
A graded by an abelian group G. This covering is thin if and only if

Mg = Ag−hu,

for all g,h ∈ G and any nonzero u ∈ Mh.
In particular, in a thin covering, every nonzero space Mh is a simple A0-module.
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Proof. Since M is a simple A-module,
∑

g∈GAg−hu = Au = M . This gives a covering of M

with Ag−hu ⊆ Mg for all g ∈ G. Thus {Mg} is a thin covering if and only if Ag−hu = Mg for
all g. �

Although the sum
∑

g∈G Mg of the spaces Mg in a thin covering need not be direct, the
external direct sum of these subspaces always has a natural graded module structure. In fact, this
construction “preserves simplicity,” as described in the following theorem.

Theorem 1.3. Let M be a simple (not necessarily graded) module over an associative algebra
A graded by an abelian group G. Then for any thin covering {Mg | g ∈ G} of M , the space

M̃ :=
⊕
g∈G

Mg

is a graded-simple A-module.

Proof. The space M̃ has an obvious graded module structure, namely M̃g := Mg and Ag : M̃h →
M̃g+h for all g,h ∈ G.

By Lemma 1.2, Ah−gu = Mh for all g ∈ G and nonzero elements u ∈ Mg . Likewise, Ah−gũ =
M̃h for every h ∈ G, where ũ is the element of M̃ having the nonzero element u ∈ Mg in the M̃g-
component and 0 elsewhere.

Suppose Ñ = ⊕
g∈G Ñg is a nonzero G-graded submodule of M̃ . Then for any nonzero com-

ponent Ñg and h ∈ G, we have Ah−gÑg = M̃h. Hence Ñ = M̃ . �
In the next theorem, we show that graded-simple A-modules come from thin coverings of

simple (non-graded) A-modules. The assumption on the existence of a maximal submodule holds
in the finite-dimensional case as well as for the infinite-dimensional quasifinite modules. (See
Remark 4.2.)

Theorem 1.4. Let M̃ be a graded-simple module over an associative algebra A graded by an
abelian group G:

M̃ =
⊕
g∈G

M̃g.

Assume that as a non-graded A-module, M̃ has a maximal (non-graded ) submodule and a sim-
ple (non-graded ) quotient M :

ϕ : M̃ → M.

Let Mg = ϕ(M̃g). Then {Mg | g ∈ G} is a thin covering of the module M and M̃ is graded-
isomorphic to the graded A-module associated with this thin covering,

M̃ ∼=
⊕
g∈G

Mg,

as in Theorem 1.3.
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Proof. Since the map ϕ is surjective, we get that
∑

g∈G ϕ(M̃g) = ϕ(M̃) = M , and hence

{ϕ(M̃g) | g ∈ G} is a covering of M .
Moreover, the restrictions of ϕ to M̃g ,

ϕg : M̃g → Mg,

are bijections. If these maps had non-trivial kernels, then
⊕

g∈G ker ϕg would be a non-trivial

graded submodule of M̃ , which would contradict the fact that M̃ is graded-simple.
We now show that the covering {ϕ(M̃g) | g ∈ G} is thin. Suppose {Ng | g ∈ G} is another

covering of M with Ng ⊆ Mg . Let Ñg ⊆ M̃g be the pre-image of Ng under the map ϕg . It is easy
to see that

Ñ =
⊕
g∈G

Ñg

is a graded A-submodule in M̃ . To verify this, it is enough to check that AhÑg ⊆ Ñg+h. However,
ϕ(AhÑg) = AhNg ⊆ Ng+h, and Ñg+h is the pre-image of Ng+h under ϕg+h. Thus AhÑg ⊆
Ñg+h, and Ñ is a nonzero graded submodule of M̃ . Since M̃ is graded-simple, we conclude that

Ñg = M̃g for all g ∈ G. This implies that Ng = Mg because the map ϕg is a bijection. Hence the
covering {Mg | g ∈ G} is indeed thin.

Once again using the bijectivity of ϕg , we see that the graded A-module associated with this

covering is isomorphic to M̃ :

⊕
g∈G

Mg
∼=

⊕
g∈G

M̃g. �

Gradings on A by finite abelian groups can be alternatively described via finite abelian sub-
groups of the group of automorphisms of A. Suppose A is graded by a finite abelian group G,
and consider the dual group Ĝ = Hom(G,K

×). Then we can interpret an element σ ∈ Ĝ as the
finite order A-automorphism defined by σ(a) = σ(g)a for a ∈ Ag . Although the groups G and
Ĝ are isomorphic, there is no canonical isomorphism between them.

Conversely, a finite abelian group Ĝ of automorphisms of A defines a grading. The algebra
A is graded by the group G = Hom(Ĝ,K

×):

A =
⊕
g∈G

Ag,

where Ag = {a ∈A | σ(a) = g(σ )a, for all σ ∈ Ĝ}.
To be consistent with the additive notation for grading groups, we will slightly abuse notation

and always treat G as an additive group. The sum of two elements g,h ∈ G is defined by

(g + h)(σ ) = g(σ )h(σ ) for σ ∈ Ĝ, (1.5)

and we will denote the identity element of G by 0.
An A-module (M,ρ) can be twisted by an automorphism σ ∈ Aut A, and we use the notation

Mσ for the module (M,ρσ). That is, the module action in Mσ is given by ρσ :A → EndK M .
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The following proposition shows that a simple A-module and its twists by automorphisms in
Ĝ yield isomorphic graded-simple modules.

Proposition 1.6. Let A be an associative algebra graded by a finite abelian group G. Let M be
a simple A-module, and let σ ∈ Ĝ.

(i) Any thin covering {Mg | g ∈ G} of M is also a thin covering of Mσ .
(ii) Let {Mg | g ∈ G} be a thin covering of M , and let {Mσ

g | g ∈ G} be the same covering
of Mσ . Then the following graded-simple A-modules are naturally isomorphic

⊕
g∈G

Mσ
g

∼=
(⊕

g∈G

Mg

)σ

.

(iii) If M is a G-graded A-module, then Mσ ∼= M for all σ ∈ Ĝ.

Proof. We first show that a covering of M is also a covering of Mσ . For all a ∈ Ag and m ∈ Mh,
we have ρ(a)m ∈ Mg+h, so

ρσ(a)m = g(σ )ρ(a)m ∈ Mg+h.

This gives a bijection between the coverings of M and the coverings of Mσ . Clearly the thin
coverings of M correspond to the thin coverings of Mσ .

Part (ii) is obvious.
To establish (iii), we define the isomorphism

θ :M =
⊕
g∈G

Mg → Mσ

by θ(m) = g(σ )m for m ∈ Mg . Let us check that θ commutes with the action of A. For a ∈ Ag ,
m ∈ Mh, we have

ρσ(a)θ(m) = g(σ )h(σ )ρ(a)m = θ
(
ρ(a)m

)
. �

Remark 1.7. The following partial converse to (iii) is true: if the modules M and Mσ are isomor-
phic for all σ in some finite cyclic subgroup Ĝ of Aut A, then M admits a grading by the group
G = HomK(Ĝ,K

×). (See Example 3.25 below.) However, if we replace the cyclic group Ĝ with
an arbitrary finite abelian group, the analogous statement is, in general, false (cf. Example 3.26).

