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A generic feature of inflationary models in supergravity/string constructions is vacuum misalignment for 
the moduli fields. The associated production of moduli particles leads to an epoch in the post-inflationary 
history in which the energy density is dominated by cold moduli particles. This modification of the post-
inflationary history implies that the preferred range for the number of e-foldings between horizon exit of 
the modes relevant for CMB observations and the end of inflation (Nk) depends on moduli masses. This 
in turn implies that the precision CMB observables ns and r are sensitive to moduli masses. We analyse 
this sensitivity for some representative models of inflation and find the effect to be highly relevant for 
confronting inflationary models with observations.
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1. Introduction

Precision measurements of the cosmic microwave background 
(CMB) have put the inflationary paradigm as the leading candidate 
for a theory of early universe cosmology. The data is in perfect 
agreement with the basic qualitative predictions of inflation i.e. 
an approximately scale invariant and adiabatic power spectrum. 
Upcoming observations are expected to probe the CMB with an 
even greater accuracy and provide us information regarding the 
strengths of the tensor to scalar ratio and non-gaussianities.

On the theoretical front, there are many challenges. The infla-
tionary slow roll conditions are ultraviolet sensitive; we should 
embed models of inflation in a quantum theory of gravity. In this 
light, an important direction of research is study of the effects that 
can arise as a result of ultraviolet completion of inflationary mod-
els. String theory provides a setting where one can hope to carry 
out a systematic study of such effects.

A generic feature of supergravity/string models is the mod-
uli fields. The vacuum expectation value of moduli fields set the 
strength and form of the low energy effective action of string mod-
els, hence moduli fields play a central role in string phenomenol-
ogy. There has been an extremely useful interplay between studies 
of moduli stabilisation and inflationary model building in string 
theory, see e.g. [1–3]. In this paper, we will examine the sensitiv-
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ity of precision CMB observables – the spectral tilt (ns) and the 
tensor to scalar ratio (r) to the mass of the lightest modulus field.

Given a model of inflation, one can express ns and r in terms 
of the number of e-foldings between horizon exit of the modes 
relevant for CMB observations and the end of inflation (Nk). Pre-
dictions for ns and r are then made by using the “preferred range” 
of Nk in these formulae. The preferred range for Nk is determined 
by tracking the history of the universe for the time of horizon exit 
to the present epoch i.e. the computation is sensitive to the post-
inflationary history of the universe. For the standard cosmological 
timeline (which has the epochs inflation, reheating, radiation dom-
ination, matter domination, accelerated expansion) the preferred 
range for Nk is 50 to 60.

From the very early days of inflationary model building in 
supergravity, it was realised that a generic implication of hav-
ing moduli fields is a non-standard post-inflationary cosmological 
timeline [5–10] (often referred to as the modular cosmology time-
line). The modular cosmology timeline sets in as a result of vac-
uum misalignment of moduli fields during the inflationary epoch. 
The associated production of moduli particles leads to an epoch in 
the post-inflationary history of the universe in which the energy 
density is dominated by cold moduli particles. The history is ther-
mal after the decay of the moduli particles.1 Reference [11] derived 

1 The successes of big bang nucleosynthesis imply that the decay of the modulus 
has to take place before nucleosynthesis.
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the preferred range of Nk for the modular cosmology timeline2 and 
found it to be(

55 − 1

4
Nmod

)
± 5, (1)

where Nmod is the number of e-foldings of the universe during the 
epoch that the energy density is dominated by cold moduli par-
ticles. As we will see in Section 2.1, in generic models is Nmod
essentially determined by the post-inflationary mass3 of the light-
est modulus field (mϕ).

In this paper our goal is to explore in detail the phenomeno-
logical implications of (1). The dependence of the preferred range 
of Nk on the mass of the lightest modulus implies that ns and r
are sensitive to the mass of the lightest modulus. We will examine this 
sensitivity for some representative models of inflation (m2χ2 [18], 
axion monodromy [19], natural inflation [20] and the Starobinsky 
model [21]). Motivated by the varied spectra of phenomenolog-
ically viable supergravity models we will treat the mass of the 
lightest modulus (mϕ) as a parameter. We will analyse our results 
in the context of planck 2015 data [22]. The implications are very 
interesting; the changes in inflationary predictions can significantly 
affect the scorecard for models.

