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Abstract-we consider the %&man-Taylor problem describing the displacement of one fluid by 
another having a smaller viscosity, in a porous medium or in a Hele-Shaw configuration, and the 
Taylor-S&man problem of a bubble moving in a channel containing moving fluid. Each problem is 
known to possess a family of solutions, the former corresponding to propagating fingers and the latter 
to propagating bubbles, with each member characterized by its own velocity and each occupying a 
different fraction of the porous channel through which it propagates. To select the correct member 
of the family of solutions, the conventional approach has been to add surface tension (T and then take 
the limit u 4 0. We propose a selection criterion that does not rely on surface tension arguments. 
@ 1998 Elsevier Science Ltd. All rights reserved. 
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We first consider the Saffman-Taylor (ST) [l] finger problem. Thus, we consider 

v’= FOP, (1) 

V*v’=Q, (2) 

in the channel (X,Y) : -co < X < 00, -1 < Y < 1. Here v’ denotes the fluid velocity, P the 
pressure, and F = k/p the filtration coefficient, where k is the permeability and h the viscosity. 
A front (interface) separates one fluid from the other. In addition to uniformly propagating 

planar fronts, there exist fronts in the form of a finger, which are curved near the tip and parallel 
to the channel walls far behind the tip, and which propagate with constant velocity u. Let the 
subscripts 1 and 2 denote the regions 1 and 2, which refer to the displacing and the displaced 
fluid, respectively. Thus, the filtration coefficient F = Fl(F2) in region 1 (region 2). We assume 

that F2 > Fl, in which case planar fronts are unstable [l]. Therefore, we consider finger fronts 
X = X,(Y). On the front, we have 

Pl = p2, 0, = WI, 

where G = (u, 0) and the subscript n denotes the normal component. 
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We do not prescribe an upstream boundary condition at X = -co. Rather, we prescribe the 
downstream fluid velocity as 

v’= (l,O), x + 00. (4 

We introduce the potential 4 and stream function II, by 

q5 = -FP, (5) 
a4 w 

vx=dX=p 
84 w --. VY =ay= dx (6) 

Both 4 and $ satisfy Laplace’s equation in regions 1 and 2. In region 2, the solution is given 
by 

42 = vgx, $2 = v,“y, (7) 

where vg is an as yet unknown constant. The pressure jump across the front is zero, so that 

42 = $h, x = Xf. (8) 

In terms of the potential function 4, condition (3) is 

Recalling the relations 
a4 alC, u, aY 
x=x) ;=xy 

where &- denotes the tangential derivative, condition (9) may be written as 

$1 = UY, $2 = UY. PO) 

It follows from (7) and (10) that 
u = v;. (11) 

In region 1, the velocity at foe must be independent of Y. Therefore, we seek a solution 
satisfying 

41NX, &l, x-+00, $+v;x, !+;, x+__oo, 

where the constant vy is as yet undetermined. 
The walls of the channel are streamlines 

$(Y = H) = fl. 

We now determine the constants v$’ and vg. From (7), (8), and (12), it follows that 

O- l-3 0 
v2 - -VI. 

Fl 

(12) 

(13) 

Far behind its tip, the finger occupies the region -A < Y < A, where the constant X is to be 
determined. The difference between the stream functions at the wall (Y = 1) and at the fro? 
(Y = A), according to (13) and (10) is 

@l(l) - !h(X) = 1 - ux. 
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On the other hand, this quantity may be computed from (12) as 

h(l) - 41(X) = Gv - A>. (16) 

Using (ll), (14), and (15), we obtain 

(Wfi) 
u = 1 + X[(F2/Fl) - l] ’ 

vy = 1 

1+ X[(h/&) - 11’ 
v2” = (fi/Fi) 

1+ N(WFI) - 11. 
(17) 

We note that the denominator of (17) is always positive in the parameter region F2/Fl > 1, 
where planar fronts are unstable. It also follows from (17) that the velocity ‘1~ of the finger is 
always greater than the velocity of a planar front. In order to determine the shape of the front, 
it is convenient to introduce new potential and stream functions 

% = 41- 21*x, 81 = $1 - v*Y (18) 

where the constant v, is determined by the condition on the front 

@1(X,) = 0. 