2. Thin coverings of modules over a semisimple algebra

Recall that an associative algebra A is semisimple if each module for A is completely re-
ducible. In Theorem 2.2, we prove that if A is semisimple, 1 ∈ A−gAg for all nonzero Ag , and
each Ag is an irreducible left A0-module, then the isomorphism class of the graded-simple mod-
ule M̃ does not depend on the choice of the thin covering of M . The following lemma is well
known (cf. [10, Corollary 2.74], for instance):
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Lemma 2.1. Let A be a semisimple associative algebra. If A is graded by an abelian group G,
then its subalgebra A0 is also semisimple.

Theorem 2.2. Let A be a semisimple associative algebra graded by an abelian group G. Let
G ⊆ G be the set of g ∈ G for which the graded component Ag is nonzero. Assume that for every
g ∈ G, the following two properties hold:

(i) 1 ∈ A−gAg ,
(ii) Ag is irreducible as a left A0-module.

Let {Mg | g ∈ G} and {Ng | g ∈ G} be thin coverings for an irreducible A-module M . Then for
some � ∈ G, ⊕

g∈G

Mg
∼=

⊕
g∈G

N ′
g

as graded A-modules, where the graded component N ′
g := Ng+�.

Proof. If M = 0, there is nothing to prove. Otherwise, choose h ∈ G so that Nh 	= 0.
By Lemma 2.1, Nh has a direct complement U as an A0-submodule of M . Since {Mg | g ∈ G}

is a covering, there is a k ∈ G such that the projection

πk :Mk → Nh

(given by the splitting Mk ⊆ M = Nh ⊕ U ) is nonzero. Since πk is a nonzero homomorphism of
simple A0-modules (using Lemma 1.2), Mk

∼=A0 Nh by Schur’s Lemma.
Our next task is to show that ⊕

g∈G

Mg
∼= A⊗A0 Mk (2.3)

as graded A-modules, where the graded component in degree g on the right-hand side of (2.3) is

Ag−k ⊗A0 Mk.

We begin by showing that for all nonzero Ag , the A0-module Ag ⊗A0 Mk is irreducible.
If Ag 	= 0, then by (i),

0 	= Mk
∼= A0 ⊗A0 Mk

= 1 ⊗A0 Mk

⊆ A−g(Ag ⊗A0 Mk),

so Ag ⊗A0 Mk 	= 0. Let 0 	= ∑
i ai ⊗ mi ∈ Ag ⊗A0 Mk , and let m ∈ Mk be nonzero. Since Mk

is irreducible as a left A0-module (Lemma 1.2), there exist bi ∈ A0 such that bim = mi for all i.
Then

∑
ai ⊗ mi =

(∑
aibi

)
⊗ m.
i i
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Since Ag and Mk are simple left A0-modules,

A0

((∑
i

aibi

)
⊗ m

)
= Ag ⊗ m

= AgA0 ⊗ m

= Ag ⊗A0m

= Ag ⊗A0 Mk.

Thus Ag ⊗A0 Mk (and Ag ⊗A0 Nh) is an irreducible A0-module for all nonzero Ag .
Note that there is a well-defined graded map

φ :=
⊕
g∈G

φg :
⊕
g∈G

(Ag−k ⊗A0 Mk) →
⊕
g∈G

Mg

given by φg(a ⊗ m) = am ∈ Mg for all a ∈ Ag−k and m ∈ Mk. For any homogeneous a, b ∈ A
and m ∈ Mk ,

φ(ab ⊗ m) = abm = aφ(b ⊗ m),

so φ is a homomorphism of graded A-modules. For Ag−k 	= 0,

0 	= Mk = φ(1 ⊗A0 Mk)

⊆ φ(Ak−gAg−k ⊗A0 Mk)

= Ak−g(Ag−kMk)

⊆ Ak−gMg.

Thus Mg 	= 0, and the map

φg :Ag−k ⊗A0 Mk → Mg

is a nonzero homomorphism of simple A0-modules. Thus

Ag−k ⊗A0 Mk
∼=A0 Mg

for all g ∈ G, and A⊗A0 Mk is graded-isomorphic to
⊕

g∈G Mg .
Similar arguments show that the map

ψ :A⊗A0 Mk →A⊗A0 Nh,

a ⊗ m �→ a ⊗ πk(m)

is a well-defined graded isomorphism, where 0 	= m ∈ Mk and πk :Mk → Nh are as above, and
the graded component in degree g in A⊗A0 Nh is Ag−k ⊗A0 Nh.
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Repeating the arguments used to show that A ⊗A0 Mk
∼= ⊕

g∈G Mg as graded A-modules,
we see that

⊕
g∈GAg−k ⊗A0 Nh is graded-isomorphic to

⊕
g∈G N ′

g where N ′
g := Ng+(h−k) for

all g. Hence
⊕

g∈G Mg is graded-isomorphic to
⊕

g∈G N ′
g . �

While this method of associating graded modules M̃ with modules M is not functorial (it is
not even well defined if M is not simple), it is surjective in the sense that not only does every
graded module come from a thin covering, but (in the context of the previous theorem) every
graded-simple module comes from a thin covering of a simple module.

The first assertion (“graded modules come from thin coverings”) is trivial. Let M = ⊕
g∈G Mg

be a graded module of a graded associative algebra A = ⊕
g∈GAg . Forgetting the graded struc-

ture on M gives an (ungraded) A-module M with thin covering {Mg | g ∈ G}. The second claim
(“graded-simples come from simples”) is the following theorem. (See also Theorem 1.4.)

Theorem 2.4. Let M = ⊕
g∈G Mg be a graded-simple module for a semisimple associative al-

gebra A = ⊕
g∈GAg graded by an abelian group G. Assume that A satisfies the hypotheses of

Theorem 2.2. Then there is a simple module N for A so that N has a thin covering {Ng | g ∈ G}
with ⊕

g∈G

Ng
∼=

⊕
g∈G

Mg

as graded A-modules.

Proof. We may assume that M is nonzero. Let N be a simple (ungraded) A-submodule of M ,
and let N ′ be a simple A0-submodule of N . Since N is simple,

N = AN ′ =
∑
g∈G

AgN
′.

Clearly AgAhN
′ ⊆ Ag+hN

′, so {AgN
′ | g ∈ G} is a covering of N . Whenever Ag is nonzero,

the argument in the proof of Theorem 2.2 shows that the A0-modules AgN
′ are simple, as are

the nonzero components Ng in any thin subcovering {Ng | g ∈ G}.
Since N 	= 0, we may choose h ∈ G so that Nh 	= 0. Then Nh = A0Nh ⊆ AhN

′, so Ah 	= 0,
and Nh = A0Nh = AhN

′ by the simplicity of AhN
′ as an A0-module. Using the thinness of the

covering {Ng} and hypothesis (i) of Theorem 2.2, we see that

N ′ ⊇ N0 = A−hNh = A−hAhN
′ ⊇ N ′,

so N0 = N ′. Then Ng = AgN0 = AgN
′, so the covering {AgN | g ∈ G} is thin.