2. Review

2.1. Modular cosmology

At tree level, string compactifications have massless scalar fields 
which interact via Planck suppressed interactions (the moduli). 
Moduli acquire masses from sub-leading effects, their masses are 
typically well below the string scale and hence moduli are part of 
the low energy effective action.

Moduli fields usually have curvature couplings; this makes their 
masses and potential dependent on the expectation value of the 
inflaton. As a result, the minimum of the potential for a mod-
ulus of post-inflationary mass less than Hubble during inflation 
(mϕ < H infl) is different during the inflationary and post-infla-
tionary epochs – such a modulus finds itself displaced from its 
post-inflationary minimum at the end of inflation. This “initial dis-
placement” is typically of the order of Mpl [13–17].

As discussed in the introduction, this “misalignment” implies a 
non-standard cosmological timeline. We briefly review this time-
line and refer the reader to [5–10] for a more complete discussion. 
Let us begin by describing the case when there is a single modulus 
whose post-inflationary mass mϕ is below the Hubble scale during 
inflation. At the end of inflation the universe reheats, the energy 
density associated with the inflaton gets converted to radiation. At 
this stage, the energy density of the universe consists of two com-
ponents – radiation, and the energy associated with the modulus 
displaced from its minimum.4 Also, the high value of the Hubble 
friction keeps the modulus pinned at its initial displacement. As 
the universe cools, the Hubble constant drops. When the Hubble 
friction falls below the mass of the modulus, the modulus begins 
to oscillate about its post-inflationary minimum. With this, the as-
sociated energy density dilutes as matter i.e. much slower than 
that of the radiation. Eventually the energy density associated with 
the modulus dominates the energy density of the universe; the 
universe enters into the epoch of modulus domination. This epoch 

2 See [12] for a systematic discussion of various effects that can affect the pre-
ferred range for Nk .

3 Curvature couplings imply that the mass of a modulus field can be significantly 
different during the inflationary and post-inflationary epochs.

4 Since mϕ < H infl, right after reheating the energy density associated with radi-
ation dominates over the energy density associated with the displaced modulus.
lasts until the decay of the moduli particles. The universe reheats 
for a second time after the decay of the modulus, after which the 
history is thermal. In summary, the modular cosmology timeline 
consists of the following epochs – inflation, reheating (associated 
with inflaton decay), radiation domination, modulus domination, 
reheating (associated with modulus decay), radiation domination, 
matter domination and finally the present epoch of acceleration.

In models with multiple moduli with post inflationary mass 
below Hubble during inflation, there are multiple epochs of modu-
lus domination and reheating associated with the moduli. In cases 
where there is a separation of scale between the mass of the light-
est modulus and the mass of other moduli the lightest modulus 
outlives the others and sets the time scale for the epoch of mod-
ulus domination. The dynamics of the system can be effectively 
described by a model with a single modulus; with the effect of 
the heavy moduli being incorporated in the reheating epoch after 
inflation.5 In models in which there is no distinct lightest modulus 
the dynamics is more complicated to analyse; this was discussed 
briefly in [11]. We will confine ourselves to situations in which 
there is a distinct lightest modulus in this paper.

2.2. The preferred range of Nk in modular cosmology

In this section we briefly review the results of [11] relevant for 
our analysis. Our focus will be on models in which adiabatic per-
turbations are generated as a result of quantum fluctuations during 
the inflationary epoch. The strength of the inhomogeneities gener-
ated is given by

As = 2

3π2r

(
ρk

M4
pl

)
,

where As is the amplitude of the scalar perturbations, ρk the en-
ergy density of the universe at the time of horizon exit and r
the tensor to scalar ratio. We review the details of generation 
of density perturbations in the context of modular cosmology in 
Appendix A. The scalar amplitude As is constant to a very good 
approximation until the point of horizon re-entry. The strength of 
temperature fluctuations in the CMB can be obtained by tracking 
its subsequent evolution. Thus the measurement of the strength of 
temperature fluctuations gives us the value of the energy density 
of the universe at the time of horizon exit (modulo r). CMB obser-
vations also give us the value of the energy density today (ρ0) via 
determination of the Hubble constant. Thus any theoretical pro-
posal for the history of the universe between horizon exit and the 
present epoch must be such that ρk evolves to ρ0. Reference [11]
applied this consistency condition to the modular cosmology time-
line described in Section 2.1. This gave the relation6