It follows from (7) and (8) that 
fi 0 v, = -02. 
F2 

Condition (10) then takes the form 

\kl =$Q-v*Y =UY, (WFd - 1 
’ = 1 + X[(Fz/Fl) - 11’ 

(19) 

(20) 

(21) 

At the walls (Y = *l), we have 

Ql = $1(l) - 21, = xu ZE v. (22) 

Thus, we must find conjugate harmonic functions @i and \ki which satisfy conditions (21),(22), 
on the front and on the walls, respectively, and 

i@l N vx, x + 03, (23) 

with condition (19) employed to determine the shape of the front. As shown by Saffman and Tay- 
lor [l], the problem is solved by considering the inverse harmonic functions X(*1, Qi), Y(Qi, Qi), 
with 

Y=$+gB n=l nexp (-9) cos (“7) , (24) 

and X(ipi, \Ei) conjugate to Y(@i, Qi). Using the usual Fourier method, the coefficients B, are 
determined by (21) as 

B, = __z (-‘jn -(1 - X). 
r n 

Thus, the conjugate harmonic functions Y(&, Si) and X(@i, !Pi) are determined as 

Y = $ + 2(x - ‘) tan-l ( cos(~Q~~~~~~~Q ,v)) , 
n- 1 

(26) 

x=$_x-‘l~( 1 + 2 cos(n*~/V) exp(+r@i/V) + exp(-2n@i/V) 
7r 4 >- 
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The shape of the finger is obtained by setting @i = 0 in (26) (cf.(19)), so that 

(27) 

The width 2X of the finger is as yet undetermined, so that we have a one-parameter family of 
finger solutions. However, experiments [l] indicate that the finger corresponding to X = l/2 is 
preferred over other members of the family. Numerical computations (e.g., [2-41) of the problem 
in which surface tension (T is first added to the model and then the limit 0 + 0 is taken also select 
the value X = l/2. We will show that solutions with X = l/2 should be selected, independent of 
the value of the parameter Fz/Fi. Assuming this result, we can write (17) as 

(28) 

We see that the finger front propagates faster than the planar front (U > 1). Near the planar 
front stability boundary (Fz/Fl = l), the velocity u is close to 1. However, penetrating more 
deeply into the instability region, the finger velocity may exceed the planar velocity by a factor 
of 2 (as F2/Fl --+ co). 

We note that the Saffman-Taylor problem also arises in the study of filtration combustion [5], 
when propagation of the combustion front is limited by the rate of delivery of gaseous oxidizer. 
Then, the problem for the fluid field decouples from that for the temperature and the concen- 
trations of the reactive components. The problem for the fluid field can then be reduced to the 
problem considered by Saffman and Taylor. In the filtration combustion problem, surface ten- 
sion cannot be added, since the front is merely the interface between the burned and unburned 
regions. 

We now present a criterion to solve the selection problem without adding surface tension. 
First, we note the important role of fluid motion in the transverse direction Y. The finger 

propagating in the strip -oo < X < 00, -X I Y I X, necessarily pushes fluid in the transverse 
direction because the amount of fluid V = UX which is displaced by the finger X = Xf(Y) 
is greater than or equal to the amount to fluid VA removed from the strip at X = +oo. The 
transverse fluid motion at X = foe is negligible so that an essentially localized pulse of transverse 
fluid motion accompanies the propagating finger. The integral 

10 = ]VYi]dXdY 
s A 

represents a quantitative measure of the total transverse fluid motion in the strip A bounded by 
the lines Y = fX and the interface Xf . 