Since N is nonzero, the projection

πh :N → Mh

is nonzero for some h ∈ G. Choose h′ ∈ G so that the restriction of πh to Ah′N ′ is also nonzero.
For each g ∈ G, let

Cg = Ag+h′−hN
′.
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Then {Cg | g ∈ G} is a thin covering of N with the property that the projection map

πh :Ch → Mh

is nonzero. Since Cg = Ag−hCh and Mg = Ag−hMh, we see that Cg 	= 0 if and only if Mg 	= 0,
and the projection map πg :Cg → Mg is also nonzero in this case.

Let

π =
⊕
g∈G

πg :
⊕
g∈G

Cg →
⊕
g∈G

Mg,

where the restriction of π to Cg is the projection πg . If Cg (and consequently, Mg) is nonzero,
then πg is a nonzero homomorphism between the simple A0-modules Cg and Mg . Thus every
map πg is an A0-module isomorphism. Hence π is a bijection.

Finally, π is also a graded homomorphism since

π(an) = πg+g′(an) = aπg′(n) = aπ(n)

for all a ∈Ag and n ∈ Cg′ . Thus ⊕
g∈G

Cg
∼=

⊕
g∈G

Mg

as graded A-modules. �
3. Classification of thin coverings

In this section, we will assume that A is a (unital) associative algebra graded by a finite abelian
subgroup Ĝ of AutA, and M is a finite-dimensional simple A-module whose action is given by
the homomorphism ρ :A → EndK M.

In order to find the thin coverings of the module M , it is important to know for which σ ∈ Ĝ

the modules M and Mσ are isomorphic.

Lemma 3.1. Let Ĝ be a subgroup of AutA and let

Ĥ = {
σ ∈ Ĝ

∣∣ Mσ ∼= M as A-modules
}
.

Then

(i) Ĥ is a subgroup of Ĝ.
(ii) For σ1, σ2 ∈ Ĝ we have Mσ1 ∼= Mσ2 if and only if σ1σ

−1
2 ∈ Ĥ .

Proof. An isomorphism between A-modules M and Mσ is a map Tσ ∈ GL(M) satisfying

Tσ ρ(a)u = ρ
(
σ(a)

)
Tσ u,

for all a ∈A and u ∈ M . Equivalently,

ρ
(
σ(a)

) = Tσ ρ(a)T −1
σ .

The first part of the lemma follows from this relation.
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The fact that the modules Mσ1 and Mσ2 are isomorphic is equivalent to the existence of a T ∈
GL(M), such that ρ(σ1(a)) = Tρ(σ2(a))T −1. Letting b = σ2(a), we get that ρ(σ1σ

−1
2 (b)) =

Tρ(b)T −1, which means that σ1σ
−1
2 ∈ Ĥ . This establishes the second claim of the lemma. �

Consider the operator Tσ introduced in the above proof. If σ ∈ Ĥ has order m, then for all
a ∈A,

ρ(a) = ρ
(
σm(a)

) = T m
σ ρ(a)T −m

σ .

By Schur’s Lemma, T m
σ is a scalar operator, and we can normalize Tσ to get T m

σ = id. It is often
convenient to use this normalization of Tσ .

Recall that there is an equivalent description of gradings and coverings in terms of the dual
groups H = Hom(Ĥ ,K

×) and G = Hom(Ĝ,K
×) (cf. Section 1). Our strategy will be to de-

scribe the thin H -coverings of M , and then use them to determine the thin G-coverings. In order
to understand the structure of thin H -coverings, we need to better understand the H -grading on
A and on its image ρ(A) = EndK M . This can be done in two ways. One possibility is to apply
a theorem of Bahturin et al. [4, Theorem 6] on gradings of a matrix algebra. A second, equiv-
alent approach, is to use the classification of cyclotomic quantum tori [11]. (See also [1].) We
will follow the second approach here, since it can also be adapted for the infinite-dimensional
(quasifinite) set-up.

Let us recall the definition of a quantum torus. A quantum torus is the unital associative
algebra Rq = Rq〈t±1

1 , . . . , t±1
r 〉, whose generators ti are subject to the defining relations

ti tj = qij tj ti , i, j = 1, . . . , r,

where q = (qij ) is an r × r matrix satisfying qii = 1, qij = q−1
ji ∈ K.

We say that the quantum torus Rq is cyclotomic if all the qij are roots of 1.

Lemma 3.2. Let η1, . . . , ηr be a set of generators of the group Ĥ of orders s1, . . . , sr , respec-
tively, and let T1, . . . , Tr be invertible operators on M satisfying

ρ
(
ηj (a)

) = Tjρ(a)T −1
j , for all a ∈A, j = 1, . . . , r. (3.3)

Then the map ti �→ Ti defines a representation on M of a cyclotomic quantum torus
Rq〈t±1

1 , . . . , t±1
r 〉, with

q
gcd(si ,sj )

ij = 1.

Proof. The automorphisms ηi and ηj commute. Thus for all a ∈ A,

TiTjρ(a)T −1
j T −1

i = TjTiρ(a)T −1
i T −1

j ,

or equivalently,

T −1T −1TiTjρ(a) = ρ(a)T −1T −1TiTj .
i j i j
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However, by Schur’s Lemma, the centralizer of a finite-dimensional simple module is a multiple
of the identity map, so

TiTj = qijTjTi

for some nonzero qij ∈ K.
Moreover, the relation η

si
i = 1 implies that T

si
i is a multiple of the identity. Since T

si
i Tj =

q
si
ij TjT

si
i , we conclude that

q
si
ij = 1.

Likewise, q
sj
ij = 1, so q

gcd(si ,sj )

ij = 1. �
We will need elements of the representation theory of cyclotomic quantum tori. We call an

Rq -module U diagonalizable if every generator ti is diagonalizable on U . Whenever Rq is non-
commutative, these operators clearly cannot be diagonal with respect to the same basis. Let C
be the category of finite-dimensional diagonalizable Rq -modules. Since T

si
i is a multiple of the

identity on the module M in Lemma 3.2, we see that M belongs to Category C.

Lemma 3.4. Let Rq be a cyclotomic quantum torus, and let U be a module in Category C. Then
for any m = (m1, . . . ,mr) ∈ Z

r , the monomial tm = t
m1
1 · · · tmr

r is diagonalizable on U .

Proof. Choose a positive integer b such that qb
ij = 1 for all i, j = 1, . . . , r . Then the elements t±b

i

belong to the center of Rq . Since each of them is diagonalizable on U , they are simultaneously
diagonalizable. Moreover, (tm)b belongs to the subalgebra generated by t±b

1 , . . . , t±b
r , and hence

diagonalizable. This implies that tm is diagonalizable as well. �
Proposition 3.5. Every module in Category C for the cyclotomic quantum torus Rq =
Rq〈t±1

1 , . . . , t±1
r 〉 is completely reducible, and all simple Rq -modules in Category C have the

same dimension. More explicitly, fix an arbitrary simple Rq -module N in C. Then all other sim-
ple Rq -modules in C can be obtained from N as twists by the rescaling automorphisms of Rq :

tj �→ αj tj , j = 1, . . . , r,

where α1, . . . , αr ∈ K
×.