Nk + 1

4
Nmod + 1

4
(1 − 3wre1)Nre1 + 1

4
(1 − 3wre2)Nre2

≈ 55.43 + 1

4
ln r + 1

4
ln

(
ρk

ρend

)
, (3)

where Nk is the number of e-foldings between horizon exit of 
the modes relevant for CMB observations and the end of infla-
tion, Nmod is the number of e-foldings that the universe undergoes 
during the epoch of modulus domination, wre1 and wre2 are the 

5 Moduli decay via Planck suppressed interactions. Hence the lifetime scales as 
m−3

ϕ , this implies that this effective description can be useful even for a moderate 
separation between the mass of the lightest moduli and the heavier ones.

6 The analogous relation for the standard cosmological timeline is

Nk + 1

4
(1 − 3wre)Nre ≈ 55.43 + 1

4
ln r + 1

4
ln

(
ρk

ρend

)
. (2)
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effective equation of state parameters during the two reheating 
epochs, Nre1 and Nre2 are the number of e-foldings during the two 
reheating epochs, ρk the energy density at the time of horizon exit 
and ρend the energy density at the end of inflation. The number of 
e-foldings of modulus domination was found to be

Nmod ≈ 4

3
ln

(√
16π MplY 2

mϕ

)
(4)

where Y is the initial displacement of the modulus from its post-
inflationary minimum in Planck units. Equation (3) can be used to 
obtain the “preferred range” of Nk for modular cosmology. A dis-
cussion of the analogous analysis for the standard cosmological 
timeline can be found in [4]. Making the same generality assump-
tions regarding the reheating epoch, change in the energy density 
of the universe during inflation and the scale of inflation as in Sec-
tion 2.3 of [4], equation (3) gives the preferred range for Nk to be(

55 − 1

4
Nmod

)
± 5. (5)

Note that this can be thought of as lowering of the central value 
of the preferred range of Nk by Nmod/4. As mentioned earlier, 
there are general arguments [13–17] which imply Y is an O(1)

quantity.7 Thus the shift in the central value of Nk is essentially 
determined by mϕ .

Before ending this section we would like to emphasise that the 
relation (3) and expression (5) are valid only if the post inflation-
ary mass of the modulus mϕ is below Hubble during inflation. If 
the post-inflationary mass of the lightest modulus is well above 
Hubble during inflation then the misalignment mechanism is not 
operational and the preferred range is 55 ± 5.

3. Implications for inflationary models

In this section, we will study the phenomenological implica-
tions of the results described in Section 2.2 for some representative 
models of inflation. Given the diverse spectra of phenomenologi-
cally viable supergravity models we will treat mϕ as a phenomeno-
logical parameter in our analysis. The central value of Nk also 
depends on Y . As discussed in Section 2.2 typically Y is O(1). 
We note that apart from the classical contributions to Y discussed 
in [15,16], quantum contributions to the effective potential of the 
field can also be present (see e.g. [39]), although if the mass of 
the modulus is of the order of Hubble during inflation one expects 
the classical contribution to be dominant. Exact determination of 
Y requires the knowledge of coupling between the inflaton and 
moduli fields; hence is sensitive to the embedding of a model of 
inflation in a compactification. For field displacement due to clas-
sical effects we will take Y = 1/10 (as is often taken in analysis 
of the cosmological moduli problem see e.g. [7]). So our choice of 
Y = 1/10 can be considered conservative; but this ensures better 
control over the effective field theory. We leave the exact compu-
tation of Y and its dependence on various parameters (such as the 
mass of the modulus) in specific compactifications for future work. 
The quantum effects become stronger as the field becomes lighter; 
for a modulus well below the Hubble scale the field displacement 
due to quantum effects can dominate over the classical contribu-
tion.

We will focus on four benchmark models of inflation – V (χ) =
1
2 m2χ2 [18] (we will denote the inflaton by χ ), axion monodromy 
i.e. V (χ) = m̂10/3χ2/3 [19], natural (pNGB) inflation [20] and the 

7 These expectations have been borne out in explicit constructions of inflationary 
models in string compactifications, see e.g. [24].
Fig. 1. Numerical solution for the condition H infl > mϕ . The solid curve is a plot of 
mϕ as a function of Nmax as given by (7). The dashed curves are plots of the left 
hand side of (8) as a function of Nmax for various models.