Employing the relations 

a41 8% a*1 
Vy’=~=dY=--ax, 91(X =X,) = vu, *1(x = co) = vu, 

we evaluate 10 as +oO 
IO = 2 

S J x b!Di 
ax dX CZY = VX(1 - X). (29) 

-03 0 

We define the quantity AL = lo/I,, with Ip = s_^ A vyl dY, where the integral is evaluated near 
the tip, where vyi achieves a maximum. We note that the maximum is proportional to U, and 
estimate that Ip N 2UX. We observe that AL achieves a maximum at X = l/2. The integral 10 
describes the total amount of vyl in the area of the strip, while the integral I,, describes the 
amount of vyi in a cross section of the strip. Therefore, the ratio AL = lo/l, may be thought 
of as an effective width (in X) of the region in which there is transverse fluid motion. The 
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propagating finger is a traveling wave which induces a localized wave of transverse fluid motion. 

The effective extent of this localized wave is given by AL which depends on X, or equivalently, 
on the wave velocity u. We propose that the width of a traveling wave in a dissipative medium 
must necessarily increase with its propagation velocity. Mathematically, this is expressed by the 
inequality 

dAL dALdX -=-- 
du dX du “’ (30) 

The derivative $$ determined by (17) is always negative. Therefore, we demand that y < 0. 
This condition rules out those members of the family of fingers corresponding to X < l/2 since 

y > 0 for them. Thus, only fingers corresponding to X 2 l/2 remain. It is interesting to 
note the introduction of surface tension into the Saffman-Taylor problem also limits solutions to 
those corresponding to X 2 l/2 [2-4,6-g]. Among the solutions in the range X 2 l/2, we select 
the finger corresponding to X = l/2, whose propagation velocity is largest, as a function of X 
and u. We observe that the selected velocity lies at the edge of the interval of allowed velocities, 
similar to selection in the Kolmogorov, Petrovsky, Piskunov problem [lo]. Note that the largest 
velocity corresponds to an extremum of AL. Thus, our selection criterion is to extremize the 
functional AL, which singles out the finger with X = l/2. The criterion may be interpreted as 
the selection of the traveling wave solution with largest velocity from among all traveling waves 
allowed by (30). 

We have verified that our selection criterion is also valid for the Taylor-Saffman problem [ll] of 
an air bubble (Fz = 00, V = 1, U = u), moving in a channel containing a moving viscous fluid. For 
this problem, Taylor and Saffman derived a one-parameter family of solutions characterized by 
the width X of the bubble and its speed U. In contrast to the finger problem, the bubble occupies 
a finite area S in the channel. The family of bubbles found by Taylor and Saffman is given by 
S = (16/n)(U - l/U”)tanh-‘[tan2((7rUX)/4)]. Al so, in contrast to the air finger problem, the 
product XU is no longer fixed at AU = 1. To select the correct member of the family, Taylor and 
Saffman proposed the mathematical criterion that the product AU is a minimum, which selected 
the bubble corresponding to U = 2 and X = X(S) = 2/7r tan-‘( dw). It is interesting to 
note that, as S + 00, X -+ l/2, which is the result for the finger problem. However, the principle 
of minimum AU cannot be directly applied to the air finger problem since AU G 1. In contrast, 
our criterion applies to both problems. In the TS problem, 10 = (U - 1)X2 and Ip N 2UX, so 
that AL is a function of the product UX only (for fixed S). As in the finger problem, others later 
introduced ~7 and took the limit, CY + 0 to verify the result in [ll]. We observe that our selection 
criterion reduces to the condition that NJ be a minimum, so that, in a sense, it may be thought 
of as the physical principle sought by Taylor and Saffman, which underlies their mathematical 
criterion. Finally, we note that after the completion of this paper, we learned of the result [12] 
which also showed that X = l/2 is selected for the ST problem, without appealing to surface 
tension arguments. 
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