Proof. To prove this proposition, we will put Rq in a normal form, using the classification of
cyclotomic quantum tori [11]. (See also [1].) If we make a change of variables in a quantum torus
using a matrix (aij ) ∈ GLr (Z):

t̄i = t
ai1
1 t

ai2
2 . . . tair

r ,

we will get another quantum torus with a new matrix q̄ij . Note that rescaling automorphisms
with respect to t1, . . . , tr correspond to rescaling automorphisms in t̄1, . . . , t̄r . The classifica-
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tion theorem states that by means of such a change of variables, a cyclotomic quantum torus
Rq〈t±1

1 , . . . , t±1
r 〉 can be brought to the normal form

Rζ1

〈
x±1

1 , y±1
1

〉 ⊗ · · · ⊗Rζ�

〈
x±1
� , y±1

�

〉 ⊗ K
[
z±1

2�+1, . . . , z
±1
r

]
, (3.6)

where the first � tensor factors are rank two cyclotomic quantum tori, and the last tensor factor is
a commutative algebra of Laurent polynomials. By Lemma 3.4, an Rq -module’s membership in
Category C is independent of the choice of the generators t±1

i of Rq .
The rank two quantum tori Rζ = Rζ 〈x±1, y±1〉 that appear in (3.6) have the following defin-

ing relation

xy = ζyx,

where ζ is a primitive d th root of unity. The centre of Rζ is generated by x±d and y±d . Hence
the centre of Rq is the Laurent polynomial algebra:

Z(Rq) = K
[
x

±d1
1 , y

±d1
1 , . . . , x

±d�

� , y
±d�

� , z±1
2�+1, . . . , z

±1
r

]
.

Let U be a finite-dimensional diagonalizable Rq -module. Since the action of Z(Rq) on U is
diagonalizable, we may decompose U into the direct sum of Rq -submodules corresponding to
various central characters χ : Z(Rq) → K:

U =
⊕
χ

Uχ .

Note that a central character χ is determined by its (nonzero) values χ(x
di

i ), χ(y
di

i ), and χ(zi).
Hence, by means of the rescaling automorphisms of Rq , we may twist a module with central
character χ into a module with any other central character.

We will show that, up to isomorphism, there exists a unique finite-dimensional simple Rq -
module for each central character.

In order to prove that the module U is completely reducible, it is enough to consider its single
component Uχ . This component is a module for the quotient Rχ

q of Rq by the central ideal:

Rχ
q = Rq/

〈
z − χ(z)1

∣∣ z ∈ Z(Rq)
〉
.

The algebra Rχ
q decomposes into the tensor product:

Rχ
q

∼= Rχ
ζ1

〈
x±1

1 , y±1
1

〉 ⊗ · · · ⊗Rχ
ζ�

〈
x±1
� , y±1

�

〉
.

The rank two factors here have the following structure:

Rχ
ζ = Rζ

〈
x±1, y±1〉/〈

xd − χ
(
xd

)
1, yd − χ

(
yd

)
1
〉
.

In fact, Rχ
ζ is isomorphic to the matrix algebra Md(K) under the following isomorphism:
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x �−→ (
χ

(
xd

))1/d

⎛
⎜⎜⎝

1 0 · · 0
0 ζ · · 0
...

...
. . .

...

0 0 · · ζ d−1

⎞
⎟⎟⎠ , and

y �−→

⎛
⎜⎜⎜⎜⎝

0 0 · 0 χ(yd)

1 0 · 0 0
0 1 · 0 0
...

...
. . .

...
...

0 0 · 1 0

⎞
⎟⎟⎟⎟⎠ . (3.7)

This implies that the algebra Rχ
q is isomorphic to the matrix algebra of rank d1 · · ·d�. It is

well known that the matrix algebra is semisimple and has a unique, up to isomorphism, finite-
dimensional simple module of dimension equal to the rank of the matrix algebra. �

The following corollary is an immediate consequence of Proposition 3.5.

Corollary 3.8. Let N be a simple module in Category C for the cyclotomic quantum torus Rq =
Rq〈t±1

1 , . . . , t±1
r 〉. Then every module M in Category C may be written as a finite sum

M ∼= N ⊗
( ⊕

α∈(K×)r

V α

)
, (3.9)

where the action of Rq on N ⊗ V α is given by the formula

ti
(
u ⊗ vα

) = ti (u) ⊗ αiv
α, for u ∈ N, vα ∈ V α. (3.10)

Proof. If we take a one-dimensional space V α , then N ⊗ V α is a simple Rq -module, which is
a twist of N by the rescaling automorphism of Rq given by α ∈ (K×)r . Thus the decomposition
(3.9) is just an isotypic decomposition of the module M . �

We now look at the representation of Rq described in Lemma 3.2. We show that in this
module, the elements α appearing in the isotypic decomposition of M are not arbitrary, but
belong to the group H .

Lemma 3.11. Let M be a finite-dimensional simple module for an H -graded algebra A. Suppose
that T1, . . . , Tr are operators on M that satisfy (3.3) and define the action of a cyclotomic quan-
tum torus Rq on M . Let N be a simple Rq -submodule of M . Then the isotypic decomposition
(3.9) for M can be written as

M ∼= N ⊗
( ⊕

h∈H

V h

)
, (3.12)

where the action of Rq on N ⊗ V h is given by the formula

ti
(
u ⊗ vh

) = ti (u) ⊗ h(ηi)v
h, for u ∈ N, vh ∈ V h. (3.13)
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Proof. The H -grading of the algebra A yields an H -grading of the matrix algebra

EndK M = ρ(A) =
⊕
h∈H

ρ(Ah), (3.14)

where the endomorphisms in ρ(Ah) satisfy

Tjρ(a)T −1
j = ρ

(
ηj (a)

) = h(ηj )ρ(a). (3.15)

This can be viewed as an eigenspace decomposition of EndK M with respect to conjugations by
the Tj ’s.

On the other hand, we can construct such an eigenspace decomposition using the isotypic
decomposition (3.9). In particular, let N ⊗ V 0 be the isotypic component of N in M , and let
N ⊗ V α be another non-trivial component in (3.9). We claim that idN ⊗HomK(V 0,V α) can
be viewed as the eigenspace (with eigenvalue αj ) for the conjugation action of Tj on EndK M .
Indeed, extend S ∈ HomK(V 0,V α) to EndK(

⊕
β V β) by setting S(V β) = 0 when β 	= 0. Then

for n ∈ N and v ∈ V 0, we have

Tj (idN ⊗ S)T −1
j (n ⊗ v) = Tj (idN ⊗ S)

(
T −1

j (n) ⊗ v
)

= Tj

(
T −1

j (n) ⊗ Sv
)

= αjn ⊗ Sv.

Thus Tj (idN ⊗ S)T −1
j = αj (idN ⊗ S). By (3.14) and (3.15), all eigenvalues of the conjugation

action of Tj on EndK M correspond to elements of H , so there exists h ∈ H such that αj = h(ηj )

for all j = 1, . . . , r . �
Next we explicitly describe the eigenspace decomposition of EndK M . In order to do this, we

introduce the group homomorphism

γ : Zr → H,

defined by the formula

γ (a)
(
ηb) =

r∏
i,j=1

q
aibj

ij , for a,b ∈ Z
r .