Starobinsky model [21]. Let us record ns and r as a function of Nk
for each of these models

• m2χ2: ns = 1 − 2/Nk , r = 8/Nk
• Axion monodromy: ns = 1 − 4/(3Nk), r = 8/(3Nk)

• Natural inflation: ns = 1 −
[

Mpl
f

]2[
1+ e−x

p

1− e−x
p

]
, r =8

[
Mpl

f

]2[ e−x
p

1− e−x
p

]

with p = 1 + M2
pl

2 f 2 , x = Nk M2
pl

f 2 where f is the axion decay con-
stant

• Starobinsky model: ns = 1 − 2/Nk , r = 12/N2
k

The change in the preferred range of Nk (5) occurs if mϕ is 
less than Hubble during inflation. We begin by implementing this 
condition for each of the models. The Hubble constant at the time 
of horizon exit is

Hk = π√
2
(Asr)1/2Mpl (6)

Note that the right hand side of (6) depends on mϕ ; since r is 
determined by Nk and the preferred range for Nk depends on mϕ . 
Also, r decreases with an increase in Nk . Therefore, the condition 
can be implemented over the entire preferred range by requiring 
that it holds for the maximum value of Nk

Nmax = 60 − 1

3
ln

(√
16π MplY 2

mϕ

)
. (7)

Thus we want to impose the condition

π√
2
(Asr[Nmax])1/2Mpl > mϕ (8)

with Nmax as given by (7). We solve for this condition numerically 
in the plot shown in Fig. 1. The condition is most stringent for 
the Starobinsky model, for which the right hand side and left hand 
side of (8) are equal for mϕ ≈ 1.5 × 1010 TeV. We will be conser-
vative and study the implications of the shift in the central value 
of Nk if the mass of the modulus is at least two orders of magni-
tude below this i.e. mϕ < 108 TeV (this value will be used for all 
models).

On the other hand, the cosmological moduli problem (CMP) 
bound, based on the requirement of successful nucleosynthesis re-
quires mϕ > 30 TeV [5–7,23]. We will use this consideration to set 
the lower value of mϕ in our analysis. In summary, we will use the 
range 102 TeV < mϕ < 108 TeV to study the effects of the epoch of 
modulus domination on inflationary predictions.
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Fig. 2. Inflationary predictions for m2χ2 (black), natural/pNGB inflation (purple), axion monodromy (green), Starobinsky model (red). For the cases of no misalignment 
(mϕ > H infl), mϕ = 103, 106, 108 TeV. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
We now have all the ingredients necessary to compute the pre-
dictions for ns and r. We compute the predictions for ns and r for 
mϕ = 103, 106 and 108 TeV. We begin by taking Y = 1/10, appro-
priate for a classical displacement. We will study the case of dis-
placement due to quantum effects later in the section. The results 
are shown in Fig. 2, the plot for the standard cosmological timeline 
(which is equivalent to mϕ > H infl) is also included for reference. 
The shaded regions correspond to the 1-σ and 2-σ results for ns
and r from planck 2015 analysis for TT modes and low P [22]. We 
find that for the m2χ2 model even a very heavy modulus of mass 
108 TeV implies predictions for ns and r which are well outside the 
2-σ region. The axion monodromy model moves inside the 1-σ re-
gion for mϕ below 105 TeV. The Starobinsky model remains in the 
1-σ region for almost the entire mass range.

In the above analysis, we have taken Y = 1/10 even for a mod-
ulus mass of 103 TeV. For such a light field the quantum fluc-
tuations can be large. The fluctuation squared is expected to be 
order of

〈ϕ2〉 = 3H4

8π2m2
ϕ

,

see e.g. [39]. For a modulus of mass 103 TeV and the inflation-
ary scale at the GUT scale this yields Y ≈ 10, significantly larger 
that the value of Y used by us earlier. Thus for the modulus mass 
103 TeV we compute the inflationary predictions taking Y = 10. 
The results are presented in Fig. 3.