Here we use the multiindex notation ηb = η
b1
1 . . . η

br
r and Tb = T

b1
1 . . . T

br
r . The fact that

γ (a′ + a′′) = γ (a′) + γ (a′′) is obvious (see (1.5) for the definition of the additive notation),
so all we need to verify is that this map is well defined. That is, we should check that
γ (a)(ηb′

) = γ (a)(ηb′′
) whenever ηb′ = ηb′′

in H .
Taking b = b′ − b′′, it is enough to show that γ (a)(ηb) = 1 whenever ηb = 1 in H . However,

TaTb = γ (a)
(
ηb)

TbTa.

If ηb = 1, then Tb is a multiple of the identity and thus commutes with Ta. This implies that
γ (a)(ηb) = 1.
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Note that the kernel of γ corresponds to the centre of the quantum torus Rq :

Z(Rq) = Span
{
ta ∣∣ a ∈ kerγ

}
.

By Schur’s Lemma, the centre Z(Rq) acts on a finite-dimensional simple Rq -module N by
scalar operators.

The following proposition is essentially equivalent to the classification of gradings on the
matrix algebra [4, Theorem 6].

Proposition 3.16. Let M = N ⊗ (
⊕

p∈H V p) be the isotypic decomposition of M as an Rq -
module. Then the space EndK M decomposes into a direct sum of eigenspaces with respect to
conjugation by the operators Tj , j = 1, . . . , r :

EndK M =
⊕
h∈H

ρ(Ah),

where

ρ(Ah) =
∑
a∈Zr

Ta ⊗
( ⊕

p∈H

HomK

(
V p,V p+h+γ (a)

))
,

is the eigenspace with eigenvalue h(ηj ) with respect to conjugation by Tj .

Proof. It is easy to see that the subspaces

Ta ⊗
( ⊕

p∈H

HomK

(
V p,V p+h+γ (a)

))

span EndK M = EndK N ⊗ EndK(
⊕

h∈H V h). It remains only to verify that these subspaces are
the eigenspaces for the conjugation by Tj ’s.

Let S ∈ HomK(V p,V p+h+γ (a)), n ∈ N , v ∈ V p . Then

Tj

(
Ta ⊗ S

)
T −1

j (n ⊗ v) = Tj

(
Ta ⊗ S

)(
T −1

j (n) ⊗ p−1(ηj )v
)

= Tj

(
TaT −1

j (n) ⊗ p−1(ηj )Sv
)

= p(ηj )h(ηj )γ (a)(ηj )p
−1(ηj )Tj TaT −1

j (n) ⊗ Sv

= h(ηj )
(
Ta ⊗ S

)
(n ⊗ v). �

Using this result, we can now describe the thin H -coverings of the module M .

Theorem 3.17. Let M be a finite-dimensional simple A-module, and let Ĥ be a finite abelian
subgroup of AutA, such that the twisted modules Mη are isomorphic to M for all η ∈ Ĥ . Let

M =
⊕ (

N ⊗ V h
)

h∈H
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be the isotypic decomposition of M with respect to the action of the cyclotomic quantum torus
Rq given by (3.13). Then up to equivalence, thin H -coverings of M are parametrized by one-
dimensional subspaces in N . Namely, let n ∈ N , n 	= 0. Define

Mh =
∑
a∈Zr

Ta(n) ⊗ V h+γ (a). (3.18)

Then {Mh | h ∈ H } is a thin H -covering of M , and every thin H -covering of M is equivalent to
a covering of this type.

Remark 3.19. The sum in (3.18) may be replaced with a finite sum taken over a set of coset
representatives in Z

r/kerγ .

Proof. By Proposition 3.16,

ρ(Am) =
∑
b∈Zr

Tb ⊗
( ⊕

p∈H

HomK

(
V p,V p+m+γ (b)

))

for any m ∈ H . Thus

ρ(Am)Mh =
∑

a,b∈Zr

TbTa(n) ⊗ V h+m+γ (a)+γ (b) (3.20)

=
∑
c∈Zr

Tc(n) ⊗ V h+m+γ (c) (3.21)

= Mh+m. (3.22)

The subspaces Mh clearly span M :

∑
h∈H

Mh =
∑
h∈H

∑
a∈Zr

Ta(n) ⊗ V h+γ (a)

=
( ∑

a∈Zr

Ta(n)

)
⊗

( ⊕
h∈H

V h

)

= N ⊗
( ⊕

h∈H

V h

)

= M.

Thus {Mh | h ∈ H } is an H -covering of M .
We will use Lemma 1.2 to show that this covering is thin. All that remains is to determine

the simple ρ(A0)-submodules of M . Let L ⊆ M be a simple ρ(A0)-submodule, and let u be a
nonzero vector in L. Fix a basis {vhj | 1 � j � dimV h} for each of the spaces V h. Expand u

according to this basis:

u =
∑

nhj ⊗ vhj with nhj ∈ N.
h,j
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Since the algebra ρ(A0) contains a subalgebra

idN ⊗
( ⊕

h∈H

EndK

(
V h

))
,

we see that L contains nhj ⊗ vhj for all h, j . Thus without loss of generality, we may assume
that u = n ⊗ v, where n ∈ N , v ∈ V h. Since

ρ(A0) =
∑
a∈Zr

Ta ⊗
( ⊕

p∈H

HomK

(
V p,V p+γ (a)

))
,

L contains the subspace

Uh(n) =
∑
a∈Zr

Ta(n) ⊗ V h+γ (a). (3.23)

The subspace Uh(n) is ρ(A0)-invariant, and hence every simple ρ(A0)-submodule in M coin-
cides with Uh(n) for some n ∈ N , h ∈ H , n 	= 0, V h 	= 0.

Let us show that Uh(n) is, in fact, a simple ρ(A0)-module for all n ∈ N , h ∈ H such that
n 	= 0 and V h 	= 0. Fix b ∈ Z

r . The intersection of Uh(n) with N ⊗ V h+γ (b) is

∑
a∈kerγ

TbTa(n) ⊗ V h+γ (b).

The centre Z(Rq) acts on the simple Rq -module N by scalars. Thus for all a ∈ kerγ , Ta(n)

is a multiple of n, so the intersection of Uh(n) with N ⊗ V h+γ (b) is Tb(n) ⊗ V h+γ (b). By the
argument given above, every nonzero vector in Uh(n) generates Uh(n). Therefore the spaces
Uh(n) with V h 	= 0, n 	= 0, exhaust all the simple ρ(A0)-submodules in M .

This proves that the components Mh of the H -covering (3.18) are simple ρ(A0)-modules
whenever Mh 	= 0. Thus for any nonzero m ∈ Mh, we have

ρ(Ag−h)m ⊇ ρ(Ag−h)ρ(A0)m = ρ(Ag−h)Mh = Mg,

using (3.20). Hence the covering {Mh | h ∈ H } is thin by Lemma 1.2.
Since the described components of the thin coverings exhaust all the simple ρ(A0)-

submodules in M , we obtain that up to equivalence, these are all the thin H -coverings of M . �
Corollary 3.24. Let M be a finite-dimensional simple A-module, and let Ĥ be a finite abelian
subgroup of Aut A, such that the twisted modules Mη are isomorphic to M for all η ∈ Ĥ . Let
{Mh | h ∈ H } and {M ′

h | h ∈ H } be two thin coverings of M . Then for some g ∈ H , the graded-
simple modules

M̃ =
⊕
h∈H

Mh and M̃ ′ =
⊕
h∈H

M ′
h+g

are isomorphic as graded A-modules.
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Proof. Clearly, we are allowed to replace the thin coverings {Mh} and {M ′
h} with any equivalent

thin coverings. By Theorem 3.17, we may assume that for all h ∈ H ,

M̃h =
∑
a∈Zr

Ta(n) ⊗ V h+γ (a) and M̃ ′
h =

∑
a∈Zr

Ta(n′) ⊗ V h+γ (a)

for some nonzero n,n′ ∈ N .
We construct a grading-preserving isomorphism ψ : M̃ → M̃ ′ defined on M̃h by

ψ
(
Ta(n) ⊗ v

) = Ta(n′) ⊗ v

for all h ∈ H , a ∈ Z
r , v ∈ V h+γ (a). Using Proposition 3.16, it is easy to see that ψ commutes

with the action of A. �
We now consider some basic examples of thin H -coverings.

Example 3.25. Suppose A is graded by a finite cyclic group Ĥ = 〈η〉 ⊆ AutA, and suppose that
there is a (normalized) isomorphism T :M → Mη . Then, up to equivalence, there is a unique
thin H = Hom(Ĥ ,K×)-covering {Mh} of M , where Mh is the eigenspace

Mh = {
u ∈ M

∣∣ T u = h(η)u
}
.

In this case, the module M admits an H -grading: M = ⊕
h∈H Mh.

Proof. Since the sum M = ∑
h∈H Mh is direct, the thinness of the covering {Mh} in Exam-

ple 3.25 is obvious. However, even in this simplest of examples, the uniqueness of the thin
covering requires Theorem 3.17. Note that, in this case, the quantum torus Rq is just the al-
gebra of Laurent polynomials in a single variable, so dimN = 1, and M may be identified with⊕

h∈H Vh. �
From the statement of Theorem 3.17, it is clear that uniqueness of thin coverings is the excep-

tion, rather than the rule, as is illustrated by the next pair of examples.

Example 3.26. Let A = Mn(K) be the associative algebra of n×n matrices. If A = ⊕
g∈GAg is

any grading satisfying the hypotheses of Theorem 2.2, then by Theorem 2.4, every graded-simple
module for A comes from a thin covering of a simple module for A. By the Artin–Wedderburn
Theorem, there is only one simple module for A; and by Theorem 2.2, there is only one graded-
simple module (up to graded-isomorphism) that can come from the thin coverings of this module.
Therefore (up to graded isomorphism), A has only one graded-simple module.

In spite of the uniqueness of the graded-simple module for A, the thin coverings for A are far
from unique. For example, A has a Zn × Zn-grading with

A(a,b) := Span
{
EaFb

}
,
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where

E :=

⎛
⎜⎜⎝

1 0 · · 0
0 ζ · · 0
...

...
. . .

...

0 0 · · ζ n−1

⎞
⎟⎟⎠ , F :=

⎛
⎜⎜⎜⎜⎝

0 0 · 0 1
1 0 · 0 0
0 1 · 0 0
...

...
. . .

...
...

0 0 · 1 0

⎞
⎟⎟⎟⎟⎠ ,

ζ is a primitive nth root of unity, and a (respectively, b) is the image of a ∈ Z (respectively,
b ∈ Z) under the canonical homomorphism Z → Zn = Z/nZ.

Then the graded ring A satisfies conditions (i) and (ii) of Theorem 2.2, so any thin covering
of the natural module M = K

n induces the same (unique) graded-simple module of A (relative
to the grading group G = Zn ×Zn). Let v be a nonzero vector in M . Then since M is irreducible,

Mg := Agv

defines a covering of M . Let {Ng | g ∈ G} be another covering of M with Ng ⊆ Mg for all g ∈ G.
Then Nh 	= 0 for some h ∈ G, so Ng = Ag−h.Nh 	= 0 for all g ∈ G, since the one-dimensional
space Ag−h is spanned by the invertible matrix EaFb (where g − h = (a, b)). Moreover, Ng

is a nonzero subspace of the one-dimensional space Mg , so Ng = Mg for all g ∈ G. Thus the
covering {Mg} is thin.

Any choice of v results in a thin covering consisting of n2 one-dimensional subspaces Mg

of M . The space M0 is the span of the vector v. Since there are infinitely many distinct one-
dimensional subspaces we could choose for M0, there are infinitely many non-equivalent thin
coverings of M .

More generally, using Theorem 3.17, we have the following example.

Example 3.27. Suppose Ĥ is generated by two automorphisms η1, η2 of order d . Let T1, T2 be
isomorphisms from M to Mη1 , Mη2 , respectively. Assume that these operators satisfy the relation

T1T2 = ζT2T1,

where ζ is a primitive d th root of unity. Consider the isotypic decomposition

M = N ⊗
( ⊕

h∈H

V h

)

of M as an Rζ -module. We obtain from Theorem 3.17 that the thin H -coverings are parametrized
by one-dimensional subspaces in a d-dimensional space N . For any nonzero vector n ∈ N we
get a thin H -covering with

Mh =
∑
a∈Z2

Ta(n) ⊗ V h+γ (a).

Up to equivalence, these are all the thin H -coverings of M .
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We are finally ready to describe the thin G-coverings of M in the general case—that is, when
the twists of M by automorphisms in Ĝ are not necessarily isomorphic to M . The following
theorem shows that G-coverings of M can be described via H -coverings, where Ĥ is the sub-
group of Ĝ defined in Lemma 3.1. In order to distinguish between G-coverings and H -coverings
(respectively gradings), we will add an appropriate superscript to our notation.

The inclusion Ĥ ⊆ Ĝ yields a natural epimorphism

ψ : Hom
(
Ĝ,K

×) → Hom
(
Ĥ ,K

×)
by restriction of the maps to Ĥ .

Theorem 3.28. Let M be a finite-dimensional simple A-module, and let Ĝ be a finite abelian
subgroup of AutA. Let Ĥ be its subgroup defined in Lemma 3.1. Then

(i) ρ(AG
g ) = ρ(AH

ψ(g)) for all g ∈ G.
(ii) There is a bijective correspondence between thin G-coverings of M and thin H -coverings

of M . Given a thin H -covering {MH
h } we get a thin G-covering {MG

g } with MG
g = MH

ψ(g).
Every thin G-covering is of this form.

(iii) All graded-simple A-modules associated with various thin coverings of M (as in Theo-
rem 1.3) are isomorphic (up to shifts in the gradings on the modules).