Finally, we would like to mention a general implication. For 
gravity mediated models moduli masses are tied to the scale of 
supersymmetry breaking. Thus, for gravity mediated models our 
results correlate inflationary predictions with the scale of super-
symmetry breaking. The effect is significant even for models with 
a high scale of supersymmetry breaking.
Fig. 3. Inflationary predictions for m2χ2 (black), natural/pNGB inflation (purple), ax-
ion monodromy (green), Starobinsky model (red) for mϕ = 103 TeV, with the field 
displacement taken to be of quantum origin (this dominates over the classical ef-
fect). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)

4. A bound on moduli masses

The consistency condition (3) can be used to obtain a bound on 
moduli masses given a model of inflation by taking input from ob-
servations on the value of ns [11]. The approach can be considered 
complimentary to that of the previous section where we discussed 
inflationary predictions as a function of the mass of the late time 
decaying modulus. In this section, we analyse the bound for our 
representative models and update some of the discussion in [11]
in light of the planck 2015 data release [22].

The bound is obtained by combining the consistency condition 
(3) with expression for Nmod (4) and demanding that the reheat-
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Fig. 4. Bound on the modulus mass for small field models. The allowed values of 
mϕ are in the region above the shaded plane. We have chosen Y = 1/10.

ing epochs are not exotic, i.e. wre1, wre2 < 1/3 (see e.g. [4,29]
for a discussion of on this condition on the effective equation of 
state during reheating). With this, one can arrive at a lower bound 
on mϕ

mϕ �
√

16π MplY
2 e

−3
(

55.43−Nk+ 1
4 ln(ρk/ρend)+ 1

4 ln r
)
. (9)

The bound applies only if mϕ is less than Hubble during infla-
tion (as equation (3) was derived under this assumption). Given a 
model of inflation and observational input on the value of ns , one 
can explicitly compute the quantities in the exponent in the right 
hand side of (9). Typically, Nk is related to ns by a relation of the 
form Nk = β

1−ns
, where β depends on the model of inflation. This 

makes the bound highly sensitive to the value of ns . The planck

2015 release [22] gives the central value of ns to be 0.9680; there 
is a shift in the positive direction in comparison with the 2013 
value of ns = 0.9603 [4]. This implies an increase in Nk for infla-
tionary models and thereby a more stringent bound.

Let us now discuss the bound in the context of our represen-
tative models. For the m2χ2 model, the planck 2015 central value 
of ns gives the right hand side of (9) to be well above Hubble 
during inflation (as obtained in Fig. 1); modular cosmology is in-
compatible with this value of ns . The lower end of the 1-σ value 
gives mϕ > 1010 TeV. On the other hand, for the axion monodromy 
model (9) yields a value below the CMP bound based on nucle-
osynthesis considerations [5–7,23], thus is not of phenomenologi-
cal interest as a bound. The fact that the bound is not strong for 
the axion monodromy model is consistent with the results shown 
in Fig. 2 – the axion monodromy model is in the 1-σ region for 
mϕ = 103 TeV. Similarly, in the case of the Starobinsky model and 
pNGB inflation the value of the bound is in keeping with the re-
sults shown in Fig. 2.

For small field models, the second term in the exponent of the 
right hand side of (9) (the term involving the ratio of the energy 
densities at the time of horizon exit and end of inflation) makes 
a negligible contribution. In Fig. 4 we show the allowed range for 
mϕ as a function of Nk and r. The plot illustrates that the scale for 
the bound is essentially set by Nk . For Nk � 50 the bound is very 
strong; mϕ � 107 TeV. The bound is stronger than the CMP bound 
as long as Nk � 44.5. The plot in Fig. 4 can be used to read off the 
implications of the bound for any small field model. It will be in-
teresting to explore the implications of this bound for inflationary 
model building in moduli stabilised string compactifications.

5. Discussion and conclusions

In this paper, we have studied the sensitivity of ns and r to the 
mass of the lightest modulus in the context of modular cosmology. 
The results of Section 3 clearly exhibit that it is important to ex-
plicitly incorporate the effect of the epoch of modulus domination 
in obtaining the preferred range of Nk . The effect can significantly 
alter the inflationary predictions for ns and r of string/supergrav-
ity models; being relevant even for very heavy moduli (mϕ ≈
108 TeV). Furthermore, future experiments [25] are likely to bring 
down the uncertainties in the measurement of ns by one order of 
magnitude; making our analysis all the more relevant. Given that 
modular cosmology is generic in string/supergravity models [5–10]
our results should have broad implications.