Proof. Let τ1, . . . , τ� be representatives of the cosets of Ĥ in Ĝ, where � = |Ĝ|/|Ĥ |. By
Lemma 3.1, the modules Mτ1 , . . . ,Mτ� are pairwise non-isomorphic. Consider the represen-
tation ρ̂ of A on

M̂ = Mτ1 ⊕ · · · ⊕ Mτ�.

An element a ∈AG
g acts on M̂ by

ρ̂(a) = (
g(τ1)ρ(a), . . . , g(τ�)ρ(a)

)
.

Thus dim ρ̂(AG
g ) = dimρ(AG

g ). Moreover, by the definition of the map ψ , AG
g ⊆ AH

ψ(g)
, so

ρ(AG
g ) ⊆ ρ(AH

ψ(g)
). Hence

dim ρ̂(A) �
∑
g∈G

dim ρ̂
(
AG

g

)
(3.29)

=
∑
g∈G

dimρ
(
AG

g

)
(3.30)

�
∑
g∈G

dimρ
(
AH

ψ(g)

)
(3.31)

= (|G|/|H |) ∑
h∈H

dimρ
(
AH

h

)
(3.32)

� �dim EndK M. (3.33)
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However, by the density theorem,

ρ̂(A) = EndK Mτ1 ⊕ · · · ⊕ EndK Mτ�.

This implies that all the inequalities in (3.29)–(3.33) are in fact equalities, and in particular,

dimρ
(
AG

g

) = dimρ
(
AH

ψ(g)

)
.

This completes the proof of Part (i) of the theorem.
To prove the second part, we note that ρ(AG

0 ) = ρ(AH
0 ). This means that the simple ρ(AG

0 )-
submodules in M are the simple ρ(AH

0 )-submodules. Let {MG
g } be a thin G-covering of M .

Without loss of generality, we may assume that MG
0 	= 0. Then by Lemma 1.2, MG

0 is a simple
ρ(AH

0 )-submodule. We have seen in the proof of Theorem 3.17 that every simple ρ(AH
0 )-

submodule in M occurs as a component of a thin H -covering. Since we can always replace
such a covering by an equivalent thin covering, we see that every simple ρ(AH

0 )-submodule in
M occurs as the 0-component of a thin H -covering. Thus there exists a thin H -covering {MH

h },
such that MH

0 = MG
0 . Moreover, MH

h = ρ(AH
h )MH

0 for all h ∈ H . By Lemma 1.2 and Part (i),
we get that

MG
g = ρ

(
AG

g

)
MG

0 = ρ
(
AH

ψ(g)

)
MH

0 = MH
ψ(g).

Thus every thin G-covering comes from a thin H -covering. Conversely, if we construct a G-
covering from a thin H -covering by taking MG

g = MH
ψ(g), then Lemma 1.2 implies that this

G-covering is thin.
Part (iii) follows from (i), (ii), and Corollary 3.24. �
When Ĝ is finite cyclic, Theorem 3.28 reduces to the following eigenspace decomposition.

Example 3.34. Suppose Ĝ is a finite cyclic group generated by η ∈ AutA, Ĥ ⊆ Ĝ is generated
by ηs , and T :M → Mηs

is a (normalized) module isomorphism. Then (up to equivalence) M

has a unique thin G-covering given by

Mg = {
u ∈ M

∣∣ T u = g(η)su
}
.

4. Thin coverings of quasifinite modules

In this section we generalize our results to an infinite-dimensional setting. We will assume
that the algebra A has an additional grading by an abelian group Z,

A =
⊕
k∈Z

Ak,

and that M is a Z-graded A-module,

M =
⊕
n∈Z

Mn,

with finite-dimensional graded components Mn. Such modules are called quasifinite.
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Note that M may be infinite-dimensional, since we allow Z to be infinite. We are primarily
interested in the case when Z = Z, but our results hold for arbitrary abelian grading groups.

We will work in the categories of Z-graded algebras and modules and consider only those
automorphisms σ which preserve the Z-grading. That is,

σ(Ak) = Ak.

Let M be a quasifinite graded-simple module (with no proper Z-graded submodules). In this
section, we show that Theorems 3.17 and 3.28 still hold in this more general setting. We start
with some obvious adjustments to the definition of a thin G-covering.

Let Ĝ be a finite abelian group of (Z-grading-preserving) automorphisms of A. Then A is
graded by the group G = Hom(Ĝ,K

×), and the two gradings are compatible:

A =
⊕

(k,g)∈Z×G

Ak,g.

A covering of M is a set of Z-graded subspaces {Mg | g ∈ G} of M that span M and satisfy

ρ(Ag)Mh ⊆ Mg+h, for all g,h ∈ G. (4.1)

As before, the set of coverings is partially ordered, and the minimal elements of the poset of
coverings are called thin coverings.

For all n, k ∈ Z, let ρnk be the restriction of the action of Ak−n to Mn:

ρnk :Ak−n → HomK(Mn,Mk).

It is easy to see that G-coverings can be defined in terms of ρnk . Indeed, condition (4.1) can be
replaced by

ρnk(Ak−n,h)Mn,g ⊆ Mk,g+h,

and “local” information about ρnk(Ak−n) ⊆ HomK(Mn,Mk) can substitute for “global” informa-
tion about ρ(A) ⊆ EndK M. The proofs of the previous section are essentially based on Schur’s
Lemma and the Jacobson Density Theorem. We will use the quasifinite version of the density
theorem presented in Appendix A.

Remark 4.2. The assumption on the existence of a maximal submodule made in Theorem 1.4
holds for the quasifinite modules described above.

Proof. Let M be a Z-graded quasifinite module, which also has a compatible G-grading and is
graded-simple (has no proper (Z × G)-homogeneous submodules). Fix n ∈ Z such that Mn 	= 0.
Note that by Zorn’s Lemma, M has a maximal Z-graded submodule. Indeed, if U is a proper
Z-graded submodule in M , then Un 	= Mn. Otherwise, if Un = Mn, then the space Un is ho-
mogeneous with respect to both Z and G and will generate the whole module M since it is
graded-simple.

Now if we consider an increasing chain of Z-graded submodules in M ,

· · · ⊆ U(i) ⊆ U(i+1) ⊆ · · · ,
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the corresponding chain of components

· · · ⊆ U(i)
n ⊆ U(i+1)

n ⊆ · · · ⊆ Mn

will stabilize, since dimMn < ∞. Thus the union
⋃

i U
(i) is a Z-graded submodule in M , with

nth component properly contained in Mn. Applying Zorn’s Lemma, we conclude that the par-
tially ordered set of Z-graded proper submodules of M contains a maximal element. �

Our main results about quasifinite modules, Theorems 4.3 and 4.4, can be proven using the
same arguments as for the finite case. Only the proof of Theorem 4.4(i) requires non-trivial
modification, since the corresponding finite result, Theorem 3.28(i), used a dimension argument.
We write down the details of the modified proof below, leaving the other proofs as straightforward
exercises to the reader.

Theorem 4.3. Let M be a Z-graded-simple quasifinite module for a Z-graded algebra A. Let Ĥ

be a finite abelian group of automorphisms of A preserving the Z-grading, such that there exist
Z-grading-preserving isomorphisms Tη between M and Mη for all η ∈ Ĥ . Let

M =
⊕
h∈H

N ⊗ V h

be the isotypic decomposition of M with respect to the action of the cyclotomic quantum torus
Rq given by the operators Tη. In this decomposition, each subspace V h is Z-graded. Then up
to equivalence, thin H -coverings of M are parametrized by one-dimensional subspaces in N .
Namely, for n ∈ N , n 	= 0, define

Mh =
∑
a∈Zr

Ta(n) ⊗ V h+γ (a).

Then {Mh | h ∈ H } is a thin H -covering of M , and every thin H -covering of M is equivalent to
a covering of this type.

Theorem 4.4. Let M be a Z-graded-simple quasifinite module for a Z-graded algebra A. Let Ĝ

be a finite abelian group of automorphisms of A preserving the Z-grading. Let Ĥ be its subgroup
defined in Lemma 3.1. Then

(i) ρnk(AG
k−n,g) = ρnk(AH

k−n,ψ(g)
) for all g ∈ G.

(ii) There is a bijective correspondence between thin G-coverings of M and thin H -coverings
of M . Given a thin H -covering {MH

h } we get a thin G-covering {MG
g } with MG

g := MH
ψ(g).

Every thin G-covering of M is of this form.
(iii) All graded-simple quasifinite A-modules associated with various thin coverings of M (as

in Theorem 1.3) are isomorphic (up to shifts in the G-gradings on the modules).

Proof. We will give a proof for Part (i) of the theorem. Parts (ii) and (iii) may be proven analo-
gously to Theorem 3.28.

Let τ1, . . . , τ� be representatives of the cosets of Ĥ in Ĝ, where � = |Ĝ|/|Ĥ |. The modules
Mτ1 , . . . ,Mτ� do not admit (Z-grading-preserving) isomorphisms between any distinct pair of
them.
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Consider the representation ρ̂ of A on

M̂ = Mτ1 ⊕ · · · ⊕ Mτ�.

For n, k ∈ Z, let ρ̂nk be the restriction of ρ̂(Ak−n) to M̂n = M
τ1
n ⊕ · · · ⊕ M

τ�
n :

ρ̂nk :Ak−n → HomK(M̂n, M̂k).

An element a ∈AG
k−n,g acts on M̂n by

ρ̂nk(a) = (
g(τ1)ρnk(a), . . . , g(τk)ρnk(a)

)
.

Thus dim ρ̂nk(AG
k−n,g) = dimρnk(AG

k−n,g). Hence

dim ρ̂nk(Ak−n) �
∑
g∈G

dim ρ̂nk

(
AG

k−n,g

) =
∑
g∈G

dimρnk

(
AG

k−n,g

)

�
∑
g∈G

dimρnk

(
AH

k−n,ψ(g)

) = (|G|/|H |) ∑
h∈H

dimρnk

(
AH

k−n,h

)
,

using the fact that AG
k−n,g ⊆ AH

k−n,ψ(g) by the definition of ψ . The space ρnk(Ak−n) decomposes
into a direct sum

ρnk(Ak−n) =
⊕
h∈H

ρnk

(
AH

k−n,h

)

(cf. Proposition 3.16), so

(|G|/|H |) ∑
h∈H

dimρnk

(
AH

n−k,h

) = �dimρnk

(
Ak−n

)
.

But by the Quasifinite Density Theorem (A.2),

ρnk(Ak−n) = HomK(Mn,Mk)

and

ρ̂nk(Ak−n) =
�⊕

j=1

HomK

(
M

τj
n ,M

τj

k

)
,

so dim ρ̂nk(An−k) = �dimρnk(An−k).
Therefore all the inequalities in (4.5) are in fact equalities, and in particular,

dimρnk

(
AG

k−n,g

) = dimρnk

(
AH

k−n,ψ(g)

)
.

This completes the proof of Part (i). �
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5. Application to multiloop Lie algebras

Let Ĝ be a finite abelian group of grading-preserving automorphisms of a Z-graded complex
Lie algebra g. Consider the dual group G = Hom(Ĝ,K

×). The Lie algebra g is then graded by
the group Z ×G. By choosing a set of N generators of G, we get an epimorphism Z

N → G. We
will denote by a the image of an element a ∈ Z

N under this map.
Consider the multiloop Lie algebra L(g, Ĝ):

L(g, Ĝ) =
⊕

a∈ZN

ga ⊗ ta,

which is a Lie subalgebra of g ⊗ K[t±1
1 , . . . , t±1

N ].
Let M be a quasifinite Z-graded-simple module for g. Using Theorem 4.4, we can construct

a thin G-covering {Mg} of M . Then the space

⊕
a∈ZN

Ma ⊗ ta

becomes a (Z × Z
N)-graded-simple module for the multiloop algebra L(g, Ĝ).
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Appendix A

In this appendix, we prove the quasifinite density theorem used in the proof of Theorem 4.4.
Let M be a Z-graded module over a Z-graded associative ring R. We call such a module

graded-semisimple if it is a direct sum of graded-simple modules. Consider the set of endomor-
phisms of M that shift the grading by an element p ∈ Z:

(EndM)p = {X ∈ EndM | XMn ⊆ Mn+p for all n ∈ Z}.

In this notation, (EndM)0 is the ring of grading-preserving endomorphisms of M .
The following is a graded version of the usual density theorem of Jacobson and Chevalley

(cf. [9, Theorem 4.11.16], for instance):

Theorem A.1 (Graded Density Theorem). Let M be a Z-graded-semisimple module over a Z-
graded associative ring R. Let K = (EndR M)0 and let E = ⊕

p∈Z(EndK M)p . Suppose that
{x1, . . . , xm} ⊆ Ms for some s ∈ Z. Then for every f ∈ E there exists an element r ∈ R such that
rxj = f (xj ) for j = 1,2, . . . ,m.

Proof. The argument given in [9] is valid in the graded set-up as well. �
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Theorem A.2 (Quasifinite Density Theorem). Let A be an associative algebra graded by an
abelian group Z. Let M(1), . . . ,M(n) be Z-graded-simple quasifinite A-modules, such that there
is no grading-preserving isomorphism between any distinct pair of them. Fix s,p ∈ Z, and
for each i = 1, . . . , n, let {xi

j }j=1,...,mi
be a K-linearly independent subset of M

(i)
s , and let

{yi
j }j=1,...,mi

be a set of vectors in M
(i)
s+p . Then there exists an element a ∈ Ap , such that axi

j = yi
j

for all i, j .

Proof. By Schur’s Lemma, every nonzero grading-preserving homomorphism of graded-simple
modules is an isomorphism. Thus

HomA
(
M(i),M(�)

)
0 = 0 for i 	= �.

Applying Schur’s Lemma again, we see that every grading-preserving endomorphism of a qua-
sifinite graded-simple module is a multiple of the identity. Take M = M(1) ⊕ · · · ⊕ M(n). Then

K = (EndA M)0 = Kπ1 ⊕ · · · ⊕ Kπn,

where πj is the projection πj :M → M(j). It follows that

(EndK M)p =
n⊕

j=1

(
EndK M(j)

)
p
,

and now Theorem A.2 follows immediately from Theorem A.1. �
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