Our approach has been phenomenological; we have treated the 
mass of the lightest modulus as a free parameter and taken the 
initial displacement of the modulus (that results due to misalign-
ment) to have a generic value. The results strongly motivate the 
study of specific models where the modulus mass takes a fixed 
value and it is possible to compute the value of the initial dis-
placement explicitly. Some models worth exploring in this context 
are fibre inflation [24], Kahler moduli inflation [26], M-flation [27]
and Gauged M-flation [28].

Another important direction in the study of specific models is 
first principles analysis of the reheating epoch. This can reduce 
the uncertainty in Nk , allowing for more precise predictions of ns

and r. This question has received much attention recently [29–31]. 
The methods developed in [31] can be useful in analysing the de-
cay of moduli particles.

More generally, modular cosmology can also have implications 
for dark matter, structure formation and the phenomenology of 
SUSY models [32]. It is natural to look for correlations between 
our results for CMB observables and other phenomenological sig-
natures.
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Appendix A. Density perturbations in modular cosmology

In this appendix we review the generation of density perturba-
tions in the context of modular cosmology. As discussed in Sec-
tion 2 the minimum of the potential of the late time decaying 
modulus depends on the inflaton expectation value; thus as the in-
flaton moves along its trajectory the expectation value of the late 
time decaying modulus (and potentially other moduli) necessarily 
changes. Thus, the trajectory in field space during inflation involves 
displacement along the inflaton direction, late time decaying mod-
ulus (and potentially other moduli). We will require the directions 
in field space orthogonal to the trajectory in field space during in-
flation to have mass of at least of the order of Hubble (this as we 
will see in what follows will ensure that isocurvature perturba-
tions are suppressed). Infact, curvature couplings naturally lead to 
such mass terms of the order of Hubble (see e.g. [15,16]).

The perturbations generated are best understood in the formal-
ism developed in [33] – coordinates in field space are chosen such 
that one of the coordinate directions is along the trajectory in field 
space (during the inflationary epoch) and the remaining are or-
thogonal to the trajectory in field space. The key result of [33]
is that quantum fluctuations associated with the direction in field 
space parallel to the trajectory are adiabatic, while the ones or-
thogonal generate isocurvature perturbations. Thus, imposing the 
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condition that the directions in field space orthogonal to the trajec-
tory have mass at least of the order of Hubble ensures that isocur-
vature perturbations at the time of horizon exit are suppressed; 
the perturbations are to a very good approximation adiabatic at 
the time of horizon exit. We will denote the adiabatic perturbation 
at the time of horizon exit by R∗ and the isocurvature pertur-
bations by S i∗ . These have to be evolved into the radiation epoch 
(after the decay of the modulus) to determine the strength of the 
temperature fluctuations they seed. The result of this evolution is 
given by a transfer matrix [34], which takes the general form (to 
keep the presentation simple we include one isocurvature direc-
tion, it is easily generalised to the case of multiple isocurvature 
perturbation directions)[
Rrad
Srad

]
=

[
1 TRS
0 TSS

][
R∗
S∗

]

where Rrad and Srad are the isocurvature and adiabatic perturba-
tions after the modulus decay. An important feature of the transfer 
matrix is that the entries in the first column are completely model 
independent [34] – they follow from the fact that a purely adia-
batic perturbation is conserved and does not lead to any isocurva-
ture perturbations. On the other hand, the transfer functions TRS
and TSS are model dependent. But, the form of the transfer matrix 
implies that if S∗ << R∗ , then isocurvature perturbations remain 
suppressed and Rrad is essentially determined by R∗ . Thus, for 
models in which the only light direction during the inflationary 
epoch is the trajectory in field space the density perturbations 
are adiabatic and determined by the curvature perturbation at the 
time of horizon exit.

Other scenarios to generate density perturbations are the cur-
vaton scenario [35] and modulated fluctuations [36]. We shall not 
explore these possibilities here, see [37,38] for their realisations in 
string models.